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ABSTRACT

In this paper, we present the results of our investigation on Autism classi-
�cation by applying ensemble classi�ers to disordered speech signals. The
aim is to distinguish between Autism sub-classes by comparing an ensemble
combining three decision methods, the sequential minimization optimiza-
tion (SMO) algorithm, the random forests (RF), and the feature-subspace
aggregating approach (Feating). The conducted experiments allowed a re-
duction of 30% of the feature space with an accuracy increase over the
baseline of 8.66% in the development set and 6.62% in the test set.

c
2016 LESI. All rights reserved.

1. Introduction

Autism is a term for a wide range of developmental brain disorders, called autism
spectrum disorder (ASD) in the scienti�c community. The term spectrum refers to a
collection of symptoms, skills, and levels of impairment or disability. Some individuals are
impaired whilst others are severely disabled [1]. According to [2], ASD is sometimes called
pervasive developmental disorder (PDD), and has been classi�ed into �ve major classes :

1. Autistic disorder (classic autism)

2. Asperger�s disorder (Asperger syndrome)

3. Pervasive developmental disorder not otherwise speci�ed (PDD-NOS)

4. Rett�s disorder (Rett syndrome)

5. Childhood disintegrative disorder (CDD).

The symptoms of ASD vary from one child to another, but can be classi�ed into three
areas :
�Email : benselamaabd@hotmail.com
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1. Social impairment

2. Communication di¢ culties

3. Repetitive and stereotyped behaviors.

In general, parents are the �rst to notice the abnormal behavior of their child. Sometimes
ASD can be found in very young babies, when the infant starts focusing on �xed objects
and fails to engage in play with his or her parents. Sometimes children behave normally
until the age of two or three, at which point the symptoms of ASD appear, such as
being silent, unsocial, indi¤erent, and displaying a loss of development (which is called
regression).
Aiming to contribute to the early detection of speech impairments, many hospitals and

speech departments have recorded speech databases in order to automatize the process
of pathology detection and classi�cation. Likewise, many research papers have also dealt
with the detection of impaired speech, such as [3] and [4] on stigmatism classi�cation, [5]
on prosodic assessment of language impaired children, and [6] on automatic classi�cation.
The need to investigate using computerized automatic methods requires assessed recor-

ded pathological databases. For this autism related work, the Child Pathological Speech
Database (CPSD) has been used ; this database was recorded in two university depart-
ments (pediatrics and psychiatry) in Paris, France. The �rst is located at the �Université
de Pierre et Marie Curie/Pitié Salpêtrière Hospital, while the second department belongs
to the Université Rene Descartes/Necker Hospital.
The database consists of 99 children aged from 7 to 19 years and of both genders. The

pathological database has been segmented into two main classes, de�ned as typical and
atypical autism, and a second deep segmentation includes PDD, Dysphasia (DYS), and
Not-Otherwise Speci�ed (NOS). The set of distributed recorded �les is presented in Table
1. [7].

Table 1 �CPSD pathological speech database distribution.

Autism Train Dev. Test Total
Typical TYP 566 543 542 1651
(TYP)
Atypical PDD 104 104 99 307
(ATY) NOS 104 68 75 247

DYS 129 104 104 337
Total 903 819 820 2542

In section 2, we will describe the classi�cation methods, and section 3 presents the
feature selection scheme. The implementations and results are described in section 4,
which is followed by a discussion in section 5, before the paper concludes.

2. Classi�cation methodology

Classi�ers have the ability to split the space of features into low-level boundary spaces,
thus allowing an expert decision of the probability of a feature vector belonging to one
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or more subspaces. The error in the decision is more related to the correlation of the
feature space and the overlap between the sub/spaces ; in this order of idea, the use of
multiple experts improves the �point of view�of the decision and lowers the probability
of belonging to more than one space. Many classi�ers, such as support vector machines
and decision trees, can show exceptional results on some datasets and very low accuracies
on others. In this conjecture, using di¤erent voters can handle the disparity between the
classi�ers ; the better approach is to have an expert for each subspace or class. Unfortu-
nately, with the increasing number of classes and problems, other decision methods have
to be implemented.
In this paper we have opted for strong and weak classi�ers, and experiments showed

that by a tuned voting principle, the overall accuracy is better than each classi�er alone.

2.1. Sequential minimization optimization (SMO) algorithm
The John Platt�s SMO algorithm for training a support vector classi�er has been in-

vestigated in the pathological or emotional context [7]. The support vector machines have
tremendously shown their ability to use intrinsically high dimensional hyper-planes to
separate classes using binary splits. In such situations, the problem is to �nd a solution
to the optimization equation [8]

min
w;b;�

(
1

2
kwk 2 + C:

X
i

�i

)
(1)

under the constraints de�ned by :

li (w:xi � b) � 1� �i; 1 � i � n; �i � 0 (2)

where C is the penalty for mislabeled examples and n the number of training �les within
the dataset. Once the model is built, it can be generalized to the development and test
sets.
In our experiments, a polynomial kernel of degree one was used, as shown in equation

3.

K (x; y) = hx; yi (3)

2.2. Random Forest (RF)
In [9], Breiman proposed a variant of bagging called random forests (RF), which is

an ensemble of decision trees built upon independent and identically distributed random
vectors induced in a growing decision tree. Each tree uses a set of m features selected from
the whole set of features, and grows until convergence. The sub-trees use an ensemble
technique to decide on the class of the new instance.
The RF model in [10] is a predictor of a set of regression trees rnfX;�m; Dn;m � 1g,

where X are the random variables, and the �i; i = 1:::m are i.i.d. outputs issued from
a randomized variable �. The set of trees are then aggregated or combined to form the
regression estimation de�ned as :
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�rn (X;Dn) = E� [rn (X;�m; Dn)] (4)

where E� is the expected value of the random parameter X and the data Dn.
Each individual random tree will be built in the following manner :
At each node, a coordinate of X, from the d dimension vector is selected, with the

k-th feature having a probability pn;k of being selected. Once the coordinate is chosen, a
division or split is initiated at the midpoint of the selected side.
The randomized tree rn(X;�m; Dn) generates the output for which the corresponding

vector Xi falls within the same cluster of the random partition as X.
Each individual tree will contain approximately kn terminal nodes and each single leaf

will have a Lebesgue measure of 1=kn. If X has a uniform distribution on the interval
[0; 1]d, it will result in n=kn observations per terminal node.

2.3. Feature subspace aggregating (�Feating�)
The technique is itself an ensemble approach [11] ; it is a generic concept that can

enhance the predictive performance of learners, and it is a generalized form of the Average
One-Dependence Estimators (AODE) method. It uses a local model rather than a global
one, and is formed by splitting the feature sub-space into non-overlapping local regions
and ensuring that di¤erent subdivisions provide the distinct local neighborhoods for each
point in the feature space. The problem is tackled by [11 in the way that solving a small
aggregated problem is easier than solving a global problem.
The proposed feature-subspaces, issued from exhaustive subdivisions, are the backbone

of an ensemble method that groups or aggregates all the sub-models known as local
models, or a randomized part of them.
The feating is based on the following algorithm 1 :
Algorithm 1 : Feating (D; A; h)
�Build a set of Level Trees based on Feating
INPUT D : Training set, A : Set of given attributes, h : Maximum Level Tree
OUTPUT E : Collection of Level Trees
E  � Start by an empty tree, n  � jAj /* Number of features.
N  � Chn ; P  � rankAttribute(A),
for i = 1 to N do /* Construct an attribute list from P based on index i */
L  � attributeList(P; i),
E  � E [ BuildLevelTree(D; L; 0),
end for
Return E
The feating technique has two main advantages :
� Decreases the execution time as the level of localization is increased
� Best �t for large data size as in our case.

2.4. Voting techniques
In decision theory, combining classi�ers rests on two main schemes :
a- Use of optimal (sub-optimal) basic classi�ers.
b- Use of strong combination rules.
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Many classi�ers pretend good accuracies over the training data, essentially due to large
training data and repeated training sessions, leading unfortunately to a limited generali-
zation process over newer test data. In order to avoid this type of problem, let us start
with the assumption that each classi�er uses a dissimilar approach to tackle the training
data. The decision will be �classi�er dependent�and tends to be more favorable to part
of the data rather than to the other parts. Thus, adding di¤erent classi�ers or expert de-
cision makers will improve the decision, under the constraint of having strong combining
rules : �The use of combination of multiple classi�ers was demonstrated to be e¤ective,
under some conditions, for several pattern recognition applications�[12].

Fig. 1 �Ensemble selection in a parallel scheme.

Fixed rules such as majority vote, minimum, and maximum probability rules have
been tested and show performance increase in the development set. The majority rule
encompasses that classi�ers can decide on an autism case in a majoritarian manner,
and there are cases where the majority vote [12] can lead to a decrease of the overall
accuracy ; the highest probability supposes that an expert per class can win. Other rules
are also listed in the experiment tables, but they �uctuate between majority and maximum
probabilities.

3. Features

The di¤erent speech features have been generated from the opensmile software [13].
The precompiled con�gurations included in the software contain di¤erent combinations
of features, as in the proposed TUM baseline [7]. These features follow the Attribute
Relation File Format (ARFF) and can be used in the Weka data mining java platform
[14].
The prede�ned speech features are also called low-level descriptors (LLD), as they

describe the basic features of speech such as the MFCC, the LPC, the ZCR, and the voice
probability. All the LLD parameters are shown in Table 2.
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Table 2 �Speech low-level descriptors (LLD).

LLD Process / parameters Qty.
Log Energy After Hamming windowing and pre- 1

emphasis (0.97)
MFCC 0-12 Pre-emphasis 0.97, Ham. window 13
Critical band spectrum Over 26bands 26
Zero crossing Rate Frames of 25ms,10ms overlap 1
Voice Probability 1
F0 F0+F0envelope 2
Spectral band energies [0-250], [0-650],[250-650], [1000- 5

4000][3010-9123]
Spectral Roll-O¤ Point 25 , 50, 75,90 4
Spectral Flux Over successive frames 1
Spectrum Spectral Centroid, Max, Min, Energy 4

Total 58

The LLD parameters are smoothed by a moving average �lter of length three before
being sent to a regression module, in order to compute the delta regression coe¢ cients from
the data contour. Then, statistical functional methods are applied, and the total number
of coe¢ cients is computed as follows : (58 LLD+58 DELTA_LLD)*39Functionals=4524,
as presented in Table 3.

Table 3 �LLD Functionals.

Functionals Type Qty.
Extremes Max position, min position, amplitude, 5

norm per frame
Regression Linear regression coe¢ cients, centroid, 9

quadratic error, quadratic regression
Moments Variance, std. dev., skewness, kurtosis, 5
Percentiles Quartiles, inter quartile, percentile (0.95, 0.98) 8
Crossings Zero crossing rate 1
Peaks Number of peaks, mean peak distance. 4
Means Mean, abs. mean, non-zero mean, 7

non-zero geometric mean
Total 39

A detailed view of the spanning features is presented in Fig. 2., where the input wave
�le is fed to di¤erent blocks such as framing and vector emphasizing. Then, all the data
are collected into a smoother and a regression module, and �nally all types of functionals
are generated and output to Weka.
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Fig. 2 �Selected features �owchart computation.

4. Experimentation

In all the following experiments, three datasets are used. The train and development
datasets have known classes while the test set has unknown classes, and the TUM website
generates the accuracy of the test set for each of our models.
As an initial baseline investigation, the SMO has been adopted, with penalty parameters

ranging from 0.0001 to 0.15, with di¤erent opensmile speech con�gurations, as illustrated
in Fig. 4.

Fig. 3 �SMO recognition accuracies for the autism-diagnosis using di¤erent speech con�-
gurations.
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The SMO best per-class results are shown in Table 4.

Table 4 �SMO development set results.

DYS NOS PDD TYP Sum
DYS 71 6 16 11 104
NOS 12 16 17 23 68
PDD 25 30 34 15 84
TYP 3 14 30 496 543
Autism (Diagnosis) total accuracy = 75.34%

The same SMO model has been applied to the test set, giving an accuracy of 75.61%,
with an increase of 5.81% over the TUM baseline, as presented in Table 5.

Table 5 �Test set results using SMO.

DYS NOS PDD TYP Sum
DYS 38 4 35 27 104
NOS 0 37 9 29 75
PDD 24 17 25 33 99
TYP 3 7 12 250 542
Autism (Diagnosis) total accuracy = 75.61%

The di¤erent classi�ers (SMO, RF, and Feating) have been trained and tested indepen-
dently and then embedded in a vote module, as shown in Fig. 6. Let us remark that the
classi�ers have been added to the vote process incrementally. In order to see the e¤ect of
incremental vote process, the development results of the SMO-RF are presented in Table
6.

Table 6 � Classi�cation scheme using the vote process on the development set (819
instances).

Development set
Single classi�ers Ensemble voting classi�ers
SMO RF Maj. Avg. Maj. Product Min Max

Vote Prob. vote Prob. prob. prob.
Correctly classi�ed 629 600 612 632 611 630 619 641
Incorrectly classi�ed 190 219 207 187 208 189 200 178
Kappa statistic 0.546 0.390 0.471 0.515 0.468 0.507 0.476 0.546
Mean absolute error 0.281 0.211 0.1264 0.2462 0.127 0.163 0.208 0.264
Accuracy (%) 76.80 73.26 74.72 77.16 74.60 76.92 75.58 78.26
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Fig. 4 �WEKA Knowledge �ow voting process.

Further additional investigation on the optimization of the SMO classi�er has led to
an accuracy of 76.8% for the development set. The voting with average and maximum
probabilities improved the best accuracy by 0.36% and 1.46%, respectively, as presented
in Table 6.
Adding the Level-Trees classi�er to the vote process, noted as �SMO-RF-Feating,�

provided the results presented in Table 7. (development and test sets).

Table 7 �Development / test sets autism classi�cation results (Baseline accuracy : 69.8%).

SMO Vote(max prob.) Feating Vote : (max.prob.)

SMO-RF SMO/RF/ Feating

Classi�ed Instances devel. test devel. test devel. test devel. test

Correctly 616 620 641 616 629 625 627 615

Incorrectly 203 200 178 204 190 195 192 205

Accuracy (%) 75.3 75.60* 78.26 75.12* 76.80 76.22* 76.55 75.00*

*Test results have been generated from the TUM website [7]

5. Discussion of the results

The autism TUM-baseline [7] was developed on the basis of an SMO, with a per class
up-sampling of the instances, using 6,374 attributes. The set of features was built using
two framing techniques (20ms and 60ms), as presented in [7].
The TUM2013 proposed set of features, including the 60ms pitch based on the Gaussian

window, the regression coe¢ cients, and the subsequent functional coe¢ cients, did not
contribute to the autism classi�cation. Instead, they mislead the SMO in some classes
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and kept the accuracy around 69.8%, while using our proposed set of features, but by
removing redundant and non-useful features, the accuracy increased by 5.80% (test set)
via the SMO algorithm and by 6.42% (test set) through the feating technique.
The vote between the di¤erent classi�ers improved the development results, but did not

improve the test results. This is mainly due to the high similarity of the instances and
the di¢ culties that human experts had in the manual recognition of the classes.

6. Conclusion

In this paper, we focused on a two-fold process. The �rst fold deals with the feature
selection scheme in order to illustrate and determine the features that contribute to the
autism classi�cation, whilst the second fold concerns the vote between three di¤erent
classi�ers : the SMO, the RF, and the feating (Level Trees) techniques.
The �nal space of features decreased by 30% compared with the proposed one, with an

increase of 6.42% in the classi�cation accuracy. The vote by majority and max probability
has shown good results for the SMO-Random Forest vote classi�er, but decreased the
overall classi�cation by the use of the three classi�ers.
The feating technique showed the best results because it is intrinsically an ensemble

method, where the sublevel trees vote depends on sub-space ranked features.
The autism classi�cation can be improved by further work on specialized autism fea-

tures, and a weighted or fuzzy vote between the SMO and the feating technique.
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ABSTRACT

Authors compare the electromagnetic performances of three multi-phases
permanent-magnet (PM) synchronous machines (PMSM) for Mild Hybrid-
traction application. This comparison was made using two-dimensional
(2-D) numerical simulations in transient magnetic with eddy-current reac-
tion �eld in the PMs. The best machine was determined using an energetic
analysis (i.e., losses, torque and e¢ ciency) according speci�cations. In this
study, the non-overlapping winding with double layer (i.e. all teeth wound
type) was used. The winding synthesis is based on the "Star of slots" me-
thod as well as the Fourier series decomposition of the magnetomotive
force (MMF).

c
2016 LESI. All rights reserved.

1. Introduction

The humanity energy consumption has generally been growing. The latter is ac-
companied by emission of greenhouse gases. In this context, the automotive sector, which
represents about a third part of the overall world energy consumption, may well evolve to
become a contributor to reduction of emissions by developing and selling hybrid vehicles.
Depending on thedegree of hybridization, which corresponds to the quantity of power that
can provide the electrical energy source compared to fossil energy source, di¤erent types
of drive have been developed [1] :
� Full Hybrid : combination of a combustion engine and an electric motor, the latter

�Email : daoud.ouamara@gmail.com
yEmail : Fdubas@gmail.com
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provide a power more than 30 % of the total power. The electric motor is rather used
for low-speed operation, while the combustion engine is used at high-speed.

� Mild Hybrid :the part of electric motor is between 10 % and 30 % of the total power.
This version is equipped by a kinetic energy recovery system, consisting of electrical
machine in the generator operating mode. Contrary to the Full Hybrid, the electric
motor is only used to assist the vehicle during the acceleration phases.

� Micro Hybrid :it is not strictly a hybrid. Known as "Stop & Start",it ensures a modest
electric energy consumption andreduction of CO2 emissions. At stop, the combustion
engine shuts down and restart when the accelerator is pushed. The electric part is
less than 10 % of the total power.

In this article, we are considering only electric motorization of Mild Hybrid powertrain.
The studied electrical machinesaremulti-phases (3-phases included) surface-mounted

PMSMwith concentrated all teeth wound (two layers) winding. This topology of machines
is assumed to bea good candidate for this kind of application : good torque density, lower
maintenance costs, and simple construction . . . [2-3]. In addition to advantages associated
to this structure, the multi-phase system ensure operation in degraded mode if phase�s
number is greater than 3, which is a powerful asset in automotive traction [4-7]. The
comparison via an energy balance will be carry out considering three electrical machines :
�Machine A : 12-slots/10-poles/3-phases ;
�Machine B : 20-slots/18-poles/5-phases ;
�Machine C : 28-slots/26-poles/7-phases.
Machine A is well known in literature [8]. From this topology,Machine B andMa-

chine C are deduced. It should be noted that Machine B was studied in [9].The com-
parative study of those machines will be subdivided into two parts, namely :
� The winding analysis based on the "Star of slots" method as well as the Fourier series
decomposition : winding distribution, MMF waveform and winding factor ;

� and the electromagnetic numerical modeling, viz., electromagnetic torque, torque
ripple, back electromotive force (EMF), in order to compare the machines via an
energy balance (i.e., iron/copper/PMs losses and e¢ ciency).

The terms of reference for this comparative study are :
� Identical mass ;
� Dimension : Dex = 138:4 mm and Lz = 136 mm ;
� Rotating speed : 3; 000 rpm.

2. Winding Synthesis

Fig. 1 represents the topology of the machines and the spatial distribution of various
phases. The phases of winding are star-connected and the studied machines are supplied
by sinusoidal current. The direction of PMs magnetization is supposed to be radial.
Machines that have 2p = Nd � 2 (where p and Nd are respectively the pole pairs and

slots number) are generally characterized by low detent torque [10]. Consequently, the
number of poles chosen is : 18 poles for Machine B (with 20 teeth) and 26 poles for
Machine C (with 28 teeth).

In order to synthesize a winding with higher performances, the "star of slots" method
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is used [11-12]. The phases distribution of the machines via this method is de�ned on Fig.
2.

Fig. 1 �Description of machines : Topology & Winding distribution.

Fig. 2 �Distribution of phases via the "Star of slots" method.

Fig. 3 shows the pattern of total MMF [see Fig. 3(a)] and its corresponding har-
monic spectrum [see Fig. 3(b)] of the two layers concentrated winding of the machines.
Spatial harmonics spectrum shows the 5th harmonic order is higher than fundamental for
theMachine A, 9th for theMachine B and 13th for theMachine C that con�rms our
choice about poles number of machines studied.
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Fig. 3 �Total MMF : (a) Waveform and (b)Harmonic spectrum.

Fig. 4 �Winding factor.

Another element of signi�cant importance is the winding factor, and it will be
calculated. The calculation of this latter will be done by comparing MMF harmonics
of the studied winding [see Fig. 1], by Fourier series decomposition, with harmonics of
the diametric winding associated. Fourier series decomposition of studied and diametric
winding is given by :
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for the studied winding with �� = ((m� 1))=m where m is the number of phases, and
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n
1� sin

h
(1� 2k) � �

2

io
(3)

for the diametric winding.
The winding factor is calculated by fw = jAekj =

��Adk�� (estimated between 0 and 1)
and results of calculation are given on Fig. 4 ; whose winding factor is equal to0.933 for
Machine A, 0.9875 for Machine B, and 0.9755 for Machine C.Even harmonics have
a winding factor null. The periodicity of the winding factor is equal to Nd for the studied
machines [see Fig. 4].
In conclusion of this part, the choice of poles number of studied machines is consistent

with obtained results. The 5th, 9th and 13th harmonics order of Machine A, Machine
B andMachine C respectively, are characterized by higher amplitudes in Fourier series
decomposition of MMF and by higher winding factor. Notice that we could have also
chosen 7 pole pairs for Machine A, 11 pole pairs for Machine B and 15 pole pairs
for Machine C. In order to have a lower frequency, the �rst choice was selected for the
comparative study.

3. 2-D Numerical Simulation

The comparison via an energy balance is performed using 2-D numerical simulations in
transient magnetic with taken into account eddy-current reaction �eld in the PMs[13]. For
the studied machines, the magnetic steel M270-35A of Arcelor Mittal has been considered.
The PMs type is N37H whose remanent �ux density is equal to 1.1 T at 100 �C. No-
load/Load simulations will determine the back EMF, the electromagnetic torque as well
as the torque ripple, the iron/copper/PMs losses and the e¢ ciency.
Fig. 5 represents the distribution map of magnetic �ux densities in the three machines.

It should be noticed that the maximum value of magnetic �ux densityinthe teeth reach1.6
T forMachine A, 1.4 T forMachine B, and 1.2 T forMachine C ; while in thetooth-
tips, the magnetic material is saturated. It is due to the fact that surface tip is not large.
Fig. 6shows the electromagnetic torque and torque ripple for the three machines. Consi-

dering weakness of torque ripple, the cogging torque is neglected. The mean value of elec-
tromagnetic torque is 71.5 Nm, what satisfy the requirements speci�cation. The torque
ripple rate is de�ned by
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�Tem (%) =
Temmax � Temmin

Temmoy

� 100 (4)

It should be noted thatripple value is less than 1 % for Machine B and Machine C.

Fig. 5 �Distribution map of magnetic �ux densities.

Fig. 6 �Electromagnetic torque.
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Fig. 7 �Back EMF : (a) Waveform and (b)Harmonic spectrum.

Fig. 7 shows the back EMF waveform of phase A at no-load [see Fig. 7(a)] as well
as the harmonic spectrum [see Fig. 7(b)]. Machine A have a higher amplitude against
Machine B andMachine C respectively.
To estimate the PMseddy-current losses, the electrical circuit used for simulation is

represented in Fig. 8. Based on Kirchho¤�s current law in the
P
I = 0 form, no current

�owing outside the PM should be provided. In order to take into account the eddy-current
reaction �eld, each PM has been modeled as a solid conductor (i.e., SC1-SC2) with a high
value resistance (� 109 
) at the ends of the PMs (i.e., R6-R7) in the electrical circuit.
Without the eddy-current reaction �eld, the solid conductive regions in the electrical
circuit are not necessary. It can be noted that the PMs are �nely meshed (i.e., more than
three elements in the skin depth of the PMs) to take into account the skin e¤ect [14]. The
mesh has been optimized so that the PMs eddy-current losses can converge numerically.
The PMs eddy-current losses for the three machines are illustrated in Fig. 9. Machine
B is better than its counterparts in terms of PMs eddy-current losses.
The DC copper losses (i.e., without the skin e¤ect) in the windings at I = 30 are 108

W for Machine A, 180 W for Machine B, and 252 W for Machine C. The increase
of the phase�s number causesadditional losses.
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Fig. 8 �PMs eddy-current losses.

Fig. 9 �Iron losses : (a) Bertotti method, and (b)LS module.
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Iron losses are separated on three types of losses : i)hysteresis, ii) eddy-current, and
iii)excess. Those magnetic losses are determined numerically from Bertotti method [15]
and with using�Loss Surface� (LS) module [16]. Various losses per volume, de�ned by
Bertotti method, are given by :

dPH = KhBm
2f (Hysteresis) (5)

dPJ =
�2�d2

6
(Bmf)

2 (Eddy � current) (6)

dPE = 8; 67:Ke(Bmf)
2 (Excess) (7)

Table 1 �Data of the sheet M270-35A (Bertotti Method).

Designation Symbols Machine A Machine B Machine C
Volumetric mass density � 7650 Kg:m�3

Electrical conductivity � 1:92� 106 S:m�1

Thickness d 0:35 mm
Hysteresis coef. Kh 123.313 126.12 128.686
Excessive coef. Ke 0.739 0.738 0.739

Table 2 �Summary of the comparison.

Machine A Machine B Machine C
Slots number 12 20 28
Phases number 3 5 7
Poles number 10 18 26
Winding Concentrated all teeth wound (two layers)
Outside diameter 138.4 mm
Iron length 136 mm
Total volume 1.615 L
Rotation speed 3,000 rpm
Torque 71.5 Nm
DC copper losses 108 W 180 W 252 W
PMs eddy-current losses 561.4 W 134.42 W 74.44 W
Iron losses (LS) 96.7 W 156.45 W 228.55 W
Iron losses (Bertotti) 93.36 W 153.86 W 224.8 W
Output power 22.45 kW
E¢ ciency 96.3 % 97.29 % 96.6 %
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The physical parameters and the coe¢ cients are given inTable 1 for M270-35A sheet.
Fig. 10 representsthe iron losses with Bertotti method [seeFig. 10(a)] and LS module. [see-
Fig. 10(b)]. As that magnetic losses are linked to magnetic �ux density and to frequency,
it is clear that Machine C will have more losses than Machine B and Machine A
respectively. The �ux density value of the three machines are close, so the frequency is
the element causing the di¤erence in magnetic losses.Results of this study are summarized
in Table 2 with the calculation of e¢ ciency of suited machines.

4. Conclusion

This comparative study is a part of modeling and design of multi-phasesPMSMs. It is
shown that for same quantities of iron/copper/PMs losses, torque ripple is less important
forMachine B (5-phases) andMachine C (7-phases) in comparison withMachine A
(3-phases), and it is obtained for the same average electromagnetic torque.
At end of this study, Machine C is more suitable by having less PMs eddy-current

losses againstMachine B andMachine C. Iron losses are more important inMachine
C due to poles number, which is, greater than the two others studied machines. However,
the machine having 5-phases, may be interesting in terms of control (less complicated
against the one having 7-phases).Machine A is not selected because of important PMs
eddy-current losses and torque ripple in comparison withMachine B and C.
Di¤erent outlooks may be considered, viz., a comparative study for di¤erent PMs dis-

posals, magnetization direction or other windings patterns.
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ABSTRACT

The main objective of this paper is to demonstrate the application of
Selective Harmonic Elimination PWM (SHEPWM) based on Di¤erential
Evolution (DE) optimization algorithm to improve the AC output voltage
quality of modi�ed 5-level Cascaded H-Bridge (CHB) inverter. The DE
optimization algorithm is used to solve non-linear transcendental equa-
tions necessary for the SHEPWM. Computational results obtained from
computer simulations presented a good agreement with the theoretical
predictions. A laboratory prototype based on STM32F407 microcontrol-
ler was built in order to validate the simulation results. The experimental
results show the e¤ectiveness of the proposed modulation method.

c
2016 LESI. All rights reserved.

1. Introduction

Several modulation strategies have been proposed and studied for the control of multi-
level inverters such as Sinusoidal Pulse width modulation (SPWM) [1] and space vector
pulse width modulation (SVPWM) [2]. A more e¢ cient method called selective harmonic
elimination pulse width modulation (SHE-PWM) is also used ; the method o¤ers a lot
of advantages such as operating the inverters switching devices at a low frequency which
extends the lifetime of the switching devices. The main disadvantage of this method is
that a set of non-linear equations must be solved to obtain the optimal switching angles
to apply this strategy.
Multiple computational methods have been used to calculate the optimal switching

angles such as Newton-Raphson (N-R) [3], this method dependents on initial guess of
the angle values in such a way that they are su¢ ciently close to the global minimum
(desired solution). And if the chosen initial values are far from the global minimum,
non-convergence can occur.
Selecting a good initial angle, especially for a large number of switching angles can

�Email : chabni.fay@gmail.com
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be very di¢ cult. Another approach is to use optimization algorithms such as Genetic
Algorithm (GA) [4], FireFly algorithm (FFA) [5] and Particle Swarm Optimization (PSO)
[6]. The main advantage of these methods is that they are free from the requirement of
good initial guess.
The di¤erential evolution (DE) is one of the most powerful optimization algorithms.

Since its introduction in 1997 [7], the algorithm has drawn the attention of many scientists
over the world, resulting in multiple variants derived from the original basic algorithm,
with improved performance. The DE is a simple yet powerful algorithm ; it is composed
of three main operations mutation, crossover and selection [8]. The algorithm uses the
di¤erence of solution vectors to create new candidate solutions using the above-mentioned
operators. This work investigates the use of (DE) as an optimization tool to implement
the (SHEPWM) for a �ve level inverter.
This paper presents a simple and fast optimal solution of harmonic elimination of a

modi�ed �ve level inverter with equal DC sources using the di¤erential evolution algo-
rithm. The algorithm is used to solve a system of non-linear equations that describes
the waveform of the output voltage in order to obtain the optimal switching angles, to
improve the output voltage quality.
This paper is organized as follows : the next section explains brie�y the structure of

the proposed multilevel inverter and its control, the third section covers the application
of the di¤erential evolution algorithm for the selective harmonic elimination, this section
details the procedures to obtain the optimal switching angles and the formulation of the
objective function, the fourth section presents the simulation results obtained from the
mathematical model of the system and the optimization method. The e¤ectiveness of the
selective harmonic elimination using DE is veri�ed using a small scale laboratory �ve level
inverter based on STM32F407 Microcontroller unit, the section also presents and discusses
the hardware implementation and the experimental results in details. The conclusion is
presented in the last section.

2. Modi�ed 5-level cascaded H-bridge inverter

The main objective of the proposed multilevel inverter is to reduce the number of se-
miconductor switches, without changing the staircase nature of the output voltage. The
topology was originally proposed by Kh. El-Naggar in [9]. The proposed inverter should
have the same number of input DC voltage sources as a traditional �ve level cascade
H-bridge inverter. When compared to a conventional cascade topology, the proposed in-
verter provides a lot of advantages ; this con�guration does not require a large number of
components and does not need clamping diodes or balancing capacitors, the simplicity of
its topology allows easier maintenance.
The proposed inverter presented in Fig.1 has a main H-Bbridge inverter formed by

S1, S2, S3 and S4, two auxiliary switching devices S5 and S6 and two input DC voltage
sources Vdc1 and Vdc2. The function of the auxiliary switching devices is to control the
connection of the dc sources so as to construct the staircase output voltage. The valid
switching states for all possible combination are given in Table.1.
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Fig. 1 �Structure of the proposed multilevel inverter.

Table 1 �Switching states of semiconductor devices for 5-level inverter.

Switches state
Voltage levels (p.u.) S1 S2 S3 S4 S5 S6
2 on o¤ o¤ on on o¤
1 on o¤ o¤ on o¤ o¤
0 on o¤ o¤ on on on
-1 o¤ on on o¤ o¤ o¤
-2 o¤ on on o¤ on o¤

3. Selective harmonic elimination using DE algorithm

The number of voltage levels that can be generated by CMLIs is generally presented by
2P + 1 where P represents the number of voltage levels or switching angles in a quarter
waveform of the signal, and P � 1 is the number of undesired harmonics that can be
eliminated from the generated waveform. In a �ve level inverter, the number of voltage
levels in quarter waveform is two which means the number of harmonics that can be
eliminated is one (3rd harmonic).
In order to eliminate the undesired harmonics, the switching angles �1 and �2 represen-

ted in Fig. 2 must be computed.

Fig. 2 �Quarter waveform of a �ve-level inverter.
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For the staircase output voltage waveform of multilevel inverter as shown in Fig. 2 there
are 2 voltage levels (in quarter waveform) and 1 undesired harmonic.
To control the peak value of the output voltage to be V1 and eliminate the 3rd har-

monic the resulting equations and since the voltage waveform has quarter and half wave
symmetry characteristics, the Fourier series expansion is given as :

V (!t) =
1X

n=1;3;5;:::

"
4Vdc
n�

pX
i=1

cos (n�i)

#
sin (n!t) (1)

where n is rank of harmonics, n = 1; 3; 5; : : : , and p = (N � 1)=2 is the number of
switching angles per quarter waveform, and �i is the ith switching angle, and N is the
number of voltage levels per half waveform. The optimal switching angles �1 and �2 can
be determined by solving the following system of non-linear equations :

�
H1 = cos (�1) + cos (�2) + cos (�3) =M
H3 = cos (3�1) + cos (3�2) + cos (3�3) = 0

(2)

where M = (((N � 1)=2)r=4), r is the modulation index.
The obtained solutions must satisfy the following constraint :

0 < �1 < : : : < �p < �=2 (3)

An objective function is necessary to perform the optimization operation, the function
must be chosen in such way that allows the elimination of low order harmonics while
maintaining the amplitude of the fundamental component at a desired value Therefore
the objective function is de�ned as :

F (�1; �2 : : : �p) =

 
pX
n=1

cos (�n )�M
!2
+

 
pX
n=1

cos (3�n)

!2
(4)

The optimal switching angles are obtained by minimizing Eq. (4) subject to the constraint
Eq. (3). The main problem is the non-linearity of the transcendental set of Eq. (2), the
di¤erential algorithm is used to overcome this problem.
The di¤erential evolution algorithm (DE) is an optimization method is composed of

three main steps initialization, mutation and crossover. The general structure of a DE
program is shown in Fig. 3. The algorithm perturbs the population of vectors by employing
the mutation, whereas its diversity is controlled by the cross-over process [10].
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Fig. 3 �Flowchart of DE algorithm.

In the case of SHEPWM, di¤erential evolution algorithm is used as an optimization
tool to perform a random search for the global minima, which is forcing the objective
function (4) towards an allowable error value.
The optimization process starts by initializing the necessary parameters of the algo-

rithm, such as the population size (NP), crossover probability (CP), upper and lower
bounds (�min and �max) and the maximum number of iterations. It should be noted that
the boundaries must satisfy Eq. (3). The next step is to randomly generate an initial
population of switching angles in this process the algorithm creates

�
(0)
ij = �min ij + randi (�maxj � �minj) (5)

with i = 1; 2; : : : NP and j = 1; 2; : : : N
where �(0)ij is the initial population, i presents the population size in this studyNP = 50,

j is the number of decision variables which represents the number of switching angles,
in case of a �ve level inverter N = 2. After the initialization process, the generated
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population is evaluated, the evaluation of the �tness of each individual is carried out by
using (4).
The mutation process creates a mutant �ij vector based on the initial population ; this

process is described by the following expression

vij = Xr1 + F (Xr2 �Xr3) (6)

Xr1, Xr2 and Xr3 are vectors randomly sampled from the generated population, Xr =
[�i1; �i2; : : : ; �iN ], the indices r1, r2 and r3 are integers randomly chosen from the range [1
NP], they are also chosen to be di¤erent from the index i, the parameter F is the mutation
constant which controls the ampli�cation of the di¤erential variation (Xr2 � Xr3), the
value of this parameter is randomly generated from the range [0 1], it should be noted
that multiple mutation methods were reported in [11].
To improve the diversity of the population, the crossover operation comes into play,

after generating the mutant vector �ij through mutation, this operation assures the pro-
duction of �tter individuals, the result of this process is a vector u obtained by mixing
the components of �ij and Xi the process can be expressed as :

u =

�
vij if rand � CP or j = jrand
Xi otherwise

(7)

where rand is a random number in the range of [0 1], CP is the crossover probability
constant, it controls the diversity of the population and it has a value between 0 and 1
[12], jrand is randomly chosen index. Once the crossover process is completed, the selection
process comes into play to decide whether the ui or Xi vector survives for the next
generation, this process is carried out to choose the �ttest individual. The selection process
can be expressed mathematically as :

Xi
G+1 =

�
ui
G+1 if f

�
ui
G+1
�
< f

�
Xi

G
�

Xi
G otherwise

(8)

where f(X) is the objective function to be minimized and G is the generation count.
Once the selection operation is completed, the algorithm loop is repeated until the stop-
ping criteria is satis�ed, in this study the DE algorithm is limited by maximum number
of iterations Nitr = 1000.

4. Simulation results

In order to prove the theoretical predictions and to test the e¤ectiveness of the proposed
algorithm, the control method and the proposed inverter were developed and simulated
using MATLAB/SIMULINK scienti�c programming environment ; the optimization pro-
gram was executed on a computer with Intel(R) Core(TM) i3 CPU@ 2.13GHz Processor
and 4GB of RAM, the optimization algorithm takes 974.463 seconds to complete the
computation process.
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To verify the e¤ectiveness of the proposed method, total harmonic distortion (THD)
is used as a performance indicator to evaluate the quality of output AC voltage wave-
form generated from the multilevel inverter, the THD is de�ned as the total amount of
harmonics related to the fundamental, it can be calculated using the following formula :

THD% =

qP19
n=3Hn

2

H1
� 100 (9)

The di¤erential evolution algorithm is used to �nd the switching angles for each value
of modulation index r ; the total harmonic distortion is computed also for each r, Fig. 4
illustrates optimal switching angles (in degrees) versus modulation index r with r 2 [0.2,
1.2], the angles are computed with a �ne step-size of 0.01, and it can be seen that in some
ranges of the modulation index, the obtained solutions exceeded the 90 degrees limit,
those solutions are not going to be taken in consideration. Fig. 5 shows the variation
of the total harmonic distortion (THD) versus the modulation index, these results are
obtained by using equations (9) and (2).
To con�rm the validity of the proposed algorithm, angles extracted from the obtai-

ned switching angles were applied to a mathematical model of a �ve-level inverter. The
fundamental frequency used in this simulation is 50Hz, the input DC voltages are set to
be ; Vdc1 = 15V and Vdc2 = 15V the switching angles to be applied (in degrees) are :
�1 = 5:08� and �2 = 54:9� and which correspond to the modulation index r = 1.
Fig. 6 shows the output voltage obtained from the multilevel inverter for r = 1. Fig.

7 shows its spectra of the output voltage. As expected, the 3rd harmonic is successfully
eliminated, the total harmonic distortion THD = 23:73%.

Fig. 4 �Switching angles versus modulation index.
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Fig. 5 �THD versus modulation index.

Fig. 6 �Output voltage generated by the inverter.

Fig. 7 �FFT of 5-level inverter voltage output.
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5. Experimental results

The proposed method was validated by building a small scale laboratory prototype,
IRF640(200V,18A)MOSFETs were used as switching devices SDS1000 oscilloscope100MHz
500Ms/s was used to capture the voltage waveforms, an STM32F407 microcontroller was
used to generate control signals for the switching devices, the FFT analysis was performed
by computer connected to the oscilloscope trough USB.
Fig. 8 presents the block diagram of the laboratory prototype of the �ve level inverter

that is implemented as mentioned before with eight IRF 640 Metal Oxide Semiconduc-
tor Field E¤ect Transistors (MOSFET), it should be noted that those switching devices
are also equipped with freewheeling diodes. TLP250 photocouplers are used to provide
electrical isolation between the MCU and the power circuits, and also to provide proper
and conditioned gate signals to the MOSFETs. The switching angles are calculated using
di¤erential evolution algorithm by a computer, once the switching angles are obtained,
the switching patterns for each switching device will be stored inside the memory of the
MCU as a look-up table.

Fig. 8 �Block diagram of the hardware setup.

The single phase �ve level voltage pattern obtained in simulation shown in Fig. 6 is
experimentally validated and the result is shown in Fig. 9. Fig. 10 illustrates the FFT
analysis of the experimentally obtained voltage waveform ; it can be clearly seen that the
3rd harmonic was successfully eliminated. This result matches perfectly the simulation
result presented in Fig. 7. The total harmonic distortion of the experimental voltage
waveform is 22.85% which is very close to the simulation result.
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Fig. 9 �Output voltage waveform generated the proposed multilevel inverter.

Fig. 10 �FFT of 5-level inverter experimental voltage output.

6. Conclusion

This paper illustrates the use of di¤erential evolution algorithm in selective harmonic
elimination for a modi�ed single phase �ve level CHB inverter to improve the harmonic
quality of the generated output voltage. The proposed multi-level inverter with equal DC
sources has the advantage of generating multiple voltage levels with less switching compo-
nents. The di¤erential evolution algorithm is used to solve a set of non-linear equations in
order to obtain the optimal switching angles to perform the (SHE) modulation strategy.
The total harmonic distortion (THD) was chosen as a performance indicator in order to
examine the e¤ectiveness of the proposed algorithm. The validity of the method has been
proven by computer simulation using Matlab/Simulink scienti�c programming environ-
ment and veri�ed by experimental hardware set-up based on STM32F407 microcontroller.
The obtained results from the simulation and hardware show a good agreement with the
theoretical prediction.
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ABSTRACT

A method based on the computation of the time intervals of the knots for
time-jerk optimal planning under kinematic constraints of robot manipula-
tors in prede�ned operations is described in this paper. In order to ensure
that the resulting trajectory is smooth enough, a cost function containing
a term proportional to the integral of the squared jerk (de�ned as the de-
rivative of the acceleration) along the trajectory is considered. Moreover,
a second term, proportional to the total execution time, is added to the
expression of the cost function. A Cubic Spline functions are then used to
compose overall trajectory. This method can meet the requirements of a
short execution time and low arm vibration of the manipulator and the
simulation provides good results.

c
2016 LESI. All rights reserved.

1. Introduction

The resolve of the problem of time-jerk optimal trajectory planning for robot manipu-
lators along speci�ed tasks is very important, these tasks can be the case of the handling
of objects, the drilling/spot welding tasks or the installation of the electronic components.
Decreased the execution time of the task is important to increase the productivity of the
robot manipulators. Also, limiting the jerk is very important, because high jerk values
can wear out the robot structure, and heavily excite its resonance frequencies ; vibrations
induced by non-smooth trajectories can damage the robot actuators, and introduce large
errors while the robot is performing tasks such as trajectory tracking moreover low-jerk
trajectories can be executed more rapidly and accurately.
Many work in the �eld of robot manipulators has been devoted to study the problem

of motion planning along speci�ed tasks, we cite in this context the work of [1-2] the
authors have treated the problem of trajectory planning of robot manipulator in imposed
tasks by considering the kinematic constraints, they were used the sequential quadratic

�Email :b1102@yahoo.com
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programming (SQP) to minimize the cost function which represents a weighting between
the execution time of the task and the interval squared jerk, the upper bounds on the
absolute values of velocity, be speci�ed, but the total execution time was not set a priori. In
[3] a new approach called interval analysis is used to develop an algorithm that minimizes
the maximum absolute value of jerk along the trajectory, the cubic splines were used
to represent the trajectory in imposed tasks. In [4-5] the authors proposed a fast and
uni�ed approach based on particle swarm optimization (PSO) with K-means clustering
to solve the near optimal solution of a minimum-jerk joint trajectory constrained by a �xed
traverse time of a robot manipulator, the cubic splines were used to interpolate between
the nodes of the trajectory in an imposed tasks. In [6-7] the authors has been described
an experimental validation of the minimum time-jerk trajectory planning algorithm, the
trajectories have been implemented on Cartesian 3-axes manipulator equipped with a
piezoelectric accelerometer, the obtained experimental results have been discussed by
considering the measure of the acceleration (directly related to the vibration induced on
the mechanism) as the comparison parameter. In [8] the authors developed an approach
based on fuzzy genetic algorithm using real coding and elitism approach for treat the
problem of trajectory planning of robotics arm along speci�ed tasks to minimize time-jerk
by considering the kinematic constraints. The authors [9] studied the relationship between
the maximum vibratory amplitude and the jerk limit ; they formulated the in�uence of
a jerk-controlled movement. In [10] the authors used trigonometric splines to interpolate
the trajectories of 3-axes manipulator, where the spline parameters were considered to
minimize the jerk by a close form solution.
In this study thus, we propose a uni�ed and fast method for �nd the minimum time-jerk

trajectory planning of robotics arm based on the computation of the time intervals of the
knots. To validate the proposed method, an objective function [8] is used and the results
demonstrate that our proposed method achieves the best results by less computation time
than [8].
This paper is organized as follows. In Section 2, the minimum time-jerk joint trajectory

optimization problem is formulated. In section 3, the kinematic constraints are presented.
In section 4, the proposed method based on the time intervals and genetic algorithms is
discussed. In section 5, numerical application on a three degree-of-freedom glass substrate
handling robot is presented. Discussions and comparisons results are presented in Section
6. Conclusions are summarized in Section 7.

2. Problem formulation

In our joint trajectory planning, we assume the robot manipulator has N joints and the
trajectory for each joint has M+1 knot points including the �rst and last. Thus, for each
joint, there exist M time intervals and we choose the second and penultimate knot points
as the extra points to represent the robot trajectory [11].
We apply cubic splines function to each joint to interpolate the joint trajectory bet-

ween every two neighbor knot points. The velocities and accelerations of the initial and
terminal conditions (v1; vm; a1;and am) are speci�ed to be zero. These conditions cause
two equations of the spline algorithm becoming zero and the path pattern cannot be sol-
ved. Therefore, two extra knots (position values at time t2 and tm�1) are added and their
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position values are not speci�ed. Let Qi(ti) be the cubic polynomial for the i � th joint
in the time intervals [tj; tj+1]. The second derivative of Qi(ti) is a linear interpolation and
can be written as [4] :

�Qi(t) =
ti+1 � t
hi

�Qi(ti) +
t� ti
hi

�Qi(ti+1); i = 1; 2; :::;m� 1 (1)

Where, hi = ti+1 + ti
Integrating equation (1) for the given points Qj(ti) = qi and Qi(ti+1) = qi+1, the

following interpolation functions are obtained :

_Qi(t) = �
�Qi(ti)

2hi
(ti+1 � t)2+

�Qj(ti+1)

2hi
(t� ti)2+

"
qi+1
hi

� hi
�Qi(ti+1)

6

#
�
"
qi
hi
� hi

�Qi(ti)

6

#
(2)

And

Qi(t) =
�Qi(ti)

6hi
(ti+1 � t)3+

�Qi(ti+1)

6hi
(t� ti)6+

"
qi+1
hi

� hi
�Qi(ti+1)

6

#
(t�ti)+

"
qi
hi
� hi

�Qi(ti)

6

#
(ti+1�t)

(3)

Then, the two extra knots positions values q2 and qm�1 are not �xed and are used
to add two new equations to the system in such a way that it can be solved. The joint
displacements of these two knots are written as :

q2 = q1 + h1v1 +
h21
3
a1 +

h21
6
�Q2(t2) (4)

qm�1 = qm � hm�1vm +
h2m�1
3
am +

h2m�1
6

�Qm�1(tm�1) (5)

Using the continuity conditions on velocities and accelerations, a system of m�2 linear
equations solving for m� 2 unknowns �Qi(ti); i = 2; 3; :::;m� 1 is obtained as :

A
h
�Q2(t2) �Q3(t3) ::: �Qm�1(tm�1)

iT
= B (6)

In (6), the matrix A is non-singular matrix and entries of the vector B are changed for
each joint.
Where,

A =

266666664

3h1 + 2h2 + h
2
1=h2 h2

h2 � h21=h2 2(h2 + h3) h3 ;
h3 2(h3 + h4) h4

...
; hm�3 2(hm�2 + hm�3) K1

hm�2 K2

377777775
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Where,

K1 =

�
hm�2 �

h2m�1
hm�2

�
, K2 =

�
3hm�1 + 2hm�2 +

h2m�1
hm�2

�
And the vector B is given by :

B =

2666666666664

6(q3=h2 + q1=h1)� 6(1=h1 + 1=h2) [q1 + h1 _q1 + (h21=3)�q1]� h1�q1
(6=h2) [q1 + h1 _q1 + (h

2
1=3)�q1] + 6q4=h3 � 6(1=h2 + 1=h3)q3

6 [(qi+1 � qi) =hi � (qi � qi�1)=hi�1]
...

(6=hm�2)
�
qm � hm�1 _qm + (h2m�1=3)�qm

�
�6(1=hm�2 + 1=hm�3)qm�2 + 6qm�3=hm�3

�6(1=hm�1 + 1=hm�2)
�
qm � hm�1 _qm + (h2m�1=3)�qm

�
+6(qm=hm�1 + qm�2=hm�2)� hm�1�qm

3777777777775
After these M + 1 parameters are solved, we derive the jerk of the trajectory of the

i� th joint by the equation :

Ji(t) = �
1

hi
�Qi(ti) +

1

hi

...
Qi(ti+1); i = 1; 2; :::;m� 1 (7)

From (7), we determine that the jerk depends on the length of the time interval hi.
Once we derive the jerk, the minimum jerk joint trajectory optimization problem can be
formulated by an objective function described as : solve the maximum value of the jerk
of each joint along the trajectory and minimize the summation of every maximum value
of the jerk that is :

min

"
NX
i=1

max
hi
jJi(t)j

#
(8)

The jerk is the key factor that causes robot arm vibration mainly when decreased the
execution time of the task is important. In the paper, we adopt the objective function used
in [8] which minimize two terms composed by the term proportional to the total execution
time and the other one proportional to the total jerk. So the mathematic expression of
the objective function model can be de�ned as :

Fobj = min

 
kT

NX
i=1

Ti + kJ

NX
i=1

max
hi
jJi(t)j

!
(9)

The subjects are :
� Joint velocities :

��� _Qij(t)��� � _Qmaxij for i = 1; :::n and j = 1; :::m� 1
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� Joint accelerations :
��� �Qij(t)��� � �Qmaxij for i = 1; :::n and j = 1; :::m� 1

� Joint jerks : jJij(t)j � Jmaxij for i = 1; :::n and j = 1; :::m� 1
Here, Ti is the total execution time of the tasks ; kT and kJ are the weight coe¢ cient

change according to the user needs can favor either the execution time of the task is the
jerk. Also, _Qmaxij , �Qmaxij and Jmaxij are limit kinematics performances of the i � th joint
deduced from technological and design data.

3. Constraints formulation

The velocity constraints of the optimization problem are formulated into the maximum

absolute value of velocities at the extreme points ti and ti+1 or


t i where



_Qji = _Qji

�


t i

�
=

0 in each interval [2]. The velocity is calculated using equation (2). The velocity constraints
become :

max

(��� _Qji (ti)��� ; ��� _Qji (ti+1)��� ;
�����
_Qji

�����
)
� _Qmaxj ; j = 1; :::; N ; and i = 1; :::;m�1 (10)

The acceleration is the solution of system (6). The acceleration constraints are formu-
lated from the acceleration linear function and the maximum absolute value exists at ti
or ti+1. The acceleration constraints become :

max
n��� �Qj;1��� ; :::; ��� �Qj;n���o � �Qmaxj ; j = 1; :::; N (11)

4. Proposed approach based in Genetic Algorithm

4.1. Initialization and route of generation
Let h be de�ned as the vector of design variables hi = [h1; h2; :::; hm�1]. To initialize

the optimization process it is considered that :

h(0) = max
j=1;:::;m�1

24� jqi2 � qi1j
_Qmaxi

�
;

0@
��� _Qi2 � _Qi1

���
�Qmaxi

1A ; :::;
0@
��� �Qim � �Qi;m�1

���
Ji
max

1A35
As two extra knots are needed they are initially taken as :

qi2 = (qi1 + qi3)=2 and qi;m�1 = (qj;m�2 + qim)=2
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Fig. 1 �Representation of the Cubic Spline Trajectory with the horizontal movement of
the intermediate knots and the end point after generation.

During the optimization process the intermediate knots and the end point will generate
only horizontally as seen in Fig.1, consequently the trajectory changes and moves also
horizontally by minimizing the objective function and obtaining the best optimal vector
as :

hopt =
�
hopt1 ; h

opt
2 ; :::; h

opt
m�1
�

(12)

4.2. Genetic algorithms
The use of a genetic algorithm starts with the creation of an initial population or

chromosome in genetics, this chromosome is composed by genes or their number (G) is
de�ned according to the number of the knots (k) used to generate the trajectories where
k = G+ 1 ; it should be noted that this stage requires a coding of the genes, for that we
have a real coding of these genes.
Thereafter this initial population will be generated by chance and we obtain for each

chromosome a solutions corresponding with his performance index. For create the next
generation, three genetic operators are applied :
� Reproduction : Usually the general strategy of reproduction is that the chromosomes
(parents) with better performance index have the possibility of reproducing more.

� The crossover. It is the operator who will allow the mixing of the genetic characters of
the population, this operator will create two children by carrying out a mixture of the
chromosomes of two parents. In the simulation we will �x the rate or the probability
of crossover equal to 65%.

� The mutation. It consists in deteriorating the coding of a chromosome. Its role is
to make emerge new genes by exploring zones of the space of research which could
not be visited by simple application of the operator of crossover ; in practice there
exist many manners of transferring a chromosome by the modi�cation of one or more
gene, or by change of position of a gene, or the suppression by adding a gene. In the
simulation we will �x the probability of mutation equal 4%.
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5. Numerical application

The numerical application was implemented on a three degree-of-freedom glass sub-
strate handling robot considered by authors in [8] to �nd the near optimal solution of a
minimum-jerk joint trajectory using our proposed method.
The trajectory was given by four knot points and �ve time intervals (M = 5) for all

the three joints. Table 1 shows the interpolation point positions of each joint and Table 2
shows the maximum kinematic limits of velocity and acceleration of each joint.

Table 1 �Interpolation point of each joint.

Interpolation point (deg)
Joint 1 2 3 4 5 6
1 120 Virtual 90 45 Virtual 0
2 -10 Virtual 60 40 Virtual 100
3 0 Virtual -20 30 Virtual 70

Table 2 �Kinematics constraints of each joint.

Joint Velocity (deg/s) Acceleration (deg/s2)
1 100 70
2 95 75
3 100 75

To represent the trajectory and solve the two unknown extra knot points in Table 1 we
use both Eq. (4-5). We computed the jerk Jii of the trajectory by Eq. (7) and formulated
the minimum-jerk optimization problem by Eq. (9). In this optimization problem, the
solution was transformed and denoted as Eq. (14). In the beginning, we created the
initial population (chromosomes), and to seek the optimal trajectory, we must generate
by chance according to the genetic algorithms technique a trajectories, the latter candidate
of chromosome will be evaluated then compared with others, this operation is repeated for
all the introduced chromosomes, and the best result is which satis�es the given objective
function. It should be noted that any trajectory which would violate one of the velocities
or accelerations constraints indicated in Table 2 will be automatically rejected by Eq.
(10-11) respectively. These results were validated by the results obtained in [8].

6. Comparison of results and discuss

Each joint of cubic spline trajectories including their derivatives (velocities, accelera-
tions and jerk) for KJ=KT = 0:02 and KJ=KT = 0:3 are illustrated in Fig. 2(a) and
Fig. 2(b) respectively. For the �rst case we obtained a vector of time intervals hi =
[0:6017; 1:6992; 1:4349; 1:2623; 1:0895] equal to execution time

P5
i=1 hi = 6:0876 sec, for

the second case we obtained a vector of time intervals hi = [1:0301; 2:9256; 2:3687; 1:9771; 1:4761]
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equal to execution time
P5

i=1 hi = 9:777 sec this results show that the technique des-
cribed in this paper obtains the better solution than [8] used Fuzzy genetic algorithm
which obtained the execution time of task equal

P5
i=1 hi = 6:72 sec for the �rst case andP5

i=1 hi = 10:262 sec for the second case.

Fig. 2 � The results of the simulation showing the trajectories of each joints angles
(the circles indicate the knot positions and the crosses indicate the two dummy knots),
velocities, accelerations and jerks of the glass substrate handling robot (a) :KJ= KT = 0:02
and (b) : KJ= KT = 0:03
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Fig.3 shows the results histories of the optimization process of glass substrate handling
robot for KJ=KT = 0:02 and KJ=KT = 0:3, for the �rst case we obtained an objective
function Fobj = 7:1025 and for the second case the objective function Fobj = 12:846.
These results were obtained with the �xed number of generation is 50 corresponding of
1=10 number of generation used in [8] ; meanwhile our proposed method converges quickly
and have faster calculation speed.

Fig. 3 �Result histories of the proposed method of the glass substrate handling robot
(a) : KJ= KT = 0:02 and (b) : KJ= KT = 0:03

Table 3 �Results of the optimal time intervals and the maximum jerks obtained by our
proposed method and compared with [8].

Proposed method Cong�s method [8]
KJ=KT hi Jmax1 Jmax2 Jmax3 hi Jmax1 Jmax2 Jmax3

(s) (�=s3) (�=s3) (�=s3) (s) (�=s3) (�=s3) (�=s3)
0.5 11.483 6.33 5.56 6.32 11.484 5.235 6.467 11.60
0.4 10.284 8.71 7.85 8.74 10.976 5.764 7.152 13.83
0.3 9.777 10.22 8.82 10.23 10.262 6.714 8.399 17.85
0.2 8.665 14.78 12.75 14.80 9.371 8.088 10.21 25.94
0.15 8.389 15.99 14.63 16.11 8.939 9.486 11.97 30.31
0.1 7.433 23.86 18.21 23.86 8.111 12.60 15.97 43.40
0.05 6.884 29.66 23.15 30.08 7.13 17.78 25.46 70.65
0.02 6.087 29.94 31.77 50.74 6.72 27.72 46.01 79.28
0 4.896 79.76 58.89 99.86 6.29 99.21 135.6 103.0

Table 3 reports the maximum jerk values resulting from the optimization procedure
with di¤erent values of weighting coe¢ cients KJ=KT ; such values are compared with
those yielded by the method proposed by [8]. Considering the value of KJ=KT if it is over
0.3 the robot will be put more time for execution of the task and if the value is less of
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0.02 the robot will undergo more of vibration in their joints ; so the optimal values are
between the interval [0.02, 0.3]. It can be noticed that the results yielded by the method
described in this paper are well comparable with those provided by the method [8] with
respect to the maximum values of velocity and acceleration.

7. Conclusion

This research work deals with optimal trajectory planning using time intervals method
to solve the problems of optimal imposed motion of robotics arm.
Minimum objective function computed and it is composed of two terms : the �rst term

is proportional to the total execution time directly a¤ected production e¢ ciency and the
latter term is proportional to the maximum jerk of each joint based on the minimax
approach that ensures the optimal trajectory is smooth enough, taking into account the
main constraints imposed on the robot kinematic (velocity and acceleration) performance.
The trajectories were modeled using Cubic splines functions who allow guaranteeing the
smoothing of the trajectory and at the same time the continuity of velocities, accelerations
and the jerks.
Finally, the proposed method has been run in simulation, taking as input data those

found in the work by [8]. Comparison of the results with those provided in [8] has shown
that the e¤ectiveness of our method is e¤ective in performing an optimal trajectory plan-
ning to solve the problem between high production e¢ ciency and low structure vibration.
This work opens the door for further investigations such as using the B-Spline functions

or Non Uniform Rational B-Spline (NURBS) functions and considering an obstacle in
workspace and taking account the dynamic constraints of the industrial robots, so as to
evaluate the applicability the proposed method and its results.
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ABSTRACT

The turning process is one of the best used processes in the mechanical
industry. Therefore, the choice of the cutting parameters is very important
in order to obtain a good machined surface quality. During the machining
operation, the occurrence of vibrations cannot be avoided since these vi-
brations represent usually the periodic movements of the elastic system
around its equilibrium position. The present article proposes to study the
chatter vibration during a turning process by using new cutting conditions
and using the stability lobes to optimize the surface quality. The main ob-
jective is to determine the best solution in the stability area during a
turning process where the chatter is nonexistent, because the quality of
a �nal product depends on the stability of the system piece / tool / ma-
chine. The proposed work shows its advantages by using a simulation and
an experiment work. For the dynamic modeling of our work ; analytical,
experimental and numerical methods were used.

c
2016 LESI. All rights reserved.

1 Introduction

Chatter vibration is the most important problems during machining since it is a kind
of self excited vibration common. It is also a vibration of the tool exited by cutting
parameters. It originates from the coupling between cutting force and vibration of the
work piece-cutting tool-machine system. It also causes a short life of the cutting tool and
a poor quality surface.
Chatter vibration is divided in two parts : forced chatter vibration and self excited

chatter vibration. The �rst one is caused by large cutting resistance and the second one
is caused by regenerative e¤ect. [1]. [2]. [3]. [4].
Historically, the system vibrations have been known since a long time. Many studies
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have been made by di¤erent scholars. Taylor was the �rst who identi�ed the chatter vibra-
tion. Tobias and Tlusty were able to explain the causes of these self-sustained vibrations
in the case of an orthogonal cutting applied to turning process[5]. [6]. [7].
Thereafter, Merrit and Altintas developed the feedback loop to represent the delay

e¤ect that is currently used unanimously by the community. [8]. [9].These results are the
basis of the theory of stability lobes. This theory permits for a selected a rotation speed
�xed to choose an axial depth of cut in order to avoid the instability. The development of
this method was well adapted to the case of the turning process since the cutting e¤orts
are constant depending on time. In practice, Thevenot showed that the machining causes
a gradual removal of the materiel with a rapid change of its dynamic characteristics. Also,
the work piece materialhas several modesof vibration[10].
Di¤erent methods were proposed in order to analyze and control the work piece-cutting

tool-machine system. Therefore, and since the choice of the cutting parameters is strongly
related to the process of fabrication, it becomes necessary to optimize the machining
parameters by using a numerical modeling of machining. To obtain the best conditions
of machining, we have to take in consideration three important parameters : the machine
tool, the cutting tool and the work piece.

Fig. 1 �Real image and simulated image of a workpiece.

The dynamic parameters of the turning machine tool, a¤ected by its structure
and all the components taking part during the cutting process, play an important role to
obtain a perfect machined surface quality. In case of an instable cutting process due to the
vibration, the cutting process leads for example to the premature failure of the cutting
edge by tool chipping. The machines tool vibration is generated by the interaction of
the elastically machining system and the machining process associated to the functioning
of the machine tool. This interaction and the machining process constitute the dynamic
system of the machining system. Also, this vibration cannot be avoided. It represents
periodical movements of the elastic system about its equilibrium position and the value
of the displacements depends on the characteristics of all elements of the dynamic system
as the intensity of the interaction between these elements. The characteristic parameters
of the couple cutting tool-wok piece material can be identi�ed whatever the cutting tool
geometry.
While applying numerical methods, we use two di¤erent approaches : the periodical or

analytical and the temporally approach. Several mathematical models have been develo-
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ped in order to produce the geometric structure of the machined surfaces such as[11].These
models are established based on a geometric description of the machined surface, the va-
rious geometric parameters and the cutting kinematic parameters.
Our literature search allowed us to identify several sets of the existing models in the

various machining with metal removal process. [12].[13].[14].
These models once developed, allow the study of the machined surface quality and the

surface state of the machining parts. In our case, it may be noted that the model does
not introduce any interaction between the calculated e¤orts and the construction of the
surface. It means that we should not take into account the bending of the tool due to
the cutting e¤orts. However, this bending tool is a signi�cantly parameter which a¤ects
the �nal texture of the �nal machined surface quality. The bending tool should easily be
considered integrated while we developed our approach.

2 Experimental approach

During machining, the stability of the machine tool has an important role. There-
fore, we should use the perfect parameters in order to obtain this stability. Among these
parameters, we have the rotation speed of the work piece, the displacement of the cutting
tool, the exceeded depth, the selected power, the accuracy and the state surface of the
work piece.
Our system is modeled by a set composed of mass/spring and where the characteristics

of the dynamic system are the mass (m), the amortization (c) and the sti¤ness (k). In
the proposed experience, we used a Heckert parallel turning machine (DZFG 200 with
a power of 5.5 KW). The work cylindrical piece material was made by steel XC 48. Its
dimensions were 30x100mm.
Our work is based entirely on tests for a cutting tool and a work piece. The goal is

to establish a correlation between the cutting parameters and the tool geometry with
modeled values (cutting e¤orts, wear, quality of the surface of the machining part,).
The analytical approach will be detailed in this paragraph for the case of the orthogonal

turning process. The system is supposed to admit only one degree of freedom. This ap-
proach was addressed and detailed by many scholars.[15]. Others, like Shamoto, presented
novel strategies to optimize cutting tool path/posture and to avoid chatter vibration in
various machining operations. [16].
The model is represented in �gure 2.

Fig. 2 �Schematic �gure of the turning process.
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The dynamic modeling was studied according to the works of Ehmann [17].

Fig. 3 �Dynamic model.

The transfer function is obtained by the simpli�ed properties of the block diagrams
and by a direct calculation. Di¤erent methods using the Nyquist criterion are applied to
calculate the stability of the system. For this, we will �rst consider the case where the
cutting tool is su¢ ciently �exible and the work piece considered su¢ ciently rigid.
If Ff (t) = feed e¤ort,
Kf = speci�cally coe¢ cient of cutting,
b = width of chip
h(t) = the instantaneous thickness of chip,
The dynamic equation becomes :

Ff (t) = m�y (t) + c _y (t) + ky (t) (1)

Ff (t) = Kfbh (t) (2)

The expression of instantaneous thickness of chip h(t) is given by :

h (t) = h0 + [y (t� T )� y (t)] (3)

Where :
h0 = nominal thickness of chip,
T = revolution period of the work piece during the turning process,
[y(t� T )� y(t)] = variation thickness of chip.
Therefore :

m�y (t) + c _y (t) + ky (t) = Kfb (h0 + [y (t� T )� y (t)]) (4)

Applying Laplace-Carson transform :

ms2y (s)+csy (s)+ky (s) = kfb
�
h0 +

�
e�sT � 1

�
y (s)

�
y (s)

�
ms2 + cs+ k

�
= Ff (s) (5)
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Such as :
Ff (s) = Kfbh(s)

y (s)

Ff (s)
=

1

[ms2 + cs+ k]
= 	 (s) (6)

, y (s) = Ff (s) : 	(s)
The transfer function of the system of one degree of freedom 	(s) is therefore :

	(s) =
1=kh

1
!n2
s2 + 2�

!n
s+ 1

i (7)

� : Damping ratio
!n : Natural frequency

3 The study of the stability system

The study of the stability system is done by searching the ratio between the non defor-
med thickness of the chip h0 and the average thickness of the chip h(s).
For the case where the work piece is considered rigid and the cutting tool is considered

�exible, we will calculate the transfer function and the stability by an analytical method.
Our method is only used for the case of an orthogonal cut. Then, we will develop the
stability criteria�s and simulate afterwards.
The determination of h(s)

h0
:

h (s) = h0 +
�
e�sT � 1

�
y (s) (8)

With :
y(s) = Ff (s):	(s)
and Ff (s) = Kfbh(s)

, h (s)

h0
=

1

[1 + (1� e�sT )] :Kfb	(s)
(9)

This equation allows us to model the dynamic behavior of the turning process as a
diagram shown in �gure 4.
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Fig. 4 �Dynamic model of one degree of freedom for a turning process.

The stability of the transfer function depends on its poles s = � + j!c .
During the critical regime, s = j!c and b = blim.

�
1 +

�
1� e�j!T

��
:Kfb	(j!c) = 0 (10)

If 	(j!) = G+ jH (11)

1+kfblim[G(1�cos!cT )�H(sin!cT )]+j(kfblim[Gsin!cT �H[1�cos!cT ]) = 0 (12)
The rotation speed is expressed as a -function of the chatter pulsation and the phase

shift ' :

N (!c) =
60!c

3� + 2' (!c) + 2k�
(13)

The equation 13 is used in order to let the associations of the critical pulsation with the
di¤erent rotation speeds. From this, we can have a form of a lobe which can be repeated
depending on the variation K (K = (1; 2; 3; : : : : : : ::; n)).
The expression of the depth of the pass limit (blim) is derived from the real part of the

characteristic equation :

blim =
�1

2KfG (!c)
(14)

With :
G (!c) = Re(	 (j!c))
!c : Pulse chatters (vibration pulsation of the system)
These equations constitute a parameterized system of equations. It is then possible to

draw the stability lobes for each vibration mode of the machined face.
Finally, these equations can de�ne the stability limits of our case that is a compliant

cutting tool and work piece behavior during machining. Dynamic characteristics of both
parameters (cutting tool and work piece) should be identi�ed and substituted in these
equations. Afterwards, the stability charts of our process and the optimum cutting condi-
tions can be de�ned.
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4 Results

The compliance between the cutting tool and the work piece in a case of a turning
process was studied trough a system supposed to admit only one degree of freedom.
Chatter experiments were conducted in order to verify the proposed stability model. The
transfer function is obtained by the simpli�ed properties of the block diagrams and by a
direct calculation. Also, the transfer function of the tool and the work piece were measured
by the modal test setup. Di¤erent experiments were done. The dynamic properties and
cutting conditions can be found in Table1.

Table 1 �Dynamic properties.

Mass (m) 0.55
Kg
Dynamical sti¤ness (k) 23.82.106

N/m
Dynamic snubbing (c) 1.36.103

N.s/m
Damping ratio (�) 0.05
Cutting coe¢ cient (Kf ) 2 400
MPa

Fig. 5 �Frequency response functionof the cutting : a) real part ; b) magnitude.
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Determining the dynamic sti¤ness was conducted by modeling the work piece in the
form of a clamped beam in order to determine analytically its sti¤ness.
Figure 5 represents the real part of the response function depending on the cutting tool

frequency. It is possible to note that the analyzed natural frequency fn is close to 1050
Hz.
fn is calculated by :

!n =

r
k

m
(15)

!n = 2�: fn

fn =
1
2�

q
k
m

Fig. 6 �blim evolution in function of !c.

The evolution of blim (blimite) depending on !c gives some negative values which cannot
then be conserved.

Fig. 7 �Stability lobes curves.
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Figure 7shows a good agreement in predicting the unconditionally stable cutting depth
at the bottom of each lobe. Stability limits of both models were also in good agreement at
low spindle speed. The width of the lobes increases in parallel with the spindle speeds and
this is one of the principal criteria of the stability theory. The curves show the evolution of
the in�uence of the di¤erent parameters used such as the mass (m), the dynamic sti¤ness
(k) and the snubbing (c) on the stability of the piece-tool-machine system.

Fig. 8 �The stable and unstable areas.

Figure 8 shows the stable and unstable areas of the cutting in function of the spindle
speed and the depth of cut. At the beginning of our work, we considered that the work
piece is considered �exible and the cutting tool is considered rigid. But sometimes, it
happens that this assumption cannot be veri�ed, and both of the work piece and the
cutting tool are mobile. In this case, the coupling phenomenon can occur if both proper
modes of the work piece and the cutting tool are close. We should then vary the spindle
speed during machining in order to ensure complete stability of the system. Therefore, the
theory of stability that we used before, will not be valid, and we should use one more time
the equation 1 but with the new con�guration. Indeed, the change of one of the dynamic
parameters of the equation 1 requires repeating the whole calculation explained above.
Then, and as a solution, a diagram of the lobes of stability was adopted. Its aspect is

shown in the di¤erent �gures for the proper mode of the cutting tool. Under some condi-
tions of machining, the facing operation is stable. Conversely, beyond certain values, the
machining becomes unstable. Under no circumstances, this method predicts the vibration
in terms of amplitudes or frequency.

5 Illustrative example and result

The stability limits for both cases were determinate after. We did not �nd a big error
for both results. The two examples used for comparison are shown on the system stability
lobe diagram in Figure 9 and 10, where example 1 is expected to be unstable, and example
2 is expected to be stable.
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Fig. 9 �Simulated and measured surface topographies for face cutting of the work piece
under the cutting conditions : N = 6000 rev/min , depth of cut(a) = 2 mm, f = 0:2
mm/rev , re = 1:2 mm (presence of chutter vibration).

Fig. 10 �Veri�cation results of cutting conditions : a,b,c and d.
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Fig. 11 �Simulated and measured surface topographies for face cutting of the work piece
under the cutting conditions : N = 20000 rev/min , depth of cut(a) = 0:5 mm,f = 0:05
mm/rev, re = 1:2 mm (absence of vibration).

We notice that the cutting parameters during machining a¤ect in a major way on the
surface condition. However, proper use of cutting parameters can improve the surface
�nish, a bad choice of a cutting parameter leads to obtaining a poor surface �nish.
We present the use of the intelligent programming with particle swarm Optimization

(PSO) , in order to obtain the appropriate machining parameters, so we can minimize the
surface roughness.
Several researches have been done about this method, the goal is to take a mathematical

approach and solve the machining cutting parameters.
The most important criterion for the assessment of the surface quality is roughness,

Ra, calculated according to :

Ra = kVc
x1 � fx2 � apx3

Where x1, x2, x3 and k are the constants relevant to aspeci�c tool-workpiece combina-
tion.
In our case, we will apply the experience design method,
This method is one of mathematical methods to obtain maximum information by mi-

nimizing the number of experiments to be performed. We are only interested to minimize
cutting conditions to �nd the optimal roughness from the stability lobes plot.
In general form it can be expressed as follows :

Ra = function (Vc; ap; f)

To implement our optimization objective and choose the optimum cutting conditions,
we measured the surface roughnessRa(�m) using a type TR100 Surface Roughness Tester.
The average values of roughness Ra measured for each part corresponding to each

cutting procedure are presented in the following table :
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Table 2 �values of roughness Ra.
Pieces Cutting speed Depth of cut Feed rate Roughness

Vc [m/min] ap [mm] f [mm/rev] Ra [�m]
1 150 0.3 0.05 2.85
2 150 0.8 0.2 3.18
3 1000 0.3 0.2 1.48
4 150 0.8 0.05 3.01
5 1000 0.8 0.2 1.39
6 1000 0.8 0.05 1.25
7 1000 0.3 0.05 1.05
8 150 0.3 0.2 2.37

Limiting the cutting tool is very important to the safety of machining ;the cutting
parameters are limited with the bottom and top allowable limit.
Allowable range of cutting conditions is :

150 � Vc � 1000m=min ; 0:05 � f � 0:2mm=rev ; 0:3 � a_p � 0:8mm

With the data processing, our equation is :

8>>>>>>>><>>>>>>>>:

minimize Ra
Ra = 3:45259� (2:72395e�003Vc)� (0:23804:ap)� (7:53412:f)

+ (8:31373e�004e� 004:Vc:ap) + (0:011561:Vc:f) + (10:87843:ap:f)� (0:014745:Vc:ap:f)
with

0:05 � f � 0:2
0:3 � ap � 0:8
150 � Vc � 1000

The best result is : f = 0:1 mm/tr, ap = 0:3tmm , Vc = 1000 m/min , Ra = 1 �m

6 Conclusion

In this study, dynamic characteristics of the cutting tool and the work piece were
taken into account in order to obtain the best approach of the physical phenomena during
vibration. We were interested in the prediction of the lobes of stability with regard to the
vibration instability through a dynamic model. For the dynamic modeling of our work ;
analytical, experimental and numerical methods were used.
Our model provides an approach to the dynamic system by solving the stability li-

mit. The e¤ect of the process parameters on the stability is demonstrated. This process
is veri�ed by a simulation method and overall, the results are the same. Several trails
were carried out for the veri�cation of our method. The obtained results show a perfect
agreement with the theory of the lobe of stability since the width of the lobes increases
according to the rotation speeds. Also, the measurement of surface roughness allowed us
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to qualify the quality of machining, for that you optimize cutting conditions to avoid
appearances of vibrations and surface defects.
The reliability of the proposed mathematical model has been tested by the optimization

(PSO) method. The results showed that the model is highly signi�cant and good �t with
the stability lobe path and also with the experimental results.
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ABSTRACT

In this paper, the generalized Riemann-Liouville fractional integral opera-
tor is used to generate some new fractional integral inequalities. By using
the generalized Riemann-Liouville fractional integral operator, we also ge-
nerate new classes of fractional integral inequalities using a family of n;
(n � 1) positive functions.

c
2016 LESI. All rights reserved.

1. Introduction

Integral inequalities play a very important role in the theory of di¤erential equations
and applied mathematics. These inequalities have gained considerable popularity and im-
portance during the past few decades due to their distinguished applications in numerical
quadrature, transform theory, probability, and statistical problems. For details, we refer
to [ 8, 9, 10, 11, 12, 14, 16, 18] and the references therein. Moreover, the study of fractional
type inequalities is also of great importance. A detailed account of such fractional integral
inequalities along with their applications can be found in the research contributions by
many author see [ 1, 3, 4, 13, 19]. In the past several years, many author have studied
on fractional integral inequalities using Riemann-Liouville, Hadamard fractional integral
and q�fractional integral, see [ 2, 5, 6, 17]. In this paper we present some new fractional
integral inequalities using generalized Riemann-Liouville fractional integral.

2. Preliminaries

Firstly, we give some necessary de�nitions and mathematical preliminaries of fractional
calculus theory which are used further in this paper.

�Email : houasmed@yahoo.fr
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De�nition 1 A real valued function f(t); t � 0 is said to be in the space C� (0;1) ; � 2
R, if there exists a real number p > � such that f(t) = tpf1(t); where f1 (t) 2 C ([0;1[) :
De�nition 2 A function f(t); t > 0 is said to be in the space Cn� ; n 2 R, if f (n) 2 C�.
De�nition 3 The Riemann-Liouville fractional integral operator of order � � 0, for a
continuous function f on [a; b] is de�ned as

J�a [f (t)] =
1

� (�)

tZ
a

(t� �)��1 f (�) d� ; � > 0; a < t � b; (2.1)

J0a [f (t)] = f (t) ;

where � (�) :=
1R
0

e�uu��1du.

For the convenience of establishing the results, we give the following properties :

J�a J
�
a [f (t)] = J

�+�
a [f (t)] ; (2.2)

and

J�a J
�
a [f (t)] = J

�
a J

�
a [f (t)] : (2.3)

De�nition 4 Consider the space Lp;k (a; b) (k � 0; 1 � p <1)of those real-valued Le-
besgue measurable functions f on [a; b] for which

kfkLp;k(a;b) =
�Z b

a

jf (x)jp xkdx
� 1

p

<1; k � 0; 1 � p <1: (2.4)

De�nition 5 Consider the space Xp
c (a; b) (c 2 R; 1 � p <1) of those real-valued Le-

besgue measurable functions f on [a; b] for which

kfkXp
c (a;b)

=

�Z b

a

jxcf (x)jp dx
x

� 1
p

<1; c 2 R; 1 � p <1; (2.5)

and for the case p =1
kfkX1

c
= ess sup

a�x�b
[xcf (x)] ; c 2 R: (2.6)

In particular, when c = k+1
p
(k � 0; 1 � p <1) the space Xp

c (a; b) coincides with the
Lp;k (a; b)�space and also if we take c = 1

p
(1 � p <1) the space Xp

c (a; b) coincides with
the classical Lp (a; b)�space.
De�nition 6 Let f 2 L1;k [a; b] : The generalized Riemann-Liouville fractional integral
J�;ka of order � � 0 and k � 0 is de�ned by

J�;ka f (t) = (k+1)1��

�(�)

tR
a

�
tk+1 � � k+1

���1
� kf (�) d� ; � > 0; a < t � b;

J0;ka [f (t)] = f (t) ;

(2.7)

For more details on can consult [ 7, 10, 13].
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3. Main Results

In this section, we prove some inequalities concerning the generalized Riemann-Liouville
fractional integral.

Theorem 7 Let f; h and g be three positive continuous functions on [a; b], such that

h (x) f(y)
g(y)

+ h (y) f(x)
g(x)

� h (x) f(x)
g(x)

+ h (y) f(y)
g(y)
; x; y 2 [a; t] ; a < t � b : (3.1)

Then the generalized fractional integral inequality

J�;ka [g (t)] J�;ka [f (t)h (t)] � J�;ka [f (t)] J�;ka [h (t) g (t)] ; (3.2)

holds for all a < t � b; � > 0; k � 0:

Proof. Suppose that f; h and g are positive and continuous functions on [a; b] satisfying
the condition (3:1) : Then we de�ne

� (x; y) := 'k� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) :
(3.3)

where,

'k� (t; x) :=
(k + 1)1��

� (�)

�
tk+1 � xk+1

���1
xk; (3.4)

It is clear that

� (x; y) � 0: (3.5)

Integrating (3:5) with respect to x over (a; t), yields

0 �
R t
a
� (x; y) dx

=
R t
a
'k� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dx

= J�;ka [g (t)h (t)] f (y) + J�;ka [f (t)] g (y)h (y)

�J�;ka [h (t) f (t)] g (y)� J�;ka [g (t)]h (y) f (y) :

(3.6)
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Now, multiplying (3:6) by 'k� (t; y) ; y 2 (a; t); a < t � b and integrating with respect to
y over (a; t), we can write

0 �
R t
a

R t
a
'k� (t; y)� (x; y) dxdy

=
R t
a

R t
a
'k� (t; y)'

k
� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dxdy

= J�;ka [g (t)h (t)]
R t
a
'k� (t; y) f (y) dy + J

�;k
a [f (t)]

R t
a
'k� (t; y) g (y)h (y) dy

�J�;ka [h (t) f (t)]
R t
a
'k� (t; y) g (y) dy � J�;ka [g (t)]

R t
a
'k� (t; y)h (y) f (y) dy

= 2J�;ka [g (t)h (t)] J�;ka [f (t)]� 2J�;ka [h (t) f (t)] J�;ka [g (t)]

(3.7)

This implise that

J�;ka [gh (t)] J�;ka [f (t)] � J�;ka [hf (t)] J�;ka [g (t)] (3.8)

The proof is completed.
Our the next result is the following theorem, in which we use two fractional positive

parameters.

Theorem 8 Let f; h and g be three positive continuous functions on [a; b]. Then, the
following generalized fractional inequality

J�;ka [h (t) f (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [h (t) f (t)] (3.9)

� J�;ka [g (t)h (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [g (t)h (t)] ;

is valid for all a < t � b; � > 0; � > 0; k � 0:
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Proof. Multiplying both sides of (3:5) by the quantity 'k� (t; y) ; y 2 (a; t); a < t � b;
then integrating the resulting inequality with respect to y over (a; t) we get

0 �
Z t

a

Z t

a

'k� (t; y)� (x; y) dxdy (3.10)

=

Z t

a

Z t

a

'k� (t; y)'
k
� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dxdy

= J�;ka [g (t)h (t)]

Z t

a

'k� (t; y) f (y) dy + J
�;k
a [f (t)]

Z t

a

'k� (t; y) g (y)h (y) dy

�J�;ka [h (t) f (t)]

Z t

a

'k� (t; y) g (y) dy � J�;ka [g (t)]

Z t

a

'k� (t; y)h (y) f (y) dy

= J�;ka [g (t)h (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [g (t)h (t)]

�J�;ka [h (t) f (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [h (t) f (t)] :

This implies that

J�;ka [gh (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [gh (t)] (3.11)

� J�;ka [hf (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [hf (t)] :

Theorem 8 is thus proved.

Remark 9 Applying Theorem 8 for � = �; we obtain Theorem 7.

Now, we shall propose a new generalization of integral inequalities using a family of n
positive functions de�ned on [a:b]:

Theorem 10 Let f; h and gi; i = 1; :::; n be positive and continuous functions on [a; b]:Then,
the following fractional inequality

J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
� J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)] ;

(3.12)

is valid for any a < t � b; � > 0; k � 0:

Proof. Suppose that f; h and gi; i = 1; :::; n are positive continuous functions on [a; b];
then we can write

h (x)
f (y)

gq (y)
+ h (y)

f (x)

gq (x)
� h (x) f (x)

gq (x)
+ h (y)

f (y)

gq (y)
; (3.13)
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for any �xed q 2 f1; :::; ng and for any x; y 2 [a; t] ; a < t � b:
Denote

�q (x; y) :=

'k� (t; x)
�
f (y)

Qn
i6=q gi (y)h (x)

Qn
i=1 gi (x) + h (y)

Qn
i=1 gi (y) f (x)

Qn
i6=q gi (x)

�
Qn
i=1 gi (y)h (x) f (x)

Qn
i6=q gi (x)� h (y) f (y)

Qn
i6=q gi (y)

Qn
i=1 gi (x)

�
;

(3.14)

for all x; y 2 [a; t] ; a < t � b and for any �xed integer q 2 f1; :::; ng :
We have

�q (x; y) � 0: (3.15)

Now, integrating (3:15) with respect to x over (a; t), we obtain

0 �
R t
a
�q (x; y) dx

= f (y)
Qn
i6=q gi (y) J

�;k
a [h (t)

Qn
i=1 gi (t)]

+h (y)
Qn
i=1 gi (y) J

�;k
a

h
f (t)

Qn
i6=q gi (t)

i
�
Qn
i=1 gi (y) J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�h (y) f (y)

Qn
i6=q gi (y) J

�;k
a [

Qn
i=1 gi (t)] :

(3.16)

Next, multiplying both sides of (3:16) by 'k� (t; y) ; y 2 (a; t) ; integrating the resulting
inequality with respect to y from a to t, we can write

0 �
R t
a

R t
a
'k� (t; y)�q (x; y) dxdy

= J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka [h (t)
Qn
i=1 gi (t)] J

�;k
a

h
f (t)

Qn
i6=q gi (t)

i
�J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�J�;ka

h
h (t) f (t)

Qn
i6=q gi (t)

i
J�;ka [

Qn
i=1 gi (t)] :

(3.17)

and consequently, we have

0 � 2J�;ka

"
f (t)

nY
i6=q

gi (t)

#
J�;ka

"
h (t)

nY
i=1

gi (t)

#
(3.18)

�2J�;ka

"
nY
i=1

gi (t)

#
J�;ka

"
h (t) f (t)

nY
i6=q

gi (t)

#
:
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The proof is completed.
Using two fractional parameters, we obtain the following generalization of Theorem 10.

Theorem 11 Let f; h and gi; i = 1; :::; n be positive continuous functions on [a; b]: Then,
for any �xed q 2 f1; :::; ng and for all a < t � b; � > 0; � > 0; k � 0; we have

J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
+J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
� J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)] :

(3.19)

Proof. Multiplying both sides of (3:16) by 'k� (t; y) ; y 2 (a; t) ; and integrating with
respect to y from a to t, we obtain

0 �
Z t

a

Z t

a

'k� (t; y)�q (x; y) dxdy (3.20)

=

Z t

a

Z t

a

'k� (t; y) f (y)
nY
i6=q

gi (y)'
k
� (t; x)h (x)

nY
i=1

gi (x) dxdy

+

Z t

a

Z t

a

'k� (t; y)h (y)
nY
i=1

gi (y)'
k
�;� (t; x) f (x)

nY
i6=q

gi (x) dxdy

�
Z t

a

Z t

a

'k� (t; y)
nY
i=1

gi (y)'
k
� (t; x)h (x) f (x)

nY
i6=q

gi (x) dxdy

�
Z t

a

Z t

a

'k� (t; y)h (y) f (y)
nY
i6=q

gi (y)'
k
� (t; x)

nY
i=1

gi (x) dxdy:

It follows that

0 � J�;ka
h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

�J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
:

(3.21)

This completes the proof.

Remark 12 If we take � = �; in Theorem 11, we obtain Theorem 10.
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ABSTRACT

This paper is concerned with the investigation of thermoelastic interactions
in an isotropic unbounded medium with spherical cavity due to the pre-
sence of moving heat source in context of linear theory of thermoelasticity
with one relaxation time [1]. Laplace transform technique has been used
to obtain the expressions for radial stress, equilibrated stresses and tem-
perature distribution. A numerical inversion technique has been applied to
recover the resulting quantities in the physical domain. The components of
stress and temperature distribution are depicted graphically to show the
e¤ect of heat source velocity and the relaxation time parameters. Some
particular cases are also deduced from the present investigation.

c
2016 LESI. All rights reserved.

1. Introduction

Porous media theories play an important role in many branches of engineering inclu-
ding material science, the petroleum industry, chemical engineering, biomechanics and
other such �elds of engineering. Biot [2] proposed a general theory of three-dimensional
deformation of �uid saturated porous salts. One important generalization of Biot�s theory
of poroelasticity that has been studied extensively started with the works by Barenblatt
et al. [3], where the double porosity model was �rst proposed to express the �uid �ow in
hydrocarbon reservoirs and aquifers.
The double porosity model represents a new possibility for the study of important

problems concerning the civil engineering. It is well-known that, under super- saturation
conditions due to water of other �uid e¤ects, the so called neutral pressures generate
unbearable stress states on the solid matrix and on the fracture faces, with severe (so-

�Email : rajneesh_kuk@redi¤mail.com
yEmail : richavhr88@gmail.com
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metimes disastrous) instability e¤ects like landslides, rock fall or soil �uidization (typical
phenomenon connected with propagation of seismic waves). In such a context it seems
possible, acting suitably on the boundary pressure state, to regulate the internal pressures
in order to deactivate the noxious e¤ects related to neutral pressures ; �nally, a further
but connected positive e¤ect could be lightening of the solid matrix/�uid system .
Aifantis[4-7] introduced a multi-porous system and studied the mechanics of di¤usion

in solids Wilson and Aifanits [8] presented the theory of consolidation with the double
porosity. Khaled et. al [9] employed a �nite element method to consider the numerical
solutions of the di¤erential equation of the theory of consolidation with double porosity
developed by Wilson and Aifantis [8]. Wilson and Aifantis[10]discussed the propagation of
acoustics waves in a �uid saturated porous medium. The propagation of acoustic waves in
a �uid-saturated porous medium containing a continuously distributed system of fractures
is discussed. The porous medium is assumed to consist of two coexisting degrees of porosity
and the resulting model thus yields three types of longitudinal waves, one associated with
the elastic properties of the matrix material and one each for the �uids in the pore space
and the fracture space.
Nunziato and Cowin [11]developed a nonlinear theory of elastic material with voids.

Later, Cowin and Nunziato [12]developed a theory of linear elastic materials with voids for
the mathematical study of the mechanical behavior of porous solids. They also considered
several applications of the linear theory by investigating the response of the materials
to homogeneous deformations, pure bending of beams and small amplitudes of acoustic
waves. Nunziato and Cowin have established a theory for the behavior of porous solids in
which the skeletal or matrix materials are elastic and the interstices are voids of material.
Beskos and Aifantis [13] presented the theory of consolidation with double porosity-

II and obtained the analytical solutions to two boundary value problems. Khalili and
Valliappan [14] studied the uni�ed theory of �ow and deformation in double porous media.
Khalili and Selvadurai [15] presented a fully coupled constitutive model for thermo-hydro
�mechanical analysis in elastic media with double porosity structure. Various authors
[16-21] investigated some problems on elastic solids, viscoelastic solids and thermoelastic
solids with double porosity.
Iesan and Quintanilla [22] used the Nunziato-Cowin theory of materials with voids to

derive a theory of thermoelastic solids, which have a double porosity structure. This theory
is not based on Darcy�s law. In contrast with the classical theory of elastic materials with
the double porosity, the double porosity structure in the case of equilibrium is in�uenced
by the displacement �eld.
Youse¤ [23-25] investigated some problems of in�nite body with a cylindrical cavity and

spherical cavity in generalized thermoelasticity. Allam et al [26] considered the model of
generalized thermoelasticity proposed by Green and Naghdi, to study the electromagneto�
thermoelastic interactions in an in�nite perfectly conducting body with a spherical cavity.
Abd-Alla and Abo-Dahab [27] studied the e¤ect of rotation and initial stress on an in-
�nite generalized magneto-thermoelastic di¤usion body with a spherical cavity. Zenkour
and Abouelregal [28] studied the e¤ects of phase-lags in a thermoviscoelastic orthotropic
continuum with a cylindrical hole and variable thermal conductivity.
The present paper deals with thermoelastic interactions in an in�nite double porous

thermoelastic body with a spherical cavity subjected to moving heat source in context
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of Lord-Shulman theory of thermoelasticity. Laplace transform has been applied to �nd
the expressions for the components of stress and temperature distribution. The resulting
quantities are obtained in the physical domain by using a numerical inversion technique.
Variation of radial stress, equilibrated stresses and temperature distribution against radial
distance are depicted graphically to show the e¤ect of heat source velocity and relaxa-
tion time parameters. Some particular cases have also been deduced from the present
investigation.

2. Governing equations

Following Iesan and Quintanilla [22] and Lord and Shulman [1] ; the constitutive rela-
tions and �eld equations for homogeneous isotropic thermoelastic material with double
porosity structure in the absence of body forces and extrinsic equilibrated body forces
can be written as :
Constitutive Relations :

tij = �err�ij + 2�eij + b�ij'+ d�ij � ��ijT (1)

�i = �';i + b1 ;i (2)

�i = b1';i + 
 ;i (3)

Equation of motion :

�r2ui + (�+ �)uj;ji + b';i + d ;i � �T;i = ��ui; (4)

Equilibrated Stress Equations of motion :

�r2'+ b1r2 � bur;r � �1'� �3 + 
1T = �1�'; (5)

b1r2'+ 
r2 � dur;r � �3'� �2 + 
2T = �2� ; (6)

Equation of heat conduction :

�
1 + � 0

@

@t

��
�T0 _uj;j + 
1T0 _'+ 
2T0 _ + �C� _T �Q

�
= K�r2T (7)

where � and � are Lame�s constants, � is the mass density ; � = (3�+ 2�)�t ; �t is the
linear thermal expansion ; C� is the speci�c heat at constant strain, ui is the displacement
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components ; tij is the stress tensor ; �1 and �2 are coe¢ cients of equilibrated inertia ; �i is
the components of the equilibrated stress vector associated to pores ; �i is the components
of the equilibrated stress vector associated to �ssures ; ' is the volume fraction �eld
corresponding to pores  and is the volume fraction �eld corresponding to �ssures ; K� is
the coe¢ cient of thermal conductivity ; Q is the heat source ; � 0 is the thermal relaxation
time, �1 and �2 are coe¢ cients of equilibrated inertia b; d; b1; 
; 
1; 
2 and are constitutive
coe¢ cients ; �ij is the Kronecker�s delta ; T is the temperature change measured form the
absolute temperature T0 (T0 6= 0) ; a superposed dot represents di¤erentiation with respect
to time variable t.
We take the moving heat source as :

Q = Q0H(r �R)
�(r � vt)

r
(8)

where H(�) is the Heaviside unit step function, Q0 is the heat source strength and v is
its velocity.

3. Formulation of the problem

We consider a perfectly conducting thermoelastic in�nite body with double porosity
having spherical cavity occupying the region R � r < 1 of an isotropic homogeneous
medium.The spherical polar coordinates (r; #; �) are taken for any representative point of
the body at time t and the origin of the coordinate system is at the centre of the spherical
cavity. All the variables considered will be functions of the radial distance r and the time
t. The initial conditions are given by

u = 0 = _u; ' = 0 = _';  = 0 = _ ; T = 0 = _T at t = 0 (9)

Due to spherical symmetry, the displacements components are of the form

ur = u(r; t); u# = u� = 0 (10)

The components of stress tensor for a spherical symmetric system are

trr = 2�
@u

@r
+ �e+ b'+ d � �T (11)

t## = 2�
u

r
+ �e+ b'+ d � �T (12)

tr# = tr� = t#� = 0 (13)
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�r = �
@'

@r
+ b1

@ 

@r
(14)

�r = b1
@'

@r
+ 


@ 

@r
(15)

where

e = err + e## + e�� =
@u

@r
+
2u

r
; (16)

err =
@u

@r
; e## = e�� =

u

r
; er# = er� = e#� = 0 (17)

We introduce the non-dimensional quantities as :

r
0
= !1

c1
r; u

0
= !1

c1
u ; t

0
ij =

tij
�T0

; '
0
= �1!12

�1
';  0 = �1!12

�1

T
0
= T

T0
; t0 = !1t; �

0
i =

�
c1
�!1

�
�i; �

0
i =

�
c1
�!1

�
�i; �

0
0 = !1� 0; Q

0
0 =

c1Q0
K�!1T0

where c21 =
�+2�
�
; !1 =

�C�c21
K�

Making use of dimensionless quantities given by (17) on Eqs. (4)-(7) and with the aid
of Eqs. (8) and (16) yield (dropping primes for convenience)

@e

@r
+ a1

@'

@r
+ a2

@ 

@r
� a3

@T

@r
=
@2u

@t2
(18)

a4r2'+ a5r2 � a6e� a7'� a8 + a9T =
@2'

@t2
(19)

a10r2'+ a11r2 � a12e� a13'� a14 + a15T =
@2 

@t2
(20)

�
1 + � 0

@

@t

��
a16

@e

@t
+ a17

@'

@t
+ a18

@ 

@t
+
@T

@t
� Q0H(r �R)�(r � �t)

r

�
= r2T (21)

where

a1 =
b�1

�c21�
2
1!

2
1
; a2 =

d�1
�c21�

2
1!

2
1
; a3 =

�T0
�c21
; a4 =

�
�1c21

; a5 =
b1
�1c21

; a6 =
b
�1
; a7 =

�1
�1!21

;

a8 =
�3
�1!21

; a9 =

1T0
�1
; a10 =

b1
�2c21

; a11 =



�2c21
; a12 =

d�1
�2�1

; a13 =
�3
�2!21

; a14 =
�2
�2!21

;

a15 =

2T0�1
�1�2

; a16 =
�c21
�C� ; a17 =


1�1c
2
1

K��1!31
; a18 =


2�1c
2
1

K��1!31
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4. Solution in the Laplace transform domain

Applying the Laplace transform de�ned by

�f (s) = L[f(t)] =

Z 1

0

f (t) e�stdt (22)

on the Eqs. (18)-(21), after some simpli�cations, we obtain

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�e =

f1
r
e�(s=�)r (23)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�' =

f2
r
e�(s=�)r (24)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
� =

f3
r
e�(s=�)r (25)

�
r8 +B1r6 +B2r4 +B3r2 +B4

�
�T =

f4
r
e�(s=�)r (26)

Bi; fi ; i = 1; 2; 3; 4 are given in the appendix.
Therefore, the solutions of the Eqs. (23)-(26), which is bounded at in�nity, are given

by

�e =
A1
r
e�m1r +

A2
r
e�m2r +

A3
r
e�m3r +

A4
r
e�m4r +

D1

r
e�(s=v)r (27)

�' = g11
A1
r
e�m1r + g12

A2
r
e�m2r + g13

A3
r
e�m3r + g14

A4
r
e�m4r +

D2

r
e�(s=v)r (28)

� = g21
A1
r
e�m1r + g22

A2
r
e�m2r + g23

A3
r
e�m3r + g24

A4
r
e�m4r +

D3

r
e�(s=v)r (29)

�T = g31
A1
r
e�m1r + g32

A2
r
e�m2r + g33

A3
r
e�m3r + g34

A4
r
e�m4r +

D4

r
e�(s=v)r (30)

g1i; g2i; g3i; g4i are given in the appendix.

Di =
fiv

8

s8 +B1s6�2 +B2s4�4 +B3s2�6 +B4�8
; i = 1; 2; 3; 4 (31)
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Substituting Eqs. (27) into Eq.(16), we obtain

�u = �D1

r2

�
v2

s2
+ r

v

s

�
e�(s=v)r � 1

r2

4X
i=1

Ai
m2
i

(1 + rmi) e
�mir

Making use of Eqs.(27)-(30),(32) in Eqs.(11),(14) ,(15) and with the help of Eqs.(17) and
(22), we obtain the corresponding expressions for radial stress and equilibrated stresses
as

�trr(r; s) = G5(r)e
�(s=v)r+

4X
i=1

�
�p1
r

�
m2
i +

2mi

r
+
2

r2

�
+ p2 + p3g1i + p4g2i � g3i

�
Ai(s)e

�mir

(32)

��r(r; s) = �G6(r)e�(s=v)r �
4X
i=1

(p5g1i + p6g2i)

�
mir + 1

r2

�
Ai(s)e

�mir (33)

��r(r; s) = �G7(r)e�(s=v)r �
4X
i=1

(p6g1i + p7g2i)

�
mir + 1

r2

�
Ai(s)e

�mir (34)

where

p1 =
2�
�T0

; p2 =
�
�T0

; p3 =
b�1

�T0�1!21
; p4 =

d�1
�T0�1!21

; p5 =
�1
�1!21

; p6 =
b1�1
��1!21

; p7 =

�1
��1!21

;

G5 = �1
r

�
p1D1

�
2v2

s2r2
+ 2v

sr
+ 1
�
+ p2D1 + p3D2 + p4D3 �D4

�
;

G6 = (p5D2 + p6D3)
�
s
vr
+ 1

r2

�
; G7 = (p6D2 + p7D3)

�
s
vr
+ 1

r2

�
5. Boundary conditions

We consider that the bounding plane (r = R) of the cavity is traction free and subjected
to thermal shock as follows :

trr(R; t) = 0; �r(R; t) = 0; �r(R; t) = 0; T (R; t) = T0H(t) (35)

After applying Laplace transform on Eq.(36), we get

�trr(R; s) = 0; ��r(R; s) = 0; ��r(R; s) = 0; �T (s; t) =
T0
s
= F1 (say) (36)

Substituting the values of �trr; ��r; ��r and �T from Eqs. (30), (33)-(35) in the boundary
conditions (37) yield the corresponding expressions for radial stress, equilibrated stresses
and temperature distribution as
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�trr(r; s) =
1

�
(H11�1 exp(�m1r) +H12�2 exp(�m2r) +H13�3 exp(�m3r) +H14�4 exp(�m4r))

(37)

��r(r; s) =
1

�
(H21�1 exp(�m1r) +H22�2 exp(�m2r) +H23�3 exp(�m3r) +H24�4 exp(�m4r))

(38)

��r(r; s) =
1

�
(H31�1 exp(�m1r) +H32�2 exp(�m2r) +H33�3 exp(�m3r) +H34�4 exp(�m4r))

(39)

�T (r; s) =
1

�
(H41�1 exp(�m1r) +H42�2 exp(�m2r) +H43�3 exp(�m3r) +H44�4 exp(�m4r))

(40)

where

� =

��������
H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

�������� (41)

�i (i = 1 ; 2; 3; 4) are obtained by replacing ith column of (41) with [ F2 F3 F4 (F5 + F1) ]
T

H1i =
p1
m2
i

�
m2
i

R
+ 2mi

R2
+ 2

R3

�
+ p2 + p3g1i + p4g2i � g3i;

H2i =
�
miR+1
R2

�
(p5g1i + p6g2i); H3i =

�
miR+1
R2

�
(p6g1i + p7g2i); H4i = g3i;

F2 =
1
R

�
p1D1

�
2v2

s2R2
+ 2v

sR
+ 1
�
+ p2D1 + p3D2 + p4D3 �D4

�
e�(s=v)R;

F3 = (p5D2 + p6D3)
�
s
vR
+ 1

R2

�
e�(s=v)R;

F4 = (p6D2 + p7D3)
�
s
vR
+ 1

R2

�
e�(s=v)R; F5 =

D4
R
e�(s=v)R

6. Particular cases

Case 6.1 If � 0 = 0, in Eqs. (38)-(41) yield the corresponding expressions for an in�nite
thermoelastic double porous body with a spherical cavity in the context of coupled theory
of thermoelasticity.
Case 6.2 If b1 = �3 = 
 = �2 = 
2 = d ! 0 in Eqs.(38)-(41), we obtain the cor-

responding expressions for an in�nite thermoelastic single porous body with a spherical
cavity.
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7. Inversion of the Laplace domain

In order to invert the Laplace transform, we adopt a numerical inversion method based
on a Fourier series expansion [29]
By this method the inverse f(t) of the Laplace transform �f(s) is approximated by

f(t) =
e�t

t1

"
1

2
�f(�) + Re

NX
k=1

�f

�
� +

ik�

t1

�
exp

�
ik�t

t1

�#
; 0 < t1 < 2t

where N is su¢ ciently large integer representing the number of terms in the truncated
Fourier series, chosen such that

f(t) = exp(�t)Re

�
�f

�
� +

iN�

t1

�
exp

�
iN�t

t1

��
� "1

where is a prescribed small positive number that corresponds to the degree of accuracy
required. The parameter is a positive free parameter that must be greater than the real
part of all the singularities of .The optimal choice of was obtained to the criterion described
in [29].

8. Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical
data is given by Sherief and Saleh [30] as,
� = 7:76 � 1010Nm�2; C� = 3:831� 103m2s�2K�1; � = 3:86 � 1010Nm�2;
K� = 3:86� 103Ns�1K�1; T0 = 293 K;�t = 1:78� 10�5K�1 ; � = 8:954� 103Kgm�3

The double porous parameters are taken as,
�2 = 2:4 � 1010Nm�2; �3 = 2:5 � 1010Nm�2; 
 = 1:1� 10�5N;� = 1:3� 10�5 N

1 = 0:16� 105Nm�2; b1 = 0:12� 10�5 N; d = 0:1� 1010Nm�2


2 = 0:219� 105Nm�2; �1 = 0:1456� 10�12Nm�2s2; b = 0:9� 1010Nm�2

�1 = 2:3� 1010 Nm�2; �2 = 0:1546� 10�12Nm�2s2

The other non-dimensional parameters are taken as
Q0 = 5:0; t = 0:2; R = 1:0; � 0 = 0:1
The software MATLAB has been used to �nd the values of radial stress trr, equilibrated

stresses �r, �r and temperature distribution T . The variations of these values with res-
pect to radial distance r have been shown in �gures (1)-(8). In �gs.1-4, e¤ect of thermal
relaxation time is shown graphically. In all these �gures, solid line and small dashed line
correspond to Lord-Shulman(LS) theory of thermoelasticity for to coupled theory (CT)of
thermoelasticity respectively. Also, the e¤ect of heat source velocity is depicted graphi-
cally in �gs. 5-8 for di¤erent values of heat source velocity parameters � = 0:2; 0.4 and
0.6.
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Fig. 1 �Variation of radial stress trr w.r.t. radial radial distance r.

Fig. 2 �Variation of equilibrated stress �r w.r.t. radial distance r.

Fig. 3 �Variation of equilibrated stress �r w.r.t. radial radial distance r.
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Fig. 4 �Variation of temperature distribution T w.r.t. radial distance r.

Fig. 5 �Variation of radial stress trr w.r.t. radial radial distance r.

Fig. 6 �Variation of equilibrated stress �r w.r.t. radial distance r.
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Fig. 7 �Variation of equilibrated stress �r w.r.t. radial r.

Fig. 8 �Variation of temperature distribution T w.r.t. radial distance r.

Fig.1 shows that radial stress trr is maximum at the boundary surface of the spherical
cavity and it decreases monotonically with increase in radial distance r. Also, it is found
that the magnitude values of trr increases due to relaxation time parameter. The values
of trr are more for LS theory in comparison to CT theory of thermoelasticity . From
�gs.2 and 3 , it is clear that equilibrated stresses �r and �r increases for 1 � r � 2 and
then decreases onwards as increases. The magnitude values of �r and �r decreases due
to relaxation time. It is evident that the values of �r and �r are more for CT theory as
compared to the values for LS theory of thermoelasticity. Fig.4 depicts that the values of
temperature distribution T increase monotonically for 1 � r � 2, decrease monotonically
for 2 � r � 3 and then decrease very slowly and steadily with the increase in the value
of radial distance r. It is also found that relaxation time parameter increases the values
of T , the magnitude value of are more incase of LS theory than that of CT theory of
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thermoelasticity.
Fig.5 represents that radial stress trr decreases monotonically with increase in radial

distance r. Also, it is found that the magnitude values of trr decrease with the increase
in the values of heat source velocity �. Figs.6 and 7 shows that equilibrated stresses �r
and �r increase for 1 � r � 2 and then start decreasing as r > 2. It is also clear that the
magnitude values of �r and �r decrease as the value of heat source velocity � increases.
Fig.8 depicts that the values of temperature distribution T increase monotonically for
1 � r � 2, decrease monotonically for 2 � r � 3 and then become almost stationary as
r > 3. Also. it is found that as the velocity of heat source increases, the magnitude values
of temperature distribution T increases also increases.

9. Concluding remarks

In this work, we have studied the problem of in�nite thermoelastic medium with double
porosity having spherical cavity in context of Lord-Shulman theory of thermoelasticity
with one relaxation time subjected to moving heat source. E¤ect of thermal relaxation
time and heat source velocity parameters are shown graphically on radial stress, equili-
brated stresses and temperature distribution. All the �eld quantities are observed to be
very sensitive towards the heat source velocity parameter. From �gures, it is concluded
that the magnitude values of radial stress and equilibrated stresses decrease with increase
in the values of heat source velocity while a reverse trend is noticed in case of temperature
distribution. The thermal relaxation time parameter has also a considerable e¤ect on the
all the physical quantities. The relaxation time parameter has both the increasing as well
as decreasing e¤ect on these quantities which shows that it is very important to take into
account the relaxation time parameter.
This type of study is useful due to its application in geophysics and rock mechanics.

The results obtained in this investigation should prove to be bene�cial for the researchers
working on the theory of thermoelasticity with double porosity structure. The introduction
of double porous parameter to the thermoelastic medium represents a more realistic model
for further studies.
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Appendix

a19 = s(1 + � 0s); a20 = s(1 + � 0s)a16; a21 = s(1 + � 0s)a17; a22 = s(1 + � 0s)a18;
n1 = � (a7 + s2) ; n2 = � (a14 + s2) ; r1 = a5a10 � a4a11;
r2 = a4(a11a19 � n2)� a11n1 � a7a10 � a5(a10a19 + a13);
r3 = n1(a11a19 � n2) + a4(n2a19 � a15a22) + a5(a13a19 + a15a21)+

a7(a10a19 + a13) + a9(a10a22 � a11a21);
r4 = n1(n2a19 � a15a22)� a8(a13a23 + a15a21)� a9(a13a22 + n2a21); r5 = a6a11 � a5a12;
r6 = �a6(a11a19 � n2) + a7a12 + a5(a19a12 + a15a20)� a9a11a20;

r7 = �a6(n2a19 � a15a22)� a7(a12a19 + a15a20)� a8(a12a22 + n2a20);
r8 = a6a10 � a4a12; r9 = �a6(a13 + a10a19)� n1a12 + a4(a12a19 + a15a20);
r10 = a9(a13a20 � a12a21) + n1(a12a19 + a15a20) + a6 (a13a19 + a15a21) ;
r11 = a20(a4a11 � a5a10); r12 = a6(a11a21 � a10a22) + a20(n1a11 + a7a10)
+a4(a12a22 + n2a20) + a5(a13a20 � a12a21);
r13 = a7(a12a21 � a13a20) + a6(a13a22 + n2a21) + n1(a12a22 + n2a20);

B1 = (r2 � s2r1)=r1; B2 = (r3 � s2r2 � a1r5 + a2r8 + a3r11)=r1;
B3 = (r4 � s2r3 � a1r6 + a2r9 + a3r12)=r1; B4 = (�s2r4 � a1r7 + a2r10 + a3r13)=r1;

f1 = � (r1s
6 + r2s

4v2 + r3s
2v4 + r4v

6)=�
6
; f2 = �� (r5s4 + r6s

2v2 + r7v
4)=�

4

f3 = � (r8s
4 + r9s

2v2 + r10v
4)=�

6
; f4 = � (r11s

4 + r12s
2v2 + r13v

4)=�
4
; � = Q0H(r �R)=v ;

g1i = �fr5m4
i + r6m

2
i + r7g = fr1m6

i + r2m
4
i + r4g;

g2i = fr8m4
i + r9m

2
i + r10g = fr1m6

i + r2m
4
i + r3m

2
i + r4g;

g3i = �fr11m4
i + r12m

2
i + r13g = fr1m6

i + r2m
4
i + r3m

2
i + r4g; i = 1; 2; 3; 4
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