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Abstract. In this research paper, we attempt to introduce a new algorithm for filtering a
state-space model. The observations of this algorithm follow an exponential dispersion
model. The paper focuses here on the inclusion of non-informative prior knowledge
in parameter estimation on nonlinear state-space models using an improper uniform
prior measure. Therefore, a new particle filter is introduced. A conventional particle
filter (PF) produces an incorrect sample from a discrete approximation distribution.
This new algorithm is a regularized continuous distribution method that is obtained
with the exponential dispersion model. A necessary and sufficient condition for the
existence and convergence of the non-informative Bayesian estimator of dispersion pa-
rameters is established. This methodology extends the classical PF implemented by this
new estimation method for the exponential dispersion model framework using a non-
informative Bayesian approach. In order to evaluate the performance of the proposed
algorithm, a case study with simulations and microscopic image restoration is carried
out. The results exhibit a great performance improvement from the proposed approach.

Keywords: Exponential dispersion model, particle filter, non-informative Bayesian
prior, Microscopic image restoration.
2020 Mathematics Subject Classification: 65C60, 62F15, 62M20. MSC2020

1 Introduction

In the realm of image restoration, we encounter a pervasive problem that manifests itself
in diverse scenarios. Regardless of the provenance of a digital image, be it a photograph,
a scanned document, satellite imagery, or any other source, it is imperative to enhance the
quality of the specific image under consideration (see [21, 22, 32]). In order to tackle the
challenge of image restoration, numerous algorithms have been devised, employing either
deterministic or stochastic approaches. These algorithms have been meticulously crafted to
address an array of image restoration issues (see [25,29]). Numerous methodologies have been
devised to tackle the issue of noise, encompassing both linear statistical filtering techniques
and non-linear statistical filtering techniques (see [3, 5, 10, 15, 22]). In the specific scope of this
research investigation, our focus lies on the non-linear statistical filtering approach applied
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to a state-space process, which is exemplified by the particle filtering (PF) technique (see
[5, 9, 31]). The PF has emerged as a superior method for addressing non-linear and non-
Gaussian systems, and it has recently been adapted to address challenges encountered in
image processing (see [3, 22, 25]). Within the realm of Bayesian state estimation, the PF has
garnered widespread acceptance (see [1, 10]).

Nevertheless, it is crucial to acknowledge that the PF technique exhibits certain limita-
tions when applied in real-world scenarios. Notably, the diversity of particles diminishes in
situations where the noise process is constrained, while the variation of importance weights
escalates to exceedingly high levels when the likelihood significantly deviates from the previ-
ous probability distribution (see [10, 13]). In order to confront these challenges, this research
introduces an exceptional method for regularizing the particle filter, specifically tailored for
system state estimation and forecasting.

Microscopy imaging plays a pivotal role in the analysis of biological cells, providing re-
searchers with valuable insights at the single-cell level (see [11,21,24]). Despite its advantages,
microscopic images often suffer from noise generated during data acquisition and instru-
ment read-back procedures. This noise deteriorates image quality and poses challenges for
subsequent analysis, particularly in the context of cell culture. Therefore, the restoration of
microscopic images from noise-induced degradation becomes a critical step prior to segmen-
tation.

In this research, we focus on de-noising images obtained through differential-interference-
contrast (DIC) microscopy (see [2, 24]). DIC microscopy employs phase shifts in transparent
samples to generate black-and-white representations, enabling differentiation of structures
within the sample. Previous work has explored state measurement in optical images and
phase function reconstruction using methods like the Wiener filter.

Our specific research objective is to estimate the measurement of state observations in
relation to the state process using a non-informative Bayesian approach. We adopt an im-
proper uniform prior distribution due to its near-flatness across the effective likelihood range.
This non-informative Bayesian framework allows us to approximate state-space filtering in a
Markov chain system, and we use Bayesian inference to estimate the model parameters. To
validate our proposed methodology, we conduct simulations using both data and microscopic
image restoration, comparing the results with classical filter methods.

The present paper aims to propose a novel approach for estimating and generalizing the
state-space model in the context of image restoration, leveraging the non-informative Bayesian
framework. By addressing the limitations of the particle filtering technique and applying it
to the specific case of DIC microscopy, we aim to contribute to the advancement of image
restoration techniques in the field of microscopy.

The rest of this paper is organized as follows: In Section 2, the basic concept concerning
the exponential dispersion models is extended and some characteristics as well as properties
are recalled. Additionally, a short theoretical review of Bayesian filtering is presented. A
comprehensive background of particle filter is portrayed. In the next section, the extended
particle filter using the non-informative Bayesian approach in order to estimate the variance of
measurement noise and the dispersion parameter λ, is depicted. In Section 4, the effectiveness
of the proposed methodology is demonstrated using simulation studies. Section 5 presented
the experimental results with a microscopic image restoration case and demonstrated the
accuracy of the proposed algorithm. The last section wraps up the conclusion and offers
different perspectives for future works.
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2 Background

2.1 Exponential dispersion models

Exponential Dispersion Models (EDMs) are a type of statistical model in which the probabil-
ity distributions take on a unique form (see [6, 16, 25, 26, 28]). Actuality, this class of models
is an extension of the Natural Exponential Families (NEFs) which play an essential part in
the statistical theory as a consequence of their specific structure that enables drawing deduc-
tions dealing with suitable statistical inference. In the following Section, we shall recall some
important characteristics of EDMs provided by Jørgensen [17]. Let ν be a σ-finite positive
measures on R. We denote

Θ (ν) = int
{

θ ∈ R : Lν(θ) =
∫

R
eθxν(dx) < +∞

}
, ∅,

Kν (θ) = log (Lν(θ)) ,

where Lν and Kν are the Laplace transform and the cumulant function of ν, respectively. Let us
denote byM (R) the set of σ-finite positive measures such that Θ (ν) is not a Dirac measure.

For all measures ν ∈ M (R), the following set of probabilities

F = F (ν) =
{

p (θ, ν) (dy) = eθy−Kν(θ)ν (dy) ; θ ∈ Θ (ν)
}

, (2.1)

is called the natural exponential family generated by ν. We refer the reader to [20], for more
information.

Let us first point out that the map θ 7−→ K′ν(θ) is strictly convex, infinitely differentiable,
and the value of its differential can be written as K′ν(θ) =

∫
R

xp (θ, ν) (dx) = µ, which repre-
sents the mean of p (θ, ν).

The first derivative K′ν defines a diffeomorphism between Θ (ν) and its image MF, called
the domain of means [16, 25]. Let us denote by ψν its inverse function.

On the other side, the map defined on MF by µ 7−→ VF (µ) = K
′′
ν (ψν (µ)), is called

the variance function of the NEF F (see [20]). It is easy to prove that for all µ ∈ MF,

VF(µ) =
[
ψ
′
ν (µ)

]−1
. We come up with a new parametrization that we refer to as the mean

parametrization. It should be noted that the NEF can be characterized by the variance function
VF. The Jørgensen set (see [17]) is defined as the following

Λ(ν) =
{

λ > 0, ∃νλ ∈ M(R), Lλ
ν = Lνλ

}
.

In this step, another useful class of models is presented, namely exponential dispersion model
EDM. This class stands for a useful generalization of NEFs (see [6, 25, 26]). Its generated form
is given by

f (x; µ, λ) (dx) = eψν( µ
λ )x−λKν(ψν( µ

λ ))νλ (dx) ; µ ∈ λMF, λ ∈ Λ (ν) . (2.2)

It is called the additive version of the EDMs. The dispersion parameter σ2 = 1
λ provides the

richness that characterizes these models which in the case of NEFs is set to 1.
The Gaussian distribution is perhaps the most important distribution in statistics, par-

ticularly in regards to modelling applications like linear and non-linear regressions. This
is because the Gaussian distribution is essential for both theoretical and practical reasons.
Therefore, Jørgensen [16] suggested the reproductive EDMs as an extension of the Gaussian
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distribution.ăă According to Jørgensen [17], we took into consideration the following transfor-
mation: If X ∼ f (.; µ, λ), where µ = E (Y) = λK′ν(θ) is the expectation and λ is the dispersion
parameter, then Y = X

λ follows the reproductive distribution defined by

f (y; µ, λ) = eλ[ψ(µ)y−Kν(ψ(µ))]ν∗λ (dy) , (2.3)

and ν∗λ denotes the image measure of νλ by the map x 7−→ x
λ = y. This model is identified

by both its expectation and its variance function, which are expressed as E(y) = K′ (θ) =
µ

λ

and Var(y) =
V
( µ

λ

)
λ

, where µ ∈ λMF and λ ∈ Λ(ν). To obtain additional details on the topic,
we suggest that the reader refers to [25, 26]. This source may provide more comprehensive
information and further insights regarding the subject matter at hand.

Suppose that we have a positive function c(y, λ) and a σ-finite measure ζ such that ν∗λ =

c(y, λ)ζ(dy). This assumption allows us to consider a broad class of models that can be for-
mulated using the EDM framework. In particular, it enables us to model data that exhibit
heterogeneity, overdispersion, and other complex phenomena that cannot be captured by tra-
ditional statistical models. Then, the reproductive version of the EDM is given by

f (y; µ, λ) = eλ[ψν(µ)y−Kν(ψν(µ))]c(y, λ)ζ(dy). (2.4)

In Table 2.1, we present necessary details of absolutely continuous PDFs of the EDM family
specifying the normalizing constant (c(y, λ)), the cumulant function (Kν), canonical parameter
(θ), dispersion parameter (λ), mean (K′ν), inverse function of the mean (ψν) and variance
function (V) of each distribution.

Table 2.1: Examples of some absolutely continuous PDF of EDMs.

bk Gaussian Gamma Inverse Gaussian

c(y, λ)
√

λ√
2π

e−
λy2

2
λλyλ−1

Γ(λ)

√
λ√

2π
y−

3
2 e−

λ
2y

Kν
θ2

2 − log(−θ) −
√
−2θ

K
′
ν θ − 1

θ (−2θ)−1/2

ψν µ − 1
µ − 1

2µ2

V 1 µ2 µ3

2.2 Bayesian filtering theory

Bayesian inference has been used extensively in the fields of numerical decision-making, clas-
sification and estimation, pattern recognition and machine learning and has become one of
the most important divisions of statistics (see [3,5,9,15]). The work in [9], which laid down the
theory and method of the Bayesian filtering, offers one of the first explorations of the iterative
Bayesian estimation. It is a recursive algorithm and consists of two components: prediction
and correction. Bayesian filter is equivalent to the Kalman filter (see [18]) when the parameters
are normally distributed and if the transitions are linear.
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Bayesian filter consists essentially in estimating the state of a dynamic system from gen-
erally noisy observations (see [5, 10, 22, 25]). Let us consider the following non-linear system
model

xk = f (xk−1) + vk, (2.5)

yk = h (xk) + wk, (2.6)

where the state of the process xk is assumed to be a discrete state-space Markov model, and the
measurement process yk is the observed state of the hidden Markov model at time k. f : R −→
R and h : R −→ R are possibly non-linear functions. {vk, k ∈ N} is a process of stochastic
noise identified by its specified probability density (PDF) function. Likewise, {wk, k ∈ N} is
also an additive noise with identified measurements. These noises are independently and
identically distributed (i.i.d.). It is a more general model in some respects.

The Bayesian filter in non-linear systems (see [10, 27, 31]) is based on observations to eval-
uate or estimate the posterior probability density function for the state sequences recursively
as follows:

1. The initial probability density function:

p(x0|y0) = p(x0). (2.7)

2. The prediction stage: the prediction step consists of determining the posterior density
of the state p(xk|y1:k−1) given as presented in the transition probability p(xk|xk−1) and
the sequence of observations accessible y1:k−1, using the Chapman-Kolmogorov equation
and Markov property. Therefore, we obtain

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (2.8)

where y1:k−1 = (y1, ..., yk−1) and p(xk−1|y1:k−1) is available. In this step, The distribution
of the probability involved with the predicted state is the sum (integral) of the probability
distribution products related to the transition between the time k− 1 and the time k and
the previous probability distributions over all possible xk−1.

3. The update stage: New sequences yk at time k and the observation model lend the
likelihood p(yk|xk) that the prediction can be corrected through the update process. The
Bayes rule allows to express the posterior density

p(xk|y1:k) =
p(yk|xk)p(xk−1|y1:k−1)

p(yk|y1:k−1)
, (2.9)

where the denominator

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk (2.10)

is constant, so that it can always be replaced in practice by the α coefficient. In this step,
the distribution of probability of the update stage is relative to the measurement like-
lihood distribution and the predicted state, the likelihood function p(yk|xk) determines
essentially the measurement noise model in the equation (2.6).
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2.3 Particle filter algorithm

The primary purpose of the particle filter (PF) is to estimate the posterior density of the state
variables based on the observation variables (see [1, 3, 10, 25, 31]). An approximation of the
optimum sequential Bayesian state estimation is carried out by a PF. This approximation is
based on Monte Carlo simulation and importance sampling. The posterior pdf p(xk|y1:k), is
approximatively represented in a centralized setting by Ns randomly drawn samples or par-
ticles xi

k with related weights ωi
k, for all i = 1, ..., Ns (see [5, 9, 13]). To be more specific, the

propagation of the posterior pdf p(xk−1|y1:k−1) → p(xk|y1:k) is substituted with the propa-
gation of the particles and weights

{(
xi

k−1, ωi
k−1

)}Ns

i=1 →
{(

xi
k, ωi

k

)}Ns

i=1 at each time step k
(see [27]). This propagation consists of a prediction step and an update or correction step, in
the same way as the optimal sequential Bayesian estimation scenario that was discussed in
Section 2.2. The posterior density at k can be approximated with Ns particles by using the
Sequential Importance Sampling (SIS) algorithm as

p(xk|y1:k) ≈
Ns

∑
i=1

ωi
kδ
(

xk − xi
k

)
, (2.11)

where δ is the Dirac measure and the weights ωi
k represented in equation (2.11) are determined

by ωi
k ∝ p(xi

k−1|y1:k)

q(xi
k−1|y1:k)

in such a way that
{

xi
k

}Ns

i=1 is drawn from the importance function q(xi
k|y1:k)

(see [22, 25, 29]).
The method produced with the SIS is influenced by the phenomena of degeneration, in

virtually all the particles, besides a handful of weights; all of them must stay close to zero
and become insignificant. It is obvious that the degeneracy issue has an unfavourable impact
on PF. The use of resampling whenever a significant degeneracy is observed is the method
that can be utilized to decrease the negative effects that are brought on by degeneracy. The
resampled particles may be generated in the simplest scenario by performing a sampling
procedure with replacement from the set

{(
xi

k, ωi
k

)}Ns

i=1, where xi
k is sampled with probability

ωi
k. The weights are recalculated as ωi

k = 1/Ns. In this case, it is called Sampling Importance
Resampling (SIR) filter. For more details, we refer the readers to [3, 10].

As a method to reduce the degeneration issues, which prevail in the proposed algorithm
non-informative Bayesian Dispersion particle filter (NIBD-PF), the update of NIBD-PF recom-
mended a resampling of the discrete distribution. On the other side, there have been other
problems in the resampling method, particularly the question of losing diversity of particles.
We suggested NIBD-PF in order to resolve this problem. This regularity method shall be de-
termined at the point of the resampling phase, where the samples are taken from continuous
instead of discrete distributions.

3 Proposed method

3.1 Non-informative Bayesian priors

In this section, we show that if we choose the prior of λ to be improperly uniform, then the
resulting joint posterior distribution will be proper.

How to define the prior distribution is an important issue in the Bayesian analysis. If
it has limited effects on the posterior distribution, a prior is non-informative. Despite, they
are always difficult to find (see [9, 19, 28]), the non-informative prior in some applications
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are very popular. A large uniform distribution contains the usual non-informative priors
(U(10000,10000),U(0,10000)), (U (−10000, 10000),U (0, 10000)) , or f ordistributednormallaw (N (0, 10000)) .Although
the arguments of the authors who support the use of informative priors to overcome prob-
lems [12] and who convince the state that non-informational priors encourage model progress
[14], many Bayesian Data processing textbooks include theoretical and computational exam-
ples of non-informative priors, avert making express recommendations for priors and do not
demonstrate how informative priors can affect outcomes.

Let y1:N = (y1, ..., yN) be a sample of reproductive exponential dispersion distribution, the
likelihood function is given by

LN (y; λ, µ) =
N

∏
k=1

f (yk; λ, µ) . (3.1)

Assume that the non-informative prior for λ based on improper distribution is π(λ) =

1(0,+∞)(λ) and the non-informative Bayesian distribution of the parameter λ exists, if and
only if, the integral ∫ +∞

0
LN (y; λ, µ) dλ < +∞. (3.2)

converges almost surely. In this case, the non-informative Bayesian density function f (λ, µ; y)
of the parameter λ, is defined by

f (λ; µ, y) = ∏N
k=1 f (yk; λ, µ)∫ +∞

0

N

∏
k=1

f (yk; λ, µ) dλ

. (3.3)

If
∫ +∞

0 λ f (λ; µ, y) dλ < +∞, then the non-informative Bayesian estimator λ̂ of λ is given by

λ̂ = E (λ|y, µ) =
∫ +∞

0
λ f (λ, µ; y) .dλ (3.4)

3.1.1 Parameter estimation

Now, we put forward a sufficient condition such that the non-informative Bayesian estimator
of the parameter λ exists. The results are as follows

Theorem 1. Let y1, ..., yN be N independent positive observations from reproductive exponen-
tial dispersion model f (λ, µ), then

∫ +∞

0
λs

N

∏
k=1

f (yk; λ, µ) dλ < +∞, (3.5)

converges almost surely, for all s ⩾ 0. As a matter of fact, the non-informative Bayesian
estimator λ̂ of λ exists.

Before drawing in the proof of this theorem, the following lemma is introduced.

Lemma 1. Let ν be a probability measure concentrated on R+, then

1. ∃t0 ∈ Θ(ν) such that, (−∞, t0] ⊂ Θ(ν).

2. lim
t→−∞

K′ν(t) = 0.
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3. lim
t→−∞

Kν(t)
t

= 0.

Proof 1. See [28].

Remark 1. Note that for s = 0, the non-informative Bayesian density function f (λ; µ, y) exists.
If s = 1, the non-informative Bayesian estimator λ̂ exists. The conditional variance of the non-
informative Bayesian estimator V (λ|y, µ) exists for s = 2.

Proposition 1. [17] Let Y ∼ f (., µ, λ) be a continuous reproductive exponential dispersion
model renormalized saddle point approximation. Then,

Y− µ√
V(µ)/λ

→ N (0, 1) , when λ→ +∞. (3.6)

Theorem 2. Let y1, ..., yN be observations from f (.; µ, λ). Then

1. The posterior distribution of λ is given by

λ|y1, ..., yN ∼ Ga

(
N
2
+ 1,

1
2

N

∑
k=1

(yk − h(xk))
2

V (h(xk))

)
.

2. The non-informative Bayesian estimator of λ is λ̂ =
N + 2

∑N
k=1

(yk−h(xk))
2

V(h(xk))

.

Proof 2. According to Theorem 1 and Proposition 1, the non-informative Bayesian density
function f (λ, µ; y1, ..., yN) (represented by the equation (3.3)) of the parameter λ can be eval-
uated as

f (λ; µ, y1, ..., yN) ∝
N

∏
k=1

f (yk; λ, µ)

∝
N

∏
k=1
N
(

h(xk),
V (h(xk))

λ

)

∝ λ
N
2 e
− λ

2 ∑N
k=1

(yk−h(xk))
2

V(h(xk))

∼ Ga

(
N
2
+ 1,

1
2

N

∑
k=1

(yk − h(xk))
2

V (h(xk))

)
.

Therefore, for λ is large enough λ � λ0, the non-informative Bayesian density function
f (λ, µ; Y) is only the Gamma distribution with a shape parameter N

2 + 1 and a scale one
1
2 ∑N

k=1
(yk−h(xk))

2

V(h(xk))
. Consequently, the non-informative Bayesian estimator λ̂ of λ represented in

equation (3.4), is obtained as λ̂ =
N + 2

∑N
k=1

(yk−h(xk))
2

V(h(xk))

.

3.2 NIBD-PF Algorithm

In the following, we shall describe the NIBD-PF algorithm that we have presented and explain
how it was derived from the SIR filter. In the context of recursive Bayesian filtering, the NIBD-
PF is a Monte Carlo approach that may be used to solve these problems. The following
algorithm describes the previous results
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Algorithm 1 Non-informative Bayesian dispersion particle filter algorithm

1: Initialization: x0, τ, λ0, y1:N , Ns,N,ϵ
2: Generate: xi

0 ∼ p (x0); for all i = 1 : Ns

3: Set: ωi
0 =

1
Ns

for all i = 1 : Ns

4: Iteration: for l = 1, 2, ...
for k = 1 : N

5: Sample: x̃i ∼ N
(

f
(

xi
k−1

)
, τ
)
; for all i = 1 : Ns

6: Set: ω̃i = ωi ×N
(

h
(
x̃i

k

)
,

V(h(x̃i
k))

λ(l)

)
(yk); for all i = 1 : Ns

7: Normalization: ω̃i ← ω̃i

∑Ns
i=1 ω̃i

; for all i = 1 : Ns

8: Compute: Ne f f =
1

∑Ns
i=1 (ω̃

i)
2 ; for all i = 1 : Ns

9: if Ne f f /Ns ⩽ 0.75
Draw: x1:Ns ∼ re-sample

(
ω̃1:Ns , x̃1:Ns

)
Set: ω1:Ns =

1
Ns

else x1:Ns = x̃1:Ns

ω1:Ns = ω̃1:Ns

10: Set: x̂k = ∑Ns
i=1 ωi

kxi
k

11: Update the dispersion parameter model of observation state, according to the following
formula

λ(l+1) =
N + 2

2 ∑N
k=1

λ(l)(yk−h(xi
k))

2

V(h(xi
k))

12: If
∣∣∣λ(l+1) − λ(l)

∣∣∣ < ϵ is not satisfied return to step 4

4 Simulation Study

In this section, numerical simulation study results are highlighted to assess the proposed
algorithm in this paper. Moreover, this brief section shows an example of how a non-linear
and non-normal stochastic state space model can be evaluated using the proposed approach.
Let us consider the following state model

xk = αxk−1 + β cos(0.5πt) + vk, (4.1)

yk = γx2
k + wk, k = 1, ..., N, (4.2)

where vk follows zero-mean Gaussian distribution with variance equal to 0.01. The distri-
bution of yk given the state process xk is a Gaussian dispersion model with power parameter
p = 1.5. Data were generated for α = 0.5, β = 0.8 and γ = 0.3. This model will explain
adjustment at the measurement level of a non linearity in a system. According to the same
parameter λ of the Inverse Gaussian dispersion model, multiple different filters have been
used to approximate the hidden state xt. The results are validated by comparing them with
various algorithms such as the extended Kalman Filter (EKF) [5], the unscented Kalman Filter
(UKF) [31] and the particle filter (PF) [9] in order to assess the effectiveness of the proposed
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methodology. The simulation results are summarized in Figure 4.1. The experiment has been
generated for N = 60 data sets considering different sample sizes run Ns = 100, 200, 500.

0 10 20 30 40 50 60

Time

0

2

4

6

8

10

12

S
ta

te

Noisy observations
True x
EKF
UKF
PF
NIBD-PF

Figure 4.1: The evolution of the nonlinear model xk as a function of k by different algorithms
EKF, UKF, PF and NIBD-PF for N = 60, Ns = 100.

Figure 4.1 shows the estimated results of different nonlinear filters. Firstly, we can observe
that the results of the proposed approach are similar to the original model and it is obvious
that it has better performance.

The algorithm efficiency is the mean of the set of samples which can be determined by
the formula x̂k = 1

Ns
∑Ns

i=1 xi
k, ( see [31]). The Root Mean Square Errors (RMSE) of each run is

expressed as RMSE =
√

1
N ∑N

k=1 (x̂k − xk)
2.

Table 4.1 portrays the results of a comparison of the means and variance of the RMSE of
the state estimate by different algorithms. It shows that the NIBD-PF filter offers excellent effi-
ciency among the techniques provided and RMSE has a considerably number of independent
available particles. This property is found here to be even more clearly displayed than for the
conventional PF filter. Furthermore, we see that the UKF gives good performance while the
EKF does not really function well.
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Table 4.1: Mean and Variance of the RMSE of different algorithms

Algorithms
RMSE

Mean Variance

EKF 0.9023 0.0031
UKF 0.6022 0.0024

PF (Ns=100,200,500) 0.7211, 0.3679, 0.3187 0.0271, 0.0187 , 0.0026
NIBD-PF (Ns=100,200,500) 0.1608, 0.1422, 0.0063 2.9224× 10−3, 1.3791× 10−3, 3.1902× 10−4

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

EKF
UKF
PF
NIBD-PF

Figure 4.2: The RMSE of 60 times Monte Carlo simulations of different algorithms

Figure 4.2 displays the RMSE that occurred during 60 iterations of the Monte Carlo simula-
tion. All algorithms exhibit a satisfactory performance. This figure shows that NIBD-PF have
achieved greater accuracy than those calculated with the classical EKF, UKF and PF filters
(blue curve). non-informative Bayesian estimate enables the filter to restrict its uncertainty,
which ultimately leads to a lower error.

5 Experimental Results

In this section, experimental results are provided to prove the efficiency of the algorithm sug-
gested. In view of the large number of cellular images generated in bio-images (see [2,4,7,24]),
the precise de-noising of an image in each cell is an important preliminary processing step to



184 I. Sadok

assess the content of cell type and size images in several pipelines (see [11, 14, 32]). Biological
structure observation is a challenge, particularly in the field of live cell imagery. Optical mi-
croscopes are in general restricted by light diffract and the optical property of the object, such
as spatial shifts in the refractive index, influences imaging, which contributes to aberrations
while the light passes the object (see [4]). As the majority of cell components are transparent
to visible light (see [11]) a high level of water may result in loss of contrast in conventional
light microscopy, which is why staining is often used to create contrast with light absorp-
tion (see [8]). However, the living cells may be damaged by such a procedure. Differential
interference contrast (DIC) microscopy developed by R. D. Allen, G. B. David and G. No-
marski [2] is the technology of our interest to address the inability to image untainted, visible
biological specimens which are typical of bright field microscopes. One of the drawbacks
of DIC microscopy is that the detected images can not be used conveniently for topography
and morphology, because the light phase variations are latent within the intensity image.
The restoration of the phase feature of the specimen from the observed DIC images is thus
necessary (see [7, 21, 23]).

Previous information is supposed to describe the actual image structure by a 2D auto-
regression model with zero mean Gaussian noises v(m, n). This is the only way to describe
the image structure. The equation is expressed by

s(m, n) = a1s(m, n− 1) + a2s(m− 1, n) + a3s(m− 1, n− 1), (5.1)

where a1, a2, a3, are the image model coefficients (assumed stationary) which are addressed by
the form of the Last Squares (see [6, 25]), and s(m, n) presents pixel estimated in the original
image from past pixels at the mth row and nth column.

A general description of the state-space differences is of the form

x(m, n) = Cx(m− 1, n) + Eu(m, n) + Dv(m, n), (5.2)

y(m, n) = Hx(m, n) + w(m, n), (5.3)

x(m, n) =


s(m, n)

s(m, n− 1)
s(m− 1, n + 1)

s(m− 1, n)

 , C =


a1 0 a2 a3

1 0 0 0
0 0 0 0
0 0 1 0

 ,

E =
(
0 0 1 0

)T
, D =

(
1 0 0 0
0 0 1 0

)T

, H =
(
1 0 0 0

)
,

where x(m, n) is the state at location (m, n); u denotes a deterministic input, The vari-
ables v(m, n) and w(m, n) denote the process noise and the measurement noise following the
Normal distribution. According to the histogram of the original image, we fixed the power
parameter p = 2.3. C, D, and E are system matrices. The deterministic input term, u, has not
been used previously for the proposed algorithm and it is introduced as the recent estimate
of pixel s(m− 1, n + 1). y(m, n) is the intensity in the degraded image at location (m, n).

Yeast is one of the most simple eukaryotic organisms, and therefore we selected this micro-
scopic image in this simulation. However, in yeast and humans, certain critical cell functions
(see [11]) are the same. This is why an analysis to understand basic molecular mechanisms
in humans is an essential subject. Fission yeast or Schizosaccharomyces pombe 5.1(a) has
emerged as a common cell growth and division model for investigation. It is effective partly
because its cells have a constant size and only expand in volume (see [32]), it is very easy
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to record cell growth. Fission yeast chromosomes exchange many key elements with human
chromosomes, which render the organism very beneficial in human genetics. The parame-
ters of microscopic image of a fission yeast are identified using the Least Squares method as
a1 = 0.8315, a2 = 0.7128 and a3 = −0.5443.

Figure 5.1 shows the original Fission yeast cell image, the noisy image and restored image
by Extended Kalman Filter (EKF) [5], restored image by Bootstrap Kernel-Diffeomorphism
Filter (BKDF) [22] and restored image by non-informative Bayesian Dispersion particle filter
(NIBD-PF) and their histograms, respectively. We can notice from the visual results for the
microscopic image, the improvement of the proposed method over the other methods intro-
duced.

Standard 325 × 260 pixels, microscopic gray image is used in this section to assess the
efficiency of the proposed algorithm. From the original image x and the restored one x̂, and
four calculation criteria are presented to evaluate the performance of the proposed filter which
we shall compare it to the EKF and BKDF. The metrics are given by:

• Mean absolute error (MAE), MAE =
1

MN ∑M,N
m,n=1 |s(m, n)− ŝ(m, n)| .

• Mean square error (MSE), MSE =
1

MN ∑M,N
m,n=1 (s(m, n)− ŝ(m, n))2 .

• Pic of signal to noise ratio (PSNR), PSNR = 10 log10

(
Max2

I
MSE

)

• Image fidelity (IF), IF = 1−
∑M,N

m,n=1 (s(m, n)− ŝ(m, n))2

∑M,N
m,n=1 (s(m, n))2

Table 5.1: Results of comparison of EKF, BKDF and NIBD-PF with different criteria

Algorithms MAE MSE PSNR IF
EKF 35.4969 162.1583 27.1692 0.3641

BKDF 4.7656 47.9883 32.4572 0.8118
NIBD-PF 3.5052 30.7906 34.3844 0.8792

The obtained results for the Fission yeast cell image using NIBD-PF algorithm in Table 5.1 are
shown along with the results from the reconstruction of the same image using the EKF and
BKDF. It is clear from the statistical metrics values, that the proposed algorithm gives better
results and more closer to the ideal microscopic image. The lower MAE, MSE, the increased
PSNR value and the closing of IF to 1 show the performance of the NIBD-PF method which
means fewer errors and higher quality of the Fission yeast cell image restoration than that
obtained with EKF and BKDF.
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Figure 5.1: The results of the Original image (a), Noised image (b), Restored image by EKF
(c), Restored image by BKDF (d), Restored image by NIBD-PF (e)
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6 Conclusion and discussion

At this stage of analysis, we would assert that the basic objective of this study is to enhance
and extend our knowledge on the state-space model. For this reason, the exponential disper-
sion distribution, acting as a measurement noise, was introduced. In addition, the dispersion
parameter model were estimated by the non-informative Bayesian approach. Our ultimate
purpose was to overcome the deficiency of the former method and estimate the dispersion
parameter λ. Besides, the existence of this parameter’s estimator is proved. The results from
the simulation study show that the current particulate lter performs better than the conven-
tional particle lter when equivalent numbers of the particles are used. This suggests that
this algorithm will provide significant enhancements compared to other non-linear filtering
algorithms. Therefore, we adopted the proposed algorithm to the area of microscopic image
(Fission yeast) restoration. This paper contains a comparison with other restoration techniques
(like the EKF and BKDF). The criteria of MAE, MSE, PSNR and IF results were used to prove
the efficiency of NIBD-PF in Table 5.1. The findings of our graphics and metrics reveal the
high performance of NIBD-PF in restoring noised microscopic images according to EKF and
BKDF methods. To this extent, our work is a step that may be taken further as it paves the
way and lays the ground for future works to explore further this new approach and investigate
its characteristics. In future research, we aspire to extend the proposed methodology using
multivariate Tweedie distributions to colour images. We also seek to converge the estimated
parameter to the optimal value. This is currently being investigated.
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