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Abstract. In this paper, the blow-up of solutions for the following Dirichlet-Neumann
problem to initial nonlinear viscoelastic plate equation with a lower order perturbation
of ~p(x, t)-Laplacian operator in the presence of time delay is obtained

utt + ∆2u + ∆~p(x,t)u−
∫ t

0
g(t− s)∆2u (s) ds− µ1∆ut − µ2∆ut(t− τ) = u |u|q−2 .

Under suitable conditions on g and the variable exponent of the ~p(x, t)− Laplacian
operator, we prove that any weak solution with nonpositive initial energy as well as
positive initial energy blows up in a finite time.

Keywords: Blow-up, time delay, viscoelasticity, plate equation, nonstandard growth
conditions, anisotropy.
2020 Mathematics Subject Classification: 39A10, 67B89.

1 Introduction

In this paper, we consider the Dirichlet–Neumann problem to the following initial nonlinear
viscoelastic plate equation with a lower order perturbation of ~p(x, t)-Laplacian operator and
delay: 

utt + ∆2u− ∆~p(x,t)u−
∫ t

0 g(t− s)∆2u (s) ds− µ1∆ut

−µ2∆ut(t− τ) = u |u|q−2 , x ∈ Ω, t > 0,
u = ∂u

∂ν = 0, x ∈ ∂Ω, t > 0,
u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,
ut (x, t− τ) = f0 (x, t− τ) , x ∈ Ω, t ∈ (0, τ) ,

(1.1)

where Ω is a bounded domain in RN , n ≥ 2 with Lipschitz-continuous boundary Γ = ∂Ω,
and q ≥ 2 is a positive constant

∆−→p (x,t)u =
n

∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi(x,t)−2 ∂u
∂xi

)
,−→p = (p1, p2, ..., pn) ,
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is the −→p (x, t)-Laplacian operator. The constant µ1 is positive and µ2 is a real number, τ > 0
represents the time delay, g > 0 is a memory kernel and f is the forcing term.

In the absence of the viscoelastic term and delay term (g = 0 and µ2 = 0), and with the
usual p−Laplacian operator ∆pu = div

(
|∇u|p−2∇u

)
, (p ≥ 2) the equation in (1.1) reduces to

the fourth order wave equation

utt + ∆2ut + div
(
|∇u|p−2∇u

)
− ε∆ut = f (x, t, u, ut) , (1.2)

which describes elastoplastic-microstructure flows. The problem (1.2) has been extensively
studied (see [5,6,24]), and results concerning solutions existence, nonexistence, and long-time
behavior have been proved.

The problem (1.2) without damping or forcing terms is related to the elastoplastic-microstructure
models for longitudinal motion of an elastoplastic bar there arises the model equation

utt + uxxxx = +a
(
u2

x
)

x + f (x) ,

where a < 0 is a constant (see [5]). I. Chueshov and I. Lasiecka in [8, 9] discussed

utt + ∆2u + div
(
|∇u|2∇u

)
− kut = σ∆(u2) + f (u) ,

and proved the existence of finite-dimensional global attractors. When ε = 0 and in the pres-
ence of the viscoelastic term (g , 0) in (1.2), Jorge Silva and Ma [13], established exponential
stability of solutions under the condition

g′(t) ≤ −cg(t), ∀t ≥ 0, c > 0.

Andrade and al. [1] proved exponential stability of solutions for the plate equation with finite
memory and p-Laplacian. In the presence of the Kelvin–Voigt type dissipation (ε , 0). In
[18], Nakao obtained the existence of a global decaying solution for wave the equation with
Kelvin–Voigt dissipation and a derivative nonlinearity. Pukach et al. [19] established sufficient
conditions of the nonexistence of solution for a nonlinear hyperbolic equation with memory
generalizing the Voigt–Kelvin model. Recently, Cavalcanti et al. [3] considered intrinsic decay
rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods
with variable density.

In [2, 11], the authors improved the results from [1] by establishing local and global ex-
istence, as well as the uniqueness of the weak solution u(x, t) to problem (1.1). To be more
important, the authors of [2] and [11] established the local and global existence, uniqueness
of weak solutions and the asymptotic behavior of solutions.

Time delays so often arise in many physical, chemical, biological, thermal, and economic
phenomena because these phenomena depend not only on the present state but also on the
system’s history in a more complicated way. In recent years, many works have been published
concerning the wave equation with delay. Kafini and Messaoudi [14] considered the following
nonlinear wave equation with delay

utt − div(|∇u|m−2∇u) + µ1ut + µ2ut(t− τ) = b|u|p−2u.

They proved the blow-up result of solutions with negative initial energy and p > m. Later,
Kafini, Messaoudi, and Nicaise [15] considered the blow-up of solutions with negative initial
energy for the second-order abstract evolution system with delay. Motivated by previous
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works, we study the blow-up of solutions. Recently, Shun-Tang WU [23] investigated the
following nonlinear viscoelastic problem with delay

|ut|ρ utt − ∆u− ∆utt −
∫ t

0
g(t− s)∆u (s) ds + µ1ut + µ2ut(t− τ) = b|u|p−2u.

He proved the blow-up result with nonpositive and positive initial energy by modifying
the method in [14, 15]. Motivated by previous works. Moreover, we can mention some new
related works (see [20]). In this paper, we investigate the problem (1.1) and prove a finite-time
blow-up result of solutions. We will see that the direct method introduced and developed
by Georgiev and Todorova [12], in 1994, and Salim A. Messaoudi [17] is efficient in our case.
Combining this method with some necessary modifications due to the nature of the problem
treated here. Our paper is organized as follows: in the next section, we prepare some material
needed in our proofs. Section 3 is devoted to the statement and proof of the finite-time blow-
up result.

1 ≤ p−i = const ≤ pi (x, t) = p (x) ≤ p+i = const < ∞, |pit| ≤ Cpi , i = 1, ..., n. (1.3)

2 The functions space

Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with Lipschitz-continuous boundary Γ = ∂Ω, q ≥ 2
is a positive constant. We denote by C∞

0 (Ω) the space of infinitely differentiable functions
with a compact support contained in Ω. The inner products and norms in L2 (Ω) and H1

0 (Ω)
are represented by (., .) , ‖.‖ respectively and they are given by

(u, v)Ω =
∫

Ω
u(x)v(x)dx and ‖u‖2

L2(Ω) = ‖∇u‖2
2,Ω =

∫
Ω

u2dx ,

‖u‖2
H1

0 (Ω) = ‖∇u‖2
2,Ω =

∫
Ω
|∇u|2 dx

We recall some known facts from the theory of the Sobolev spaces with variable exponent
(see [4, 10]). Let Lp(.) (Ω) be the set of measurable functions f on Ω such that

Ap(.) ( f ) =
∫

Ω
| f (x)|p(x) dx < ∞.

The set Lp(.) (Ω) equipped with the Luxemburg norm

‖ f ‖p(.),Ω = ‖ f ‖p(.) = inf
{

λ > 0; Ap(.)

(
f
λ

)
≤ 1

}
is a Banach space. Let us list some basic properties of the spaces Lp(.) (Ω) used in the rest of
this paper. It follows directly from the definition of the norm that

min
(
‖ f ‖p−

p(.) , ‖ f ‖p+

p(.)

)
≤ Ap(.) ( f ) ≤ max

(
‖ f ‖p−

p(.) , ‖ f ‖p+

p(.)

)
,

where

p− = inf
Ω

p(x),
(

p′
)−

= inf
Ω

p′(x), p′ =
p(x)

(p(x)− 1)
.
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We have following Holder-type inequality

∫
Ω
| f g| dx ≤

(
1

p−
+

1
(p′)−

)
‖ f ‖p(.) ‖g‖p′(.)

≤ 2 ‖ f ‖p(.) ‖g‖p′(.) ,

which holds for all f ∈ Lp(.) (Ω) , g ∈ Lp′(.) (Ω) with p(x) ∈ (1, ∞). The Sobolev space
W1,p(.)

0 (Ω) with p(x) ∈ [p−, p+] ⊂ (1, ∞) is defined by W1,p(.)
0 (Ω) =

{
u ∈ Lp(.) (Ω) : |∇u|p(x) ∈ L1 (Ω) , u = 0 on ∂Ω

}
,

‖u‖
W1,p(.)

0 (Ω)
= ∑i ‖Diu‖p(.),Ω + ‖u‖

p(.),Ω

(2.1)

Let p(x) be log-continuous in Ω, ∀x, y ∈ Ω such that |x− y| < 1
2

|p(x)− p(y)| ≤ ω (|x− y|) with limτ−→0+

(
ω (τ) ln

1
τ

)
= C < ∞ (2.2)

• Throughout the paper we use the following properties of the functions from the spaces
W1,p(.)

0 (Ω) :

• if condition (2.2) is fulfilled, then C∞
0 (Ω) is dense in W1,p(.)

0 (Ω) and the space W1,p(.)
0 (Ω)

can be defined as the closure of C∞
0 (Ω) with respect to the norm (2.1) see [3, 11, 22, 27],

• if p(x) ∈ C0 (Ω) , the the space W1,p(.)
0 (Ω) is separable and reflexive,

• if 1 < q(x) ≤ supΩ q(x) < infΩ p+(x) with

p+(x) =

{
p(x)

n−p(x) if p(x) < n,
∞ if p(x) < n,

then the embedding W1,p(.)
0 (Ω) ↪→ Lq(.) (Ω) is continuous and compact if q < p+(x).

3 Anisotropic spaces of functions depending on x and t

Consider the cylinder
QT = {z = (x, t) : x ∈ Ω, t ∈ [0, T]}

of a definite height T. Wherever it doesn’t cause a confusion, we will use the notation z = (x, t)
for the points of the cylinder QT and drop the sub-indexT. The lateral boundary of the
cylinder Q is Γ = ∂Ω× (0, T) . If X is a Banach space, then we denote by Lp (0, T, X) , 1 ≤ p ≤
∞ the Banach space of measurable vector valued functions u : (0, T) −→ X, such that

‖u(t)‖Lp(0,T,X) =

[∫ T

0
‖u(t)‖p

X dt
] 1

p

, 1 ≤ p < ∞,

‖u(t)‖Lp(0,T,X) = ess sup
0≤t≤T

‖u(t)‖X , p = ∞.

We will use the following function spaces (see [3, 4])

W = W (QT) =
{

u : u ∈ L2 (0, T, H2
0 (Ω)

)
; ut ∈ L2

(
0, T, H1

0 (Ω)
)}

,
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W∞ = W∞ (QT) =
{

u : u ∈W (QT) ; u ∈ L∞ (0, T, H2
0 (Ω)

)
; ut ∈ L∞ (0, T, L2 (Ω)

)}
endowed with the norms

‖u‖W(Q) = ‖u‖W(QT)
+ ‖u‖L∞(0,T,H2

0 (Ω)) + ‖u‖L∞(0,T,L2(Ω))

Note that ‖u‖W(Q) may be used in the equivalent form

‖u‖W(Q) = ‖u‖L2(Q) + ‖∆u‖L2(Q) + ‖∇ut‖L2(Q) .

Let p(z) = −→p = (p1(z), ..., pn(z)) be a vector-valued function defined on Q = QT. We assume
that the components of p(z) satisfy the conditions

pi(z) are measurable functions defined on Q;
pi(z) : Q −→ (1, ∞) ,
there exist constants p±i , p±such that
pi(z) ∈

[
p−i , p+i

]
⊆ [p−, p+] ⊂ (1, ∞) .

(3.1)

For every fixed t ∈ (0, T), we introduce the anisotropic Banach space

Vt (Ω) =
{

u (x) : u (x) ∈ L2 (Ω) ∩W1,1
0 (Ω) , |Diu (x)|pi(x,t) ∈ L1 (Ω)

}
,

‖u‖Vt(Ω) = ‖u‖2,Ω +
n

∑
i=1
‖Diu‖pi(.,t),Ω + ‖∆u‖2,Ω .

The elements of the space Vt (Ω) depend on t ∈ (0, T)as a parameter and the norms ‖u‖Vt(Ω)

are functions of t by V ′t (Ω) we denote the dual space to Vt (Ω) with respect to the scalar
product in L2 (Ω) .
For every t ∈ (0, T) the inclusion

Vt (Ω) ⊂ X = W1,p−
0 (Ω) ∩ L2 (Ω) ,

holds. Thus, Vt (Ω) is reflexive and separable as a closed subspace of X.
By W−→p (Q) we denote the Banach space

W−→p (Q) =
{

u : (0, T) −→ Vt (Ω)
∣∣∣u ∈ L2 (Ω) , |Diu (x)|pi(x,t) ∈ L1 (Ω) , u = 0 onΓ

}
,

‖u‖W−→p (Q) = ‖u‖2,Q +
n

∑
i=1
‖Diu‖pi(.),Q .

(
W−→p (Q)

)′
is the dual of W−→p (Q) (the space of linear functionals over W (Q)). We have the

following characterization

ω ∈
(

W−→p (Q)
)′
⇔
{

∃ (ω0, ω1, ..., ωn) , ω0 ∈ L2 (Ω) , ωi ∈ Lp′i(.) (Q) ,
∀φ ∈W (Q) 〈〈ω, φ〉〉 =

∫
Q (ω0φ + ∑n

i=1 ωiDiφ) dz.

The norm in W ′ (Q) is defined by

‖u‖W ′(Q) = sup
{
〈u, φ〉

∣∣∣φ ∈W (Q) , ‖φ‖W(Q) ≤ 1
}

.
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Let v = (υ1, ..., υn) be a vector-valued function defined in Q. Assume that pi (z) satisfy condi-
tions 3.1. Introduce the modular

Ap(.)(v) =
n

∑
i=1

∫
Q
|υi|pi(z) dz.

For the elements of W−→p (Q) the following inequality

min

{
n

∑
i=1
‖Diu‖

p−

pi(.,.),Q
,

n

∑
i=1
‖Diu‖

p+

pi(.,.),Q

}

≤ Ap(.,.),Q(∇u) ≤ max

{
n

∑
i=1
‖Diu‖

p−

pi(.,.),Q
,

n

∑
i=1
‖Diu‖

p+

pi(.,.),Q

}
, (3.2)

holds. We also use the space

W∞−→p (Q) =
{

u : u ∈W−→p (Q) , |uxi |
pi(x,t) ∈ L∞

(
0, T, L1 (Ω)

)}
.

Note that
W∞ (Q) ⊆W∞−→p (Q) if p+ ≤ 2n

n− 2
.

We introduce also the functional space

U (Q) = W (Q) ∩W−→p (Q) ,

endowed with the norm
‖u‖U(Q) = ‖u‖W(Q) + ‖u‖W−→p (Q) ,

and
U∞ (Q) = W∞ (Q) ∩W∞−→p (Q) .

For the exponents pi(x, t) depending on (x, t) ∈ Q we will use the notation pi ∈ Clog (Q) if pi
satisfies condition (3.1) in the cylinder Q and

Clog (Q) :=

pi ∈ C0 (Q)
∣∣∣∣∣∣
∀z = (x, t) , ζ = (y, τ) ∈ Q

such that |x− y|+ |t− τ| < 1
2 ,

|pi (z)− pi (z)| ≤ ω (|z− ζ|)

 , (3.3)

with a continuous function ω satisfying the condition

limτ−→0+ω (τ) ln
1
τ
= C < +∞.

4 Statement of the problem

We consider a class of nonlinear viscoelastic plate equations with delay and with ~p(x, t)-
Laplacian type {

utt + ∆2u (t)− ∆~p(x,t)u−
∫ t

0 g(t− s)∆2u (s) ds− µ1∆ut(t)
−µ2∆z (1, t) = u |u|q−2 , in Ω×R+,

(4.1)

u =
∂u
∂ν

= 0, in ∂Ω×R+, (4.2)
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u (x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω, (4.3)

ut (x, t− τ) = f0 (x, t− τ) , in (0, τ) , (4.4)

here µ1 is a positive constant, µ2 is a real number, τ > 0 represents the time delay, and g is a
positive function.

∆−→p (x,t)u =
n

∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi(x,t)−2 ∂u
∂xi

)
,−→p = (p1, p2, ..., pn) ,

under conditions

1 ≤ p−i = const ≤ pi (x, t) = p (x) ≤ p+i = const < q < ∞, |pit| ≤ Cpi , i = 1, ..., n. (4.5)

Assume that g : R+ → R+ is a nonincreasing and differentiable function satisfying

g(0) > 0, g(s) ≥ 0, 1−
∫ ∞

0
g(s)ds := γ > 0, (4.6)

and that µ1 and µ2 satisfy
|µ2| < µ1, (4.7)

let β > 0 be the constant satisfying

‖υ‖p ≤ β ‖∇υ‖ . (4.8)

By using the direct calculations, we have∫ t

0
g(t− s) (∆ut (t) , ∆u (s)) ds = −1

2
d
dt

{
(g ◦ ∆u) (t)−

(∫ t

0
g(s)ds

)
‖∆u‖2

}
−1

2
g(t) ‖∆u‖2 +

1
2
(

g′ ◦ ∆u
)
(t) , (4.9)

where

(g ◦ ∆u) (t) =
∫ t

0
g(t− s) ‖∆u (s)− ∆u (t)‖2 ds.

We refer the reader to the work of Nicaise and Pignotti [19] for the existence of solutions to
nonlinear problems with delay. Let us introduce the function

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Ω, ρ ∈ (0, 1) , t > 0.

Then, the problem (4.1)-(4.4) is equivalent to

utt + ∆2u (t)− ∆~p(x,t) −
∫ t

0 g(t− s)∆2u (s) ds− µ1∆ut(t)− µ2∆z (1, t) = u |u|q−2 ,
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in (0, 1)× (0, ∞) ,
z (0, t) = ut(t), in (0, ∞) ,
z (ρ, 0) = f0 (−τρ) , in (0, 1) ,
u = ∂u

∂ν = 0, on ∂Ω× (0, ∞) ,
u(x, 0) = u0 (x) , ut(x, 0) = u1 (x) , in Ω.

(4.10)
We first state a local existence theorem that can be established by combining the arguments

of related works [7, 8].
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Theorem 4.1. Let (4.6) and (4.7) hold and suppose that

2 ≤ pi < q ≤ ∞, for n = 1, 2.

2 ≤ p−i ≤ pi ≤ p+i < q <
2n

n− 2
, for n ≥ 3 (4.11)

Then, for every (u0, u1) ∈ H1
0 (Ω)× L2 (Ω) , f0 ∈ L2 (Ω× (0, 1)) , there exists a unique local

solution in the class u ∈ C
(
[0, T) ; H1

0 (Ω)
)

, ut ∈ C
(
[0, T) ; L2 (Ω)

)
∩ L2 (Ω× [0, T)) for some

T > 0 Our aim is to investigate a blow-up result for problem (4.10). We define the energy
associated with problem (4.10) by

E(t) =
1
2
‖ut (t)‖2

2 +
1
2

(
1−

∫ t

0
g(s)ds

)
‖∆u‖2

2 +
n

∑
i=1

∫
Ω

1
pi
|uxi |

pi dx

+
1
2
(g ◦ ∆u) (t) +

ζ

2

∫ 1

0
‖∇z (x, ρ, t)‖2 dρ− 1

q
‖u‖q

q , (4.12)

where
τ |µ2| < ζ < τ (2µ1 − |µ2|) . (4.13)

Note that this choice of ζ is possible from Assumption (4.7).

Lemma 4.2. For u is the solution of (4.10), then there exists C0 ≥ 0 such that

E′(t) ≤ −C0

(
‖∇ut‖2 + ‖∇z (1, t)‖2

)
− 1

2
g(t) ‖∆u‖2 +

1
2
(

g′ ◦ ∆u
)
(t) ≤ 0 (4.14)

Proof. Multiplying (4.10) by ut and using (4.9), we obtain

d
dt

{
1
2 ‖ut (t)‖2

2 +
1
2

(
1−

∫ t
0 g(s)ds

)
‖∆u‖2

2 + ∑n
i=1
∫

Ω
1
pi
|uxi |

pi dx

+ 1
2 (g ◦ ∆u) (t)− 1

q ‖u‖
q
q

}
= 1

2 (g′ ◦ ∆u) (t)− 1
2 g(t) ‖∆u‖2

2 − µ1 ‖∇ut‖2
2 − µ2

∫
Ω∇ut∇z (1, t) dx

(4.15)

From (4.12) and (4.15) ,we see that

E′(t) = − 1
2 g(t) ‖∆u‖2

2 +
1
2 (g′ ◦ ∆u) (t)− µ1 ‖∇ut‖2

2

−µ2
∫

Ω∇ut∇z (1, t) dx− ζ
∫

Ω

∫ 1
0 ∆z (x, ρ, t) zt (x, ρ, t) dρdx

(4.16)

We estimate the last terms of the right-hand side of (4.16) .From the second equation of
(4.10), we get

ζ
τ

∫
Ω

∫ 1
0 ∆z (x, ρ, t) zρ (x, ρ, t) dρdx = ζ

2

∫
Ω

∫ 1
0

∂
∂ρ |∇z (x, ρ, t)|2 dρdx

= ζ
2τ

(
‖∇ut‖2

2 − ‖∇z(1, t)‖2
2

) (4.17)

Using Young’s inequality, we have

µ2

∫
Ω
∇ut∇z (1, t) dx ≤ |µ2|

2
‖∇ut‖2

2 +
|µ2|

2
‖∇z(1, t)‖2

2 (4.18)

Combining (4.16), (4.17), and (4.18) we obtain

E′(t) ≤ −C0

(
‖∇ut‖2

2 + ‖∇z (1, t)‖2
2

)
− 1

2
g(t) ‖∆u‖2

2 +
1
2
(

g′ ◦ ∆u
)
(t) ,

where C0 = min
{

µ1 − |µ2|
2 −

ζ
2τ , ζ

2τ −
|µ2|

2

}
, which is positive by (4.13) �
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Next, we define the functionals

I (t) =
(

1−
∫ t

0 g(s)ds
)
‖∆u‖2

2 + ∑n
i=1
∫

Ω |uxi |
pi dx + (g ◦ ∆u) (t)− ‖u‖q

q

J(t) = 1
2

(
1−

∫ t
0 g(s)ds

)
‖∆u‖2

2 + ∑n
i=1
∫

Ω
1
pi |uxi |

pi dx + 1
2 (g ◦ ∆u) (t)− 1

q ‖u‖
q
q ,

for t ≥ 0, we denote
d(t) = inf

u∈H1
0 (Ω),u,0

sup
λ≥0

J (λu) .

Then, similar to the work of Liu and Yu [16], we can prove the following lemmas.

Lemma 4.3. for t ≥ 0,we have

0 < d1 ≤ d(t) ≤ sup
λ≥0

J (λu) ,

where 

d1 = ∑n
i=1

 p+i (q−2)
2qp−i

(
1

B2
1

) qp+i
qp−i −2p−i +

2q−2p+i
2qp−i

(
1

B2
2

) qp+i
2q−2p−i


d2 = supλ≥0 J (λu) = ∑n

i=1
p+i (q−2)

2qp−i

(
(1−

∫ t
0 g(s)ds)‖∆u‖2

2+(g◦∆u)(t)
‖u‖q

q

) qp+i
p−i (q−2)

+∑n
i=1

2q−2p+i
2qp−i

( ∫
Ω|uxi |

pi dx
‖u‖q

q

) qp+i
2q−2p−i

.

Lemma 4.4. Suppose that (4.6), (4.7), and (4.11) hold. For any fixed number δ < 1 assume that
(u0, u1) ∈ H1

0(Ω)× L2 (Ω) and satisfy

I(0) < 0, E(0) ≤ δd1. (4.19)

Assume further that g satisfies

∫ t

0
g(s)ds <

n

∑
i=1

p+i (q− 2)[
p−i (q− 2)

]
+ 1[

(1+δ̂)
2
(p−i (q−2))+2p−i (1−δ̂)

] , (4.20)

where δ̂ = max {0, δ} . Then, for some T > 0 ,we have I(t) < 0,for all t ∈ [0, T) , and

d1 < ∑n
i=1

p+i (q−2)
2qp−i

[(
1−

∫ t
0 g(s)ds

)
‖∆u‖2

2 + (g ◦ ∆u) (t)
]

+∑n
i=1

2q−2p+i
2qp−i

(∫
Ω |uxi |

pi dx
)

< ∑n
i=1

(
p+i (q−2)

2qp−i
+

2q−2p+i
2qp−i

)
‖u‖q

q

< ∑n
i=1

q(p+i +2)−4p+i
2qp−i

‖u‖q
q , t ∈ [0, T) ,

(4.21)

we set
H(t) = δ̂d1 − E(t). (4.22)

Using (4.14), we see that

H′(t) = −E′(t) ≥ C0

(
‖∇ut‖2

2 + ‖∇z (1, t)‖2
2

)
≥ 0, (4.23)
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and H(t) is an increasing function. From (4.12), (4.19), and (4.21), we obtain

0 < H(0) ≤ H(t) ≤ δ̂d1 +
1
q
‖u‖q

q ≤ q0 ‖u‖q
q , t ∈ [0, T) , (4.24)

where q0 = ∑n
i=1

[q(p+i +2)−4p+i ]δ̂
2qp−i

+ 1
q . Moreover, similar to the work of Messaoudi [14] we can get the

following lemma that is needed later.

Lemma 4.5. Let the conditions of Lemma 3 hold. Then, we have, for any 2 ≤ s ≤ q

‖∇u‖s
q ≤ C

(
−H(t)− ‖ut (t)‖2

2 −
n

∑
i=1

∫
Ω
|uxi |

pi dx− (g ◦ ∆u) (t)

+ ‖u‖q
q −

∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ

)
, (4.25)

where C is a positive constant depending on p±i , ζ, γ, B, q,

Proof. From (4.8), there exists a positive constant c0 such that

‖∇u‖s
q ≤ c0

(
‖u‖q

q + ‖∆u‖2
2

)
, f or any 2 ≤ s ≤ q, (4.26)

where c0 = max
{

1, B2} . Using (4.6), (4.12), (4.22), and (4.24), we know that

γ

2
‖∆u (t)‖2

2 ≤ −H(t)− 1
2
‖ut (t)‖2

2 −
n

∑
i=1

∫
Ω

1
pi
|uxi |

pi dx− 1
2
(g ◦ ∆u) (t)

− ζ

2

∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ + qo ‖u‖q
q (4.27)

From (4.26) and (4.27), we find that (4.25) holds. �

5 A blow-up result

In this section, we prove that the solutions for the problem (4.1)-(4.4) blow up in a finite time
when the initial energy lies in nonpositive as well as positive. We use the improved method
of Liu and Yu [16].

Theorem 5.1. Let the conditions of Lemma 3 hold. Then, the solution of problem (4.1)-(4.4) blows up
in a finite time.

Proof. To prove this theorem, we adapt the idea given in the works of Messaoudi and Kafini
[14, 17]. Let us define

L(t) = H1−σi(t) + ε (u(t), ut(t)) , ε > 0, (5.1)

where

0 < σi < min

{
q
(

p+i + 2
)
− 4p+i

2qp−i
,

q
(

p+i + 2
)
− 4p+i

qp−i

}
. (5.2)

From (4.10) and Young’s inequality, we have

L′(t) = (1− σi) H−σi(t)H′(t) + ε ‖ut (t)‖2
2 − ε ‖∆u‖2

2 − ε
n

∑
i=1

∫
Ω
|uxi |

pi dx

+ε
∫ t

0
g(t− s) (∆u (t) , ∆u (s)) ds− εµ1

∫
Ω
∇ut(t)∇u(t)dx

+ε ‖u‖q
q − εµ2

∫
Ω
∇u∇z (1, t) dx. (5.3)
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Using Young’s inequality and (4.23), we obtain, for any β > 0,

µ1ε
∫

Ω
∇ut(t)∇u(t)dx + µ2ε

∫
Ω
∇u∇z (1, t) dx

≤
(

µ2
1β2ε

2
+

µ2
2β2ε

2

)
‖∇u‖2

2 +
ε

2C0
β−2

{
‖∇ut‖2

2 + ‖∇z(1, t)‖2
2

}
≤

(
µ2

1β2ε

2
+

µ2
2β2ε

2

)
‖∇u‖2

2 +
ε

2C0
β−2H′(t). (5.4)

Since, for some number η > 0,∫ t

0
g(t− s) (∆u (t) , ∆u (s)) ds =

∫ t

0
g(t− s) (∆u (s)− ∆u (t) , ∆u (t)) ds

+
∫ t

0
g(t− s) ‖∆u‖2

2 ds

≥
(

1− 1
4η

) ∫ t

0
g (s) ds ‖∆u‖2

2 − η (g ◦ ∆u) (t) ,

we get from (5.3) and (5.4) that

L′(t) ≥ (1− σi) H−σi(t)H′(t) + ε ‖ut (t)‖2
2 − ε ‖∆u‖2

2 − ε
n

∑
i=1

∫
Ω
|uxi |

pi dx

+ε

(
1− 1

4η

) ∫ t

0
g (s) ds ‖∆u‖2

2 − εµ1

∫
Ω
∇ut(t)∇u(t)dx

+ε ‖u‖q
q − εµ2

∫
Ω
∇u∇z (1, t) dx.

Applying (4.12) and (4.22), we see that

L′(t) ≥
{
(1− σi) H−σi(t)− ε

2C0
β−2

}
H′(t) + ε

(
1 +

q
2

)
‖ut (t)‖2

2

+ε
( q

2
− η

)
(g ◦ ∆u) (t) + ε

n

∑
i=1

(
q
pi
− 1
) ∫

Ω
|uxi |

pi dx

+ε

{( q
2
− 1
)
−
(
−1 +

1
4η

+
q
2

) ∫ t

0
g(s)ds

}
‖∆u‖2

2

+
ζεq
2

∫ 1

0
‖∇z (x, ρ, t)‖2 dρ−

(
µ2

1
2

+
µ2

2
2

)
β2ε ‖∇u‖2

2

+εqH(t)− εqδ̂d1. (5.5)

Using (4.20), (4.21), and (5.5), we find that, for some η with 0 < η < λ1

(
q−2
2λ1
− δ̂
)
+ 1,

L′(t) ≥
{
(1− σi) H−σi(t)− ε

2C0
β−2

}
H′(t) + ε

(
1 +

q
2

)
‖ut (t)‖2

2

+ε

[
λ1

(
q− 2
2λ1

− δ̂

)
+ (1− η)

]
(g ◦ ∆u) (t)

+ε

{
λ1

(
q− 2
2λ1

− δ̂

)
−
(

λ1

(
q− 2
2λ1

− δ̂

)
+

1
4η

) ∫ t

0
g(s)ds

}
‖∆u‖2

2

−
(

µ2
1

2
+

µ2
2

2

)
β2ε ‖∇u‖2

2 + εqH(t) +
ζεq
2

∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ

+ε
n

∑
i=1

{
q
(

1
pi
− 1

2

)
+ λ2

(
q− 2
2λ2

− δ̂

)} ∫
Ω
|uxi |

pi dx, (5.6)



Blow-up of solutions for nonlinear viscoelastic equation 103

=

{
(1− σi) H−σi(t)− ε

2C0
β−2

}
H′(t) + ε

(
1 +

q
2

)
‖ut (t)‖2

2

+εa1 (g ◦ ∆u) (t) + εa2 ‖∆u‖2
2 +

ζεq
2

∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ

−
(

µ2
1

2
+

µ2
2

2

)
β2ε ‖∇u‖2

2 + εa3

∫
Ω
|uxi |

pi dx + εqH(t), (5.7)

where 

a1 = λ1

(
q−2
2λ1
− δ̂
)
+ (1− η) > 0,

a2 = λ1

(
q−2
2λ1
− δ̂
)
−
(

λ1

(
q−2
2λ1
− δ̂
)
+ 1

4η

) ∫ t
0 g(s)ds > 0

a3 = ∑n
i=1

{
q
(

1
p−i
− 1

2

)
+ λ2

(
q−2
2λ2
− δ̂
)}

> 0

λ1 = ∑n
i=1

p+i (q−2)
2p−i

> 0, λ2 = ∑n
i=1

2q−2p+i
2p−i

> 0

Take β so that β = (kH−σi(t))−
1
2 , for large k to be specified later. Exploiting (4.24) and the

inequality
‖u‖2

2,Ω ≤ C1 ‖u‖2
q,Ω ,

we see that
β2 ‖∇u‖2

2 ≤ k−1C1qσi
0 ‖∇u‖qσi+2

q

Substituting this into (5.6),

L′(t) ≥
{
(1− σi)−

ε

2C0
k
}

H−σi(t)H′(t) + ε
(

1 +
q
2

)
‖ut (t)‖2

2

+εa1 (g ◦ ∆u) (t) + εa2 ‖∆u‖2
2 + εa3

∫
Ω
|uxi |

pi dx

+
ζεq
2

∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ− εk−1C2 ‖∇u‖qσi+2
q + εqH(t)

where C2 =
(µ2

1+µ2
2)C1q

σi
0

2 .
From (5.2), and Lemma 4, for S = qσi + 2 ≤ q, we arrive at

‖∇u‖qσi+2
q ≤ c

(
−H(t)− ‖ut (t)‖2

2 −∑n
i=1
∫

Ω |uxi |
pi dx− (g ◦ ∆u) (t)

+ ‖u‖q
q −
∫ 1

0 ‖∇z (x, ρ, t)‖2
2 dρ

)

Then, we have

L′(t) ≥
{
(1− σi)−

ε

2C0
k
}

H−σi(t)H′(t) + ε
((

1 +
q
2

)
+ ck−1C2

)
‖ut (t)‖2

2

+ε
(

a1 + ck−1C2

)
(g ◦ ∆u) (t) + ε

(
a3 + ck−1C2

) ∫
Ω
|uxi |

pi dx

+εa2 ‖∆u‖2
2 + ε

(
ζq
2

+ ck−1C2

) ∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ

−εck−1C2 ‖u‖q
q + ε

(
q + ck−1C2

)
H(t). (5.8)



104 A. Merah and F. Mesloub

Subtracting and adding εθH(t) on the right-hand side of (5.7) and using (4.12) and (4.22),
we deduce

L′(t) ≥
{
(1− σi)−

ε

2C0
k
}

H−σi(t)H′(t) + ε

(
1 +

q
2
− θ

2
+ ck−1C2

)
‖ut (t)‖2

2

+ε

(
a1 −

θ

2
+ ck−1C2

)
(g ◦ ∆u) (t) + ε

(
θ

q
− ck−1C2

)
‖u‖q

q

+ε

{
a2 −

θ

2

(
1−

∫ t

0
g(s)ds

)}
‖∆u‖2

2

+ε

(
ζq
2
− θζ

2
+ ck−1C2

) ∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ + ε
(

q− θ + ck−1C2

)
H(t)

+ε
n

∑
i=1

{(
a3 −

θ

p−i
+ ck−1C2

) ∫
Ω
|uxi |

pi dx

}
+ εδ̂d1. (5.9)

First, we fix θ such that
0 < θ < min {2a1, 2a2, q} .

Second, we take k > 0 large enough such that

θ

q
− ck−1C2 > 0.

Once k is fixed, we select ε > 0 small enough so that

(1− σi)−
ε

2C0
k > 0, H1−σi(0) + ε

∫
Ω

u0u1dx > 0.

Therefore, we obtain from (5.8), that

L′(t) ≥ C

(
‖ut (t)‖2

2 + (g ◦ ∆u) (t) +
∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ +
n

∑
i=1

∫
Ω
|uxi |

pi dx + ‖u‖q
q + H(t)

)
.

(5.10)
Here and in the sequel, C denotes a generic positive constant. On the other hand, using the
similar arguments in the work of Messaoudi [17] we get

L
1

1−σi (t) ≥ C

(
‖ut (t)‖2

2 + (g ◦ ∆u) (t) +
∫ 1

0
‖∇z (x, ρ, t)‖2

2 dρ +
n

∑
i=1

∫
Ω
|uxi |

pi dx + H(t) + ‖u‖q
q

)
.

(5.11)
Combining (5.9), and (5.10), we find that

L′(t) ≥ CL
1

1−σi (t), for t ≥ 0.

A simple integration yields

L
σi

1−σi (t) ≥ 1

L−
σi

1−σi (0)− Cσit
1−σi

, for t ≥ 0.

Consequently, the solution of problem (4.1)− (4.4) blows up in finite time T∗ and

T∗ ≤ 1− σi

CσiL
σi

1−σi (0)
.

�
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6 Conclusion

In this work, we are interested in a nonlinear problem of a viscoelastic plate equation with
a polynomial source term in the presence of time delay. We show that the energy of any
weak solution blows up in a finite time if the initial energy is nonpositive as well as positive.
The delay effect is similar to memory processes that is important in the research of applied
mathematics such as physics, and biological motivation. In future work, we will try to study
the local existence of this problem with respect to some proposal conditions with a semi-
groups method
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