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Abstract. 

 Engineering changes in the development of the product is a challenging issue to 

address are the customer needs. This paper presents an innovative redesign 

recommendation procedure to solve two key problems: how to establish the 

change prediction method and how to identify components that incorporate 

similar changes. We build a structural model to address three-order paths of 

design changes using a product design structure matrix. Then, we build a 

similarity matrix of the product. A redesign recommendation matrix is presented 

with the random walk restart algorithm. An industrial example is provided to 

illustrate the proposed models and methodology. 

Key words: Product Development, Design Structure Matrix, Change Prediction 

Method, Random Walk Algorithm, Project Management. 

JEL Classification: G32 

 

 
 
 
 
 

 

Résumé . 

  Les modifications techniques dans le développement des produits est une question 

délicate pour répondre aux besoins des clients. Notre article présente un processus 

innovant permettant de résoudre deux problèmes clés: comment établir la méthode 

de prévision du changement et identifier les composants intégrant des changements 

similaires. Nous avons construit un modèle structurel avec une matrice de structure 

de conception de produit. Ensuite, nous avons construit la matrice de similarité du 

produit. Les résultats d’une étude de cas montrent les stratégies de conception et de 

recommandations efficaces par un algorithme de pas aléatoire avec redémarrage. 

Mots clés : Projet de développement, Matrice de structure de conception, Méthode 

de prévision du changement, Algorithme de pas aléatoire, Gestion de projet. 

Code de Classificaton JEL : G32. 
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1. Introduction. 

The occurrence of engineering changes is not limited to the 

development phase but covers the whole product lifecycle, from 

concept development, over detail design, to manufacture, and service 

(Sosa, Jurgen, & Tyson, 2013). Predicting the change propagating 

from the initiated component changed to the affected process aimed 

at aiding investigation, analysis and prediction of design change 

process ((Lawless, Mackay, & Robinson, 1999 ; Gemser & Leenders, 

2001 ; Hein, Voris, & Morkos, 2017). An effective redesign 

recommendation towards change propagation analysis still poses a 

challenge for industry (Zhao & Li, 2014 ; Goknil, Kurtev, Berg, & 

Spijkerman, 2014 ; Du, Xu, Huang, & Yao, 2015 ; Fernandes, 

Henriques, Silva, & Pimentel, 2017). While many companies 

recognize engineering changes as being important for their 

businesses, very few have implemented dedicated change 

management tools with even fewer claiming that they can handle 

change issues successfully (Rahmani & Thomas, 2011).  

Recommendation strategies towards product’s change usually 

rely on probability of design changes to derive component’s 

similarity, and then ranks the product’s component according to their 

similarity (Georgiou & Tsapatsoulis, 2010 ; Biau, Cadre, & Rouviere, 

2013). 

The Change Prediction Method (CPM) is concerned with 

prevention, early detection, effective selection, efficient 

implementation and continuous learning from changes (Rahmani & 

Thomas, 2011) (Hamraz, Caldwell, & Clarkson, 2013). However, in 

common with most other methods that predict likelihood of 

propagation through dependencies, CPM has three critical 

limitations: 1) subjectivity of input data (Hamraz, Caldwell, & 

Clarkson, 2012); 2) capability to model generic cases only (Giffin, et 

al., 2009); and 3) lack of recommendation regarding the integrated 

likelihood  (Suh, DeWeck, & Chang, 2007 ; Hamraz, Caldwell, & 

Clarkson, 2013 ; Koh, Caldwell, & Clarkson, 2013).  

However, the aforementioned approaches make the decisions 

on effective scheme of product redesign based mainly on the 

coupling relationships among the propagated components, without 

accounting for other important properties, such as the similarity of 

the component’s change  (Ioannidis, 2013 ; Sundar, Balaji, & Kumar, 

2014), and can also struggle to determine the resource constraint by 
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the time and the cost for implementing the changes (Wang, Li, & 

Biller, 2013). 

This paper has argued that these limitations could be resolved 

by incorporating information from interface management into 

change prediction by using design recommendation. We extend the 

previous CPM algorithm to identify three-order propagation paths in 

the product architecture and implement random walk with restart 

algorithm (Gan, 2014) to allow stable design proposition with 

recommendation strategy regarding different path propagation and 

similarity rank. In fact, the proposed method combines knowledge 

from the Design Structure Matrix (DSM) (Eppinger & Browning, 

2012) and random walk theory. 

The paper contributes a new approach that synthesizes new 

and existing techniques. The approach harnesses CPM method 

through modeling the similarity matrix and identifying the 

recommendation strategy related the redesign process. It builds 

structural models to capture the initial and propagated change, with 

the component’s similarity. Implementing efficient recommendation 

strategies towards the product redesign suggests improved structures 

that will better reflect the development time and cost attributed to the 

redesign process in complex PD projects. 

The rest of the paper is organized as follows. After reviewing 

relevant literature in Section 1, Section 2 presents a quantitative 

model of the change redesign paths based on product component 

interactions, proposes an improved combined change propagation 

and defines the similarity matrix to efficient product’s redesign. 

Section 3 describes how we implement the random walk with restart 

algorithm to find appropriate and efficient recommendation 

regarding the components network. Section 4 applies the approach to 

an industrial example.  

2. Literature Review. 

Research in engineering design has investigated several 

models of design change propagation. Change propagation analysis 

presents that the design change of one component can propagate 

through the interdependent components until all components can 

work together to perform the intended function (Maier, Wynn, 

Biedermann, Lindemann, & Clarkson, 2014 ; Baldwin, McCormack, 

& Rusnak, 2014). Many change propagation studies use the 
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component-based DSM to: 1) represent the interdependencies 

between the key attributes of a product’s design to predict change 

propagation when a requirement is revised (Cohen, Navathe, & 

Fulton, 2000); 2) predict the redesign effort for future changes  

(Martin & Ishii, 2002); 3) calculate the total difference between the 

change received and propagated from a component through a change 

propagation index  (Suh, DeWeck, & Chang, 2007); 4) develop a 

component based change DSM computing the number of design 

changes required for a new technology  (Smaling & DeWeck, 2007). 

These studies do not consider change propagation through indirect 

dependencies of components. However, the Change Prediction 

Method (CPM) developed by Clarkson et al.  (Clarkson, Simone, & 

Eckert, 2004) was the first to evaluate indirect change propagation 

through the influence paths between components. CPM also 

considers the likelihood and impact of change propagation from one 

component to another, using DSMs whose entries capture both 

likelihood and impact of change propagation but only consider under 

diagonal dependencies. Hamraz et al.  (Hamraz, Caldwell, & 

Clarkson, 2013) applied similar algorithm to CPM including several 

domains for considering upper and under diagonal dependency (i.e., 

element’s interdependencies), such as components, functions, 

requirements, processes and organizations.  

Despite DSM data on component interdependencies being 

used to understand the change-related component’s requirement, the 

random walk-based similarity asserts recommendation strategies 

toward engineering changes (Stinchcombe, 2000). Before searching 

for redesign recommendation, the notion of components similarity 

needs to be understood in the context of customer requirements. In 

other words, if two components share a common function, such as 

store energy, and this function is related to important customer 

needs, these two components have a design-relevant similarity.  

When comparing more than two components, the notion of 

more or less similar becomes more relevant (Agrawal, 2009). 

Adapting a random walk process to a design or redesign process 

helps the project managers to predict and recommend new 

interactions in the components network due to the investigation of 

resource constraint and cost (Du, Xu, Huang, & Yao, 2015). Thus, 

the methodology of random walk does not depend on the history of 

redesign compared to conventional data-driven modeling to describe 
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the quality propagation in manufacturing projects (Mondal, Maiti, & 

Ray, 2013). Researchers widely used random walk theory (as 

describe with Markov model (Gasparini, 1997)) to investigate 

recommendation regarding the redesign in manufacturing process; 

they show empirical evidence that the redesign has significant 

impact on the quality of the product (Wang, Li, & Biller, 2013 ; 

Colledani & Tolio, 2011). However, some authors investigate the 

change propagation for matching systems by applying information 

feedback of each design possibility with customer perception (Li & 

Huang, 2007 ; Du & Xi, 2012).  In spite of the above effort in the 

literature about the relationship between an improved redesign 

process related to random walk theory, the current research work 

assumes that each stage of redesign process in manufacturing is 

independent after the completion of the redesign process.   

The models presented in this paper extend the existing 

literature on similarity product that do not consider common 

functions or requirements of the components. As the similarity 

measure is computed in real time, including the direct and indirect 

design change, the only data that need to be accessed to allow for 

broad application of this method are customer requirements 

weighted design change propagation. 

3. Single likelihood of different change propagation path.  

3.1. Direct change propagation. 

The first stage of CPM is to allow preliminary examination of 

direct impact on component dependencies. The engineering change 

is defined as any alteration to a product sub-system’s design and is 

originated from customer needs, reliability requirement, cost 

reduction and so on (referred as change requirement in this paper). In 

this paper, change propagation is thought as a process during which 

initiating change components causes subsequent changes. Within the 

Product DSM (i.e., P_DSM) the column headings show instigating 

components and the row headings the affected components. Let 

( )(1) ,SL m n be the single likelihood of first-order change propagation 

resulting from the direct impact of design change of component n on 

component m. This type of network has been used to represent the 

relationship between components for further analysis of change 

propagation (Johannesson, Landhal, Levandowski, & Raudberget, 
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2017). Since, the P_DSM, per definition already includes the direct 

links of change between the instigating component j and the affected 

component i, it must equal to ( )(1) ,SL m n :  

( ) ( )
(1) , ,SL m n DSM m n=

                       
     (1) 

where m and n  {1,2,…,NC}. As the diagonal elements of the 

P_DSM are zero, only change propagation between two different 

components will be considered. 

In this paper, changes propagate between the network of dependent 

components (initiating change components causes a series of 

subsequent changes). We define ( )(2) ,SL m n as the single likelihood 

of second-order change propagation paths resulted from the indirect 

impact of design change of component n on component m through an 

intermediate component p. Only three different components are 

taken into account for ( )(2) ,SL m n . The likelihood of second-order 

(indirect) change propagation path from n to m through component k 

(i.e., n p mC C C→ → ) is:  

( ) ( ) ( )(2) , , ,pSL m n DSM p n DSM m p= 
                   

(2) 

where p  1,2,..., CN , m n , n p , m p . For example, in Fig.1(a), 

C4 is the intermediate activity of second-order change propagation 

paths from C1 to C2, so SL(2)(2,1)=DSM(4,1)×DSM(2,4)=0.7×0.6. 

Further, the single likelihood of all second-order change propagation 

paths from n tom through all possible intermediate components can 

be calculated as follows: 

( ) ( ) ( ) ( )(2) (2)

1 1

, , , ,
C CN N

p

p p

SL m n SL m n DSM p n DSM m p
= =

= =  
    

(3) 

Fig 1. An example of first, second and third order change propagation 
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Source: Illustrated by the authors. 
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The calculation of second change paths extend the work of 

Hamraz et al.  (Hamraz, Caldwell, & Clarkson, 2013) by applying 

this order of change in independent view from previous changes (i.e., 

direct and indirect) for a given process DSM including a change 

cyclic change. In practical cases, the cycle is considered as the 

repetition of change design due to the different parameters affecting 

the components, which is a feature of change design processes that 

lends itself to modeling (Tang, et al., 2016). The cyclic path 

propagation is a propagation loop that ends with the initiated change 

(i.e., the starting activity affected and initiated by the project 

manager and engineers), which may exist as a form of iteration. 

Avoiding the iterative problem required by cyclic path propagation is 

likely to involve higher coordination costs between redesign teams 

(Sosa, Mihm, & Browning, 2013).  

Moreover, ( )(3) ,SL m n represents the single likelihood of third-order 

change propagation paths resulted from the indirect impact of design 

change of activity n on m through two intermediate components. 

Fig.1(b) and Fig.1(c) describe two situations for third-order change 

propagation paths, which are change propagation with cyclic path 

and without cyclic path respectively. 

For the situation of the change propagation without cyclic path (see 

Fig.1(b)), the third-order (indirect) change propagation path 

for n p q mC C C C→ → → through two intermediate components p and 

q can be calculated: 

( ) ( ) ( ) ( )(3)

, , , , ,p qSL m n DSM p n DSM q p DSM m q=  
      

(4) 

where q  1,2,..., CN .For example in Fig.1(b), 

SL(4,3)
(3)(2,1)=DSM(4,1)×DSM(3,4)×DSM (2,3 )=0.7×0.8×0.2 along 

path (C1, C4, C3, C2).  

For the situation of the change propagation with cyclic path (see Fig. 

1(c)), the third-order change propagation path would also allow the 

propagation path n m p mC C C C→ → → , which includes a loop for 

the second component Cm. It can be calculated as follows: 

( ) ( ) ( ) ( )(3) , , , ,pSL m n DSM m n DSM p m DSM m p=  
       

(5) 
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For example, Fig.1(c) shows along cyclic path (C1,C2,C4,C2) a loop 

in component C2. So, SL4
(3)(2,1)=DSM(2,1)×DSM(4,2)×DSM(2,4) 

=0.8×0.3×0.6. 

Further, the single likelihood of all third-order change propagation 

paths from n tom through all possible intermediate components can 

be calculated as follows: 

( ) ( ) ( )(3) (3) (3)

,

1 1 1

, , ,
C C CN N N

p k p

p q p

SL m n SL m n SL m n
= = =

= + 
             

(6) 

The third order change is the prior DSM including cycle paths, 

which is a necessary condition of iterative process. Furthermore, the 

proposed CPM is performed assuming that changes would not 

propagate appreciably beyond three steps, which is a reasonable 

assumption based on previous CPM research  (Cohen, Navathe, & 

Fulton, 2000 ; Pascal & DeWeck, 2011) where they found that 

combined change does not vary if the propagation is calculated on 

the basis of at least three steps 

3.2. Indirect Change Propagation with similarity network.  

The purpose of constructing a product similarity network 

instead of using all calculated similarities is to remove negative 

influences of some dependencies and reveal dominant one. In the 

network construction process, we first calculate similarities between 

components via Jaccard similarity index. By treating each 

component as a set that containing components affected by a change; 

the set corresponding to the m-th component is xm={k:xkm=1, 1≤ k 

≤0} and the set corresponding to the n-th component is xn={l:xln=1, 

1≤ l ≤0}. These two sets can be derived from the three change 

propagation paths. The proposed method calculates the similarity 

between two components as the ratio of the affected common change 

proportional to their total affected change, as:   

 

( ),
m n

m n

x x
S m n

x x
=

                                (7)
 

The sets of xm and xn are defined as the change probability of 

components m and n expressed in term of their integrated combined 

likelihood (i.e., the common affected components) across their 

possible change propagation paths (i.e., all the components affected 

by the change of m and n simultaneously).
 

4. Combined change likelihood. 
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The combined change likelihood between two components is 

defined as the integrated probability of all possible change 

propagation paths across their intermediate interface (see Figure 1 

(a)). We use the propagation paths shown in Figure1 (b), (c) and (d) 

to reflect the combined likelihood from C1 to C2 through change path 

1, 2 and 3 (i.e., the amount of intermediate components are 0, 1 and 

2 respectively). Through analyzing the intermediate components, the 

combined change likelihood (CL) between components m and n 

refers to the integrated change probability in the design of 

component n leading to a design change in component m through all 

potential change propagation path z. It can be calculated as follows: 

( )

(1) (2) (3)

3
( )

1

( , ) ( , ) ( , ) ( , )

1 1 ( , )z

z

CL m n SL m n SL m n SL m n

SL m n
=

=

= − −
               (8) 

We deduce that: 

( )

( , ) ( , )

,
( , ) ( , )

m n

m n m n

l x x

l x x x x

CL l m CL n l

S m n
CL l m CL n l



 −

+

=
+



                  (9) 

Because, the value of total combined change between two 

components is always bigger or equal to the value of common 

combined change so, the intensity of similarity and the number of 

affected components need to be considered for an efficient 

recommendation.
 

5. Redesign recommendation based random walk algorithm with 

restart  

The random walk with restart process usually facilitate the 

recommendation of candidate objects (i.e., components) (Gan, 

2014). The basic idea of our method is to simulate the process that a 

random walker wanders in the component similarity network. The 

walker starts the journey at random from one of the components that 

have selected the query component (i.e., the one affected by a 

change). Then, in each step, the walker may either move at random 

to a neighboring component or start on a new journey with a certain 

probability. Finally, the probability that the walker stays at the query 

component is used as the score that reflects the preference of the 

query component to anther query component. 
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First, we calculate the transition matrix T(m,n) by performing a 

column-wise normalization of similarity matrix. T(m,n) reflects the 

degree of the initiating change similarity on component n that might 

influence changes over component m compared to all affected 

changes occurred (i.e., adjusted component’s similarity related all 

potential similarities of change): 

( )

( )
1

,
( , )

,
q

m

S m n
T m n

S m n
=

=


                                (10) 

where q is the intermediate component of path propagation z. The m-

th column in matrix T represents the probabilities that the random 

walker moves from the m-th component to other components. When 

starting a new journey, the random walker starts at random from one 

of the components affected by the change. We represent the initial 

configuration using a vector p(0), as: 
(0)

0

1

( , )

( , )
n

m

CL m n
p

CL m n
=

=


. Then, let p(t) 

be the vector composed of probabilities that the random walker stays 

in all components at step t, the iteration formula can be expressed as 

follows: 
( 1) ( ) (0)(1 ) ( , )t tp T m n p p + = −  +                         (11) 

where   is the restart probability. 

After a number of steps, the probabilities will converge to the steady 

state, which aims to enable the design to evolve a new stable statut 

of the design. This is obtained by performing the iteration until the 

difference between p(t) and p(t+1) is sufficiently small. Finally, by 

repeating this random walk procedure for each component, we are 

able to rank the components according to their engineering change. It 

has been shown that such a random walk model is not sensitive to 

parameters involved, though a relative larger restart probability 

benefits the performance (Medo, 2013). Hence, we select default 

parameters as γ=0.9. The similarity is a necessary condition to 

understand the state of the design and the connectivity between the 

product’s feature. 

6. Results and discussion: illustrative example.  

The proposed model is applied to a wrapping machine for 

cereal bars from the Italian Cavana Group. The customer’s 

requirement is to grant a performance of his line by a higher speed 
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flow pack. Cavana’s challenge is to supply a packaging line 

featuring a row pieces multiplier in order to reduce a number of 

incoming rows by increasing the number of pieces per row. We 

interviewed 10 engineers from the design technical departments and 

raised the following questions: 1) How much does the redesign of 

one component influence other components? 2) How to evaluate the 

similarity between components with different change propagation 

pattern? 3) How to elaborate design recommendation strategies 

toward potential change propagation?  

6.1. Modeling process. 

The product is simplified and the main modules integrating 

specified components are constructed to demonstrate the initial 

evaluation of the method (Fig. 2(a)). First, the wrapping machine is 

decomposed into five modules (A, B, C, D and E in the Fig. 2(b)) 

with six possible change requirements using conventional technique 

(Eppinger & Browning, 2012). We asked about four types of 

interfaces between components: physical connections, influenced 

functions, energy consumed and related information flow. We 

elicited change routes and probabilities between directly connected 

components via experience-based estimations by the project manager 

and designers. Then, the dependency between a couple of 

components are acquired through analyzing the parameters of every 

two components. Finally, based on the number of requirements 

change between two components to the total number of requirements 

change, the first change propagation path is determined.  

To derive the original likelihood DSM and improve its modeling 

efficiency, the requirement-component relationship is elicited from 

the chief designers, sales managers and project managers. 

Fig. 2 Design change requirements of the wrapping machine 
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(a) Modules of the wrapping machine             (b) Change’s requirement  
Source: Internal documents at Cavana Group  

These steps are also used in the literature (Tang, et al., 2016). Based 

on the equations (1)-(3), ( )(1) ,SL m n and ( ),CL m n
 
are show in Figure 3 

(a) and (b) respectively. 
Fig 3. Change likelihood DSM 

 

Source: Illustrated by the authors. 

6.2. Change propagation process.  

According to the results in Fig. 3(b), a total of 60 new 

dependency of change appears between the affected components 

while applying the CPM procedure in the Matlab® 15 software. The 

total CL of an affected component is calculated as the average of the 

sum of its initiating components of change (which corresponds to the 

sum of the row of the affected component) to the number of 

product’s component (Koh, Caldwell, & Clarkson, 2013). The CL of 
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the Crimper Jaws (14) is the highest to meet change requirements 

being not suitable for standardization. In contrast, the Pull-Nose 

Device (17) has relatively lower CL than most of the other 

components. This suggests that the Pull-Nose Device is less likely to 

change and hence is a good component for standardization. System 

components, such as the Differential Box (3), the Dwell Gear Box 

(5) and the Electrical Panel (8) are the best components for 

standardization (CL=0). However, based on these incoming change 

characteristics, it is unclear whether the component is affected by 

multiple components or just heavily affected by one or two 

components. Therefore, further analysis is required for these system 

components. From the similarity perspective between two 

interdependent components, more they are affected by common 

components, more they are similar. For example, from the SL matrix 

(Fig. 4(a)), we observe that the initiating change from the Loading 

System (15) to the Sealing Wheal (1) would be affected by their 

common intermediate components Zero5 Wrapping (2) and Crimper 

Jaws (14) with three cycle propagation paths, which also represent 

the highest combined likelihood in CL matrix (Fig. 5 (b)). In fact, the 

similarity between the Loading System (15) and the Sealing Wheal 

(1) is the highest (Fig. 4(a)).   

By ranking the components-based similarity, the project 

manager might identify the suitable system components for 

improvement. System components with high similarity have a strong 

influence on other system components and thus should be made less 

likely to avoid further propagating changes to others. Conversely, 

system components with low rank (or similarity), do not affect other 

system components as much and hence should be made easier to 

change to absorb future changes. Following the Fig. 4(b), we observe 

that the Sealing Wheel (1), the Servo Motor (4), the Screen HMI (9), 

the Zero5 Wrapping (2), the Loading System (15) and the Crimper 

Jaws (14) have stronger similarity and higher rank, respectively, 

compared to the other components of the wrapping machine. So, 

they are more sensitive for the implemented changes. 

Fig 4. Analysis of the similarity in the machine’s components 
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Source: Illustrated by the authors. 

6.3. Recommendation process.   

An effective recommendation process should rank the 

components additionally based on the consumption of resources, the 

development time and cost of each component’s change 

(Johannesson, Landhal, Levandowski, & Raudberget, 2017). We 

describe the manpower as the product of the workload and the 

development cost; the workload is expressed as the product of the 

number of developed designers and the development time. The 

manpower was also used in other researchers to assess product’s 

modularity (Tripathy & Eppinger, 2013). For example, if a design 

change is performed by two designers within 5h with 10 dollars per 

hour, the workload is 10 (5x2=10) and the manpower is 100 (10x10). 

The manpower of each change component, and then the total 

manpower of each change propagation path is obtained. Based on the 

analysis results, the project manager selects and implements the 

scheme of design change with the least workload and the highest 

similarity rank. The total manpower regarding the change process, as 

shown in Fig. 5, is plotted as a column graph, which determines that 

the Differential Box (3) is the least and the Buffer Fifo (11) is the 

most. Thus, this solution of design change should be avoided as far 

as possible due to its high rank similarity.  

Fig 5. Total Manpower by component’s change of the wrapping 

machine 
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Source: Illustrated by the authors. 

This process could be implemented continuously until the optimal 

scheme is found, which will improve the product competition in the 

market        
7. Conclusion. 

A proposed approach for measuring design change with 

random walk-based similarity is developed to evaluate design 

change recommendations. This paper proposes an improved CPM 

method by integrating three path’s level to measure the combined 

likelihood of change in the development design across intermediate 

components. To propose an efficient design change recommendation, 

this paper presents the similarity matrix between components 

integrating the combined change. According to both similarity rank 

and the manpower of change (i.e., consumption of resource and cost) 

may lead to the optimal recommendation strategy towards the 

implemented change. In practice, the project manager can utilize our 

models to: (i) predict the potential change affected by the initiating 

components and customer requirements, (ii) determine similar 

components affecting less or more the product’s design, and (iii) 

select effective implemented change regarding to the manpower 

consumed. 

Several aspects of the model presented in this paper merit 

further examination. First, quantitative approaches that can capture 

component change likelihood over time could be useful to track 

these measures across several product generations. Thus, more 

efforts are still required to improve the elicitation of change data 

efficiently. Finally, the random walk with restart model could bring 

more integrated framework while the number of parameters and 
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complexity of component’s dependency increase to bring new 

research opportunities and more tests against change process. 

Bibliography List. 

Agrawal, A. (2009). Product networks, component modularity and 

sourcing. Journal of Technology Management and 

Innovation, 4(1), 59-81. 

Baldwin, C., McCormack, A., & Rusnak, A. J. (2014). Hidden 

structure : using network methods to map system 

architecture. Research Policy, 43(8), 1381-13-97. 

Biau, G., Cadre, B., & Rouviere, L. (2013). Statistical analysis of k-

nearest neighbor collaborative recommendation. The Annals 

of Statistics, 38, 1568-1592. 

Clarkson, P. J., Simone, C., & Eckert, C. (2004). Predicting change 

propagation in complex design. Transactions of ASME, 788-

797. 

Cohen, T., Navathe, S., & Fulton, R. (2000). C-FAR: change 

favorable representation. Computer Aided Design, 32(5), 

321–338. 

Colledani, M., & Tolio, T. (2011). Joint design of quality and 

production control in manufacturing systems. CIRP Journal 

of Manufacturing Science and Technology, 4, 281-289. 

Du, S., & Xi, L. (2012). A robust approach for root causes 

identification in machining processes using hybrid learning 

algorithm and engineering knowledge. Journal of intelligent 

manufacturing, 23, 1833-1847. 

Du, S., Xu, R., Huang, D., & Yao, X. (2015). Markov modeling and 

analysis of multi-stage manufacturing systems with remote 

quality information feedback. Computers and Industrial 

Engineering, 88, 13-25. 

Eppinger, S., & Browning, T. (2012). Design structure matrix 

methods and applications. Cambridge, MA: MIT Press 

Cambridge. 

Ferguson, S., Olewnik, A., & Cormier, V. (2013). A review of mass 

customization across marketing, engineering and distribution 

domains toward development of the process framework. 

Research in Engineering Design, 25 (1), 11-30. 

Fernandes, J., Henriques, E., Silva, A., & Pimentel, C. (2017). 

Modelling the dynamics of complex early design processes: 

an agent-based approach. Design Science, 3(19), 1-34. 



1 Sonia Kherbachi 

Managing Risk of Product Development Projects with Similarity of Propagation 

Effects 

 

144 

Volume:7 /Issue 11 (2019), p128-146 

Gan, M. (2014). Walking on a user similarity network towards 

personalized recommendations. Plos One, 9(12). 

Gasparini, M. (1997). Markov chain monte carlo in practice. 

Technometrics, 39(3), 1. 

Gemser, G., & Leenders, M. (2001). How integrating industrial 

design in the product development process impacts on 

company performance. Journal of Product Innovation 

Management, 18(1), 28-38. 

Georgiou, O., & Tsapatsoulis, N. (2010). The importance of 

similarity metrics for representative users identification in 

recommender systems. Artificial Intelligence Applications 

and Innovations(339), 12-21. 

Giffin, M., DeWeck, O., Bounova, G., Keller, R., Eckert, C., & 

Clarkson, P. (2009). Change propagation analysis in complex 

technical systems. Journal of Mechanical Design, 131(8), 

183-192. 

Goknil, A., Kurtev, I., Berg, K., & Spijkerman, W. (2014). Change 

impact analysis for requirements : a metamodeling approach. 

Information and Software Technology, 56 (8), 950-972. 

Hamraz, B., Caldwell, N., & Clarkson, P. (2012). A multi-domain 

engineering change propagation model to support uncertainty 

reduction and risk management in design. Journal of 

Mechanical Design(134), 100905.1-100905.14. 

Hamraz, B., Caldwell, N., & Clarkson, P. (2013). A Matrix 

Calculation Based Algorithm for Numerical Change 

Propagation Analysis. IEEE Transactions on Engineering 

Management, 60(1), 186-198. 

Hein, P., Voris, N., & Morkos, B. (2017). Predicting requirement 

change propagation through investigation of physical and 

functional domains. Research in Engineering Design, 2, 1-

20. 

Inman, R., Blumenfeld, D., Huang, N., & Li, J. (2003). Production 

system design for quality : research opportunities from 

automative industry prospective. International Journal of 

Production Research, 41(9), 1953-1971. 

Ioannidis, S. (2013). Joint production and quality control in 

production systems with two customer classes and lost sales. 

Lie Transactions, 45(6), 605-616. 



University of  Skikda ,Algeria     

 

 

     

 

ISSN: 2335-1748  

EISSN: 2588-235X 

 

                   Economic Researcher Review 

145 

Johannesson, H., Landhal, J., Levandowski, C., & Raudberget, R. 

(2017). Development of product platform: Theory and 

Methodology. Concurrent Engineering: Research and 

Applications, 25(3), 195-211. 

Koh, E., Caldwell, N., & Clarkson, P. (2013). A technique to assess 

the changeability of complex engineering systems. Journal of 

Engineering Design, 24(7), 477-498. 

Lawless, J., Mackay, R., & Robinson, J. (1999). Analysis of 

variation transmission in manufacturing processes. Journal of 

Quality Technology, 31(2), 131–142. 

Li, J., & Huang, N. (2007). Quality evaluation in flexible 

manufacturing systems: a Markovian approach. 

Mathematical Problems in Engineering, 57-76. 

Maier, J., Wynn, D., Biedermann, W., Lindemann, U., & Clarkson, 

P. (2014). Research Engineering Design. Simulating 

progressive iteration, rework and change propagation to 

prioritize design tasks , 25, 283-307. 

Martin, M., & Ishii, K. (2002). Design for variety: developing 

standardized and modularized product platform architectures. 

Research Engineering Design(13), 213-235. 

Medo, M. (2013). Network-based information filtering algorithms: 

ranking and recommendation. Dynamics On and Of Complex 

Networks, 2(452), 315–334. 

Mondal, S., Maiti, J., & Ray, P. (2013). Modeling robusteness in 

serial multi-stage manufacturing processes. International 

Journal of Production Research, 51(21), 6359-6377. 

Pascal, M., & DeWeck, O. (2011). Multilayer network model for 

analysis and management of change propagation. Research 

Engineering Design, 23(4), 305-328. 

Rahmani, K., & Thomas, V. (2011). Managing subsystem interfaces 

of complex products. International Journal of Product 

Lifecycle Management, 5(1), 73-83. 

Smaling, R., & DeWeck, O. (2007). Assessing risks and 

opportunities of technology infusion in system design. 

Systems Enginnering, 10(1), 1-25. 

Sosa, E., Mihm, J., & Browning, T. (2013). Linking cyclicality and 

product quality. Manufacturing and Service Operations 

Management, 15(3), 473-491. 



1 Sonia Kherbachi 

Managing Risk of Product Development Projects with Similarity of Propagation 

Effects 

 

146 

Volume:7 /Issue 11 (2019), p128-146 

Stinchcombe, A. (2000). Social structure and organizations. In A. 

Stinchcombe, J. Baum, & F. Dobbin (Eds.), Economics 

Meets Sociology in Strategic Management (Advances in 

Strategic Management) (pp. 229-259). Emerald Group 

Publishing Limited. 

Suh, E., DeWeck, O., & Chang, D. (2007). Flexible product 

platforms : framework and case study. Research Engineering 

Design,, 18(2), 67-89. 

Sundar, R., Balaji, A., & Kumar, R. (2014). A Review on Lean 

Manufacturing Implementation Techniques. Procedia 

Engineering, 97, 1875-1885. 

Tang, D., Yin, L., Wang, Q., Ullah, I., Zhu, H., & Leng, S. (2016). 

Workload-based change propagation analysis in engineering 

design. Concurrent Engineering: Research and Application, 

24(1), 17-34. 

Tripathy, A., & Eppinger, S. (2013). Structuring work distribution 

for global product development organizations. Production 

and Operation Management, 22(6), 1557-1575. 

Wang, J., Li, J., & Biller, S. (2013). Quality bottleneck transitions in 

flexible manufacturing systems with batch productions. IIE 

Transactions, 45(2), 190-205. 

Yang, F., & Duan, G. (2016). Developping a parameter linkage-

based method for searching change propagation paths. 

Research in Engineering Design, 23(4), 353-372. 

Zhao, C., & Li, J. (2014). Analysis and improvement of multi-

product assembly systems: An application study at a furniture 

manufacturing plant. International Journal of Production 

Research, 52(51), 6399–6413. 


