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The Simple Object Access Protocol (SOAP) is a basic communication 
protocol in Web services, which is based on eXtensible Markup Language 
(XML). SOAP could suffer from high latency and bottlenecks that might 
occur due to the high network traffic caused by the large number of client 
requests and the large size of XML Web messages. Previous works have 
proposed static and dynamic clustering models for SOAP messages to 
support compression based aggregation tool that could potentially reduce 
the overall size of SOAP messages in order to reduce the required 
bandwidth between the clients and their server and increase the 
performance of Web services. In fact, many applications can be supported 
by the proposed models such as stock quote marketing, health care 
information systems, and Web based insurance system. However, some 
appli-cations cannot get the same benefits and therefore the required 
features of SOAP-based applications to be supported need to be clarified 
and checked. Technically, this is based on the kind of SOAP messages 
used to exchange data as some applications use large-sized data in few 
XML items while most other applications are exchanging mainly features 
that require more XML tags. For example, messages with Shakespeare 
novels are not sup-ported as they have very large sized amount of data in 
very few XML tags. On the other hand, messages with more XML tags 
and small size of data items are likely to be supported by the proposed 
model. 
 In clustering, we start with traversing the order labelled XML tree, and 
then we generate the XML vector which is a combination of the structure 
and content vectors respectively. Technically, the term frequency-inverse 
document frequency (tf.idf) weighting scheme [8] is used to assign the 
weights to the terms of XML document, and the weights are stored in a 
vector matrix. Afterwards, Euclidean distance [3] is used for the 
similarity measurement by computing the minimum distance between the 
XML vectors. Then, the similar XML vectors are distributed into the 
clusters based on the agglomerative clustering model. 
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d) Aggregation of XML messages 
The Huffman encoding technique is adopted to generate the aggregated 
compact message by combining several similar XML textual expressions 
into one message. Huffman technique is well-known as lossless 
compression techniques that can delete the redundancies of letters by 
assigning binary codes for these letters. 
 

Two of the most important conclusions in this work,firstly, when the 
dynamic frequency model generates a large number of clusters based on 
similarities with small cluster size in this case, Huffman compression 
based aggregation tool would not be efficient to compress and combine 
several similar XML Web messages, and does not achieve high 
compression ratio as we noted in small and very large subsets. Secondly, 
when the dynamic frequency model generates a small number of clusters 
with large size of cluster in this case, Huffman compression based 
aggregation tool would be efficient to associate group of similar XML 
Web messages and achieve high compression ratio as we noted in medium 
and large subsets. Therefore, dynamic frequency based Huffman 
compression and aggregation model enables Web servers to generate one 
compact message that can be used by receivers (routers) to decompress the 
original messages. This model would notably increase the performance of 
Web services. 
This improvement would support different types of Web situations such as 
short bandwidth states and generally the weakness of connectivity devices 
that are using format of XML Web messages and connected to Web server 
such as smartphones which are using AndroidManifest.xml to describe and 
manage its applications. For future work we use another term weighting 
scheme such as TF–ICF weighting schemes with Euclidean space method  
another similarity measure to estimate the distance between objects. 
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Figure 1: Clustering based aggregation model support Web services 
 over the Internet 

The dataset of SOAP messages used in this study is the same dataset that have 
been used in two previous studies (Al-Shammary and Khalil, 2011). The dataset 
are built based on WSDL (Web Service Description Language) at 
http://www.w3.org. It includes 160 XML documents divided into 4 groups 
according to thesize, each oneof them contains40messages. Thesegroups are 
described as follows: small (140–800 bytes), medium (800–3000 bytes), large 
(3000–20000 bytes) and very large (20,000–55,000 bytes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results of clustering time and compression ratio 
Dynamic clustering model has achieved better results in terms of compression 
ratio especially inXML Web messages with medium and large sizes in 
comparison with dynamic fractal clustering model and in medium, large and 
very large subsets with vector space model. Furthermore, dynamic frequency 
model has shown significant results in clustering time since comparison with 
VSM method and dynamic fractal model (seeFig. 12).Table 8shows the 
clustering time of dynamic frequency model, dynamic fractal and VSM in 
millisecond. Based on these results the clustering time of XML Web messages is 
based on two important factors: the amount of information in each subset of 
used dataset and the number of clusters generated. This emphasizes the 
applicability and sufficiency of applying new dynamic frequency model for 
clustering  based compression and aggregation model for XML messages in 
real-world applications. 

In this section we focus on the main steps of the clustering of XML 
documents. The steps are as follows: (a) generating the vectors for the 
XML documents, (b) computing the similarity of the documents using 
their vectors, and (c) allocating the documents to their proper clusters. 
 
a) Generating the XML Vectors 
Any XML document in the dataset is modelled as a rooted tree. The 
XML tree has two kinds of nodes: (a) structure node and (b) content 
node. The structure refers to the nested tags (elements) that organise 
the content information while the content refers to the data values of 
the elements. We use depth-first search algorithm for traversing and 
indexing XML nodes level by level since all the nodes obtain a unique 
number as their index. To generate the XML vectors, we firstly 
generate the structure vector vs and content vector vc 

We select m terms for the structure vector and n-m for the content 
vector, where m and n are usually application dependent and 
constrained by storage. For each term t in the structure or content 
vector, we use the tf.idf scheme to calculate the weight. The tf 
measures the frequency of the term t in the document denoted by tf (t, 
d) while the idf measures the importance of the term in the entire set 
of documents denoted by                

where df(t) presents the number of documents that contain t in the 
dataset and N is the total number of XML documents in the dataset. 
Formula 1 presents the tf.idf formula for a term t in the document d. 
                                                          (1) 
After generating vs and vc, we combine these vectors to generate the 
XML vector of a document. This vector is used to measure the
similarity score between the documents. The Eq.4presents the 
combination formula whereαis the tuning parameter which trades off 
between the importance of the structure and content terms of the 
document.                                                                                  (2) 
 
For example purpose, assume we have 6 documents in the dataset. The 
XML vector for each document is generated by applying the 
combination formula presented in Eq.2 using the tuning parameter 
α=0.6. For each vector, there are 3 weights for the structural terms and 
3 weights for the content terms. Table 1 presents the vectors for these 
documents. 
 
 
 
 
 
 
 
 

Table 1: Vectors generation 
 

b) Similarity Measurement 
We use the data vectors to measure the similarity degree between their 
corresponding documents. The Euclidean distance measures the 
similarity between vectors that has several advantages in data 
clustering, such as simplicity and accuracy. Therefore, we use Eq.4 to 
calculate the Euclidean distance between a pair of XML vectors, for 
instancev1 andv2. In order to find the similar documents, we measure 
the distance between all the XML vector pairs. The output 
of this step is the similarity score for each vector with all other 
vectors. 

                         (4) 
Example 1.The distance between the XML vectors in Table 1 are as 
follows: 
 
 
 
 
c) XML Vectors Distribution 
After measuring the pairwise similarity between the XML vectors, we 
initialize the clusters for these vectors. To initialize the clusters, we 
start with sorting the pairwise distance between every two vectors, as 
shown in Example1.The pair with the minimum distance is first 
checked whether it is less than a given threshold δ. The two vectors of 
this pair are merged into a cluster if it is true. This process is carried 
out to all the other vector pairs  (vi, vj) for which dist(vi, vj)< δ, in the 
order of increasing pairwise distance. After this first round, the 
pairwise distance between the centroids of every two clusters are 
computed and sorted in increasing order. Following the same process 
as the first round, the clusters are merged if their distance is less than 
δ. These rounds are continued until all the pairs satisfying the pairwise 
distance condition have been processed.  
Considering Example 1 and δ=0.21055, the distance between v1 and 
v3, v6, and v4 is less than δ. While, the distance between v1andv2, 
v1and v5 is greater than δ. As a result, v2and v5have a high similarity 
and they will assign to the first clusterc1. While, v1, v3, v6, and v4 
will assign to the second cluster c2. 
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