
www.postersession.com

www.postersession.com

The Simple Object Access Protocol (SOAP) is a basic communication
protocol in Web services, which is based on eXtensible Markup Language
(XML). SOAP could suffer from high latency and bottlenecks that might
occur due to the high network traffic caused by the large number of client
requests and the large size of XML Web messages. Previous works have
proposed static and dynamic clustering models for SOAP messages to
support compression based aggregation tool that could potentially reduce
the overall size of SOAP messages in order to reduce the required
bandwidth between the clients and their server and increase the
performance of Web services. In fact, many applications can be supported
by the proposed models such as stock quote marketing, health care
information systems, and Web based insurance system. However, some
appli-cations cannot get the same benefits and therefore the required
features of SOAP-based applications to be supported need to be clarified
and checked. Technically, this is based on the kind of SOAP messages
used to exchange data as some applications use large-sized data in few
XML items while most other applications are exchanging mainly features
that require more XML tags. For example, messages with Shakespeare
novels are not sup-ported as they have very large sized amount of data in
very few XML tags. On the other hand, messages with more XML tags
and small size of data items are likely to be supported by the proposed
model.
 In clustering, we start with traversing the order labelled XML tree, and
then we generate the XML vector which is a combination of the structure
and content vectors respectively. Technically, the term frequency-inverse
document frequency (tf.idf) weighting scheme [8] is used to assign the
weights to the terms of XML document, and the weights are stored in a
vector matrix. Afterwards, Euclidean distance [3] is used for the
similarity measurement by computing the minimum distance between the
XML vectors. Then, the similar XML vectors are distributed into the
clusters based on the agglomerative clustering model.

Proposed technique

Compression technique based on dynamic grouping model

of XML documents
N. Belkacem, D. Aissani, F. Semchedine, A. Al-Shammari

Introduction

Doctoriales de Recherche Opérationnelle, les 12 et 13 Décembre 2018

d) Aggregation of XML messages
The Huffman encoding technique is adopted to generate the aggregated
compact message by combining several similar XML textual expressions
into one message. Huffman technique is well-known as lossless
compression techniques that can delete the redundancies of letters by
assigning binary codes for these letters.

Two of the most important conclusions in this work,firstly, when the
dynamic frequency model generates a large number of clusters based on
similarities with small cluster size in this case, Huffman compression
based aggregation tool would not be efficient to compress and combine
several similar XML Web messages, and does not achieve high
compression ratio as we noted in small and very large subsets. Secondly,
when the dynamic frequency model generates a small number of clusters
with large size of cluster in this case, Huffman compression based
aggregation tool would be efficient to associate group of similar XML
Web messages and achieve high compression ratio as we noted in medium
and large subsets. Therefore, dynamic frequency based Huffman
compression and aggregation model enables Web servers to generate one
compact message that can be used by receivers (routers) to decompress the
original messages. This model would notably increase the performance of
Web services.
This improvement would support different types of Web situations such as
short bandwidth states and generally the weakness of connectivity devices
that are using format of XML Web messages and connected to Web server
such as smartphones which are using AndroidManifest.xml to describe and
manage its applications. For future work we use another term weighting
scheme such as TF–ICF weighting schemes with Euclidean space method
another similarity measure to estimate the distance between objects.

Conclusion

Introduction

Figure 1: Clustering based aggregation model support Web services
 over the Internet

The dataset of SOAP messages used in this study is the same dataset that have
been used in two previous studies (Al-Shammary and Khalil, 2011). The dataset
are built based on WSDL (Web Service Description Language) at
http://www.w3.org. It includes 160 XML documents divided into 4 groups
according to thesize, each oneof them contains40messages. Thesegroups are
described as follows: small (140–800 bytes), medium (800–3000 bytes), large
(3000–20000 bytes) and very large (20,000–55,000 bytes).

Results of clustering time and compression ratio
Dynamic clustering model has achieved better results in terms of compression
ratio especially inXML Web messages with medium and large sizes in
comparison with dynamic fractal clustering model and in medium, large and
very large subsets with vector space model. Furthermore, dynamic frequency
model has shown significant results in clustering time since comparison with
VSM method and dynamic fractal model (seeFig. 12).Table 8shows the
clustering time of dynamic frequency model, dynamic fractal and VSM in
millisecond. Based on these results the clustering time of XML Web messages is
based on two important factors: the amount of information in each subset of
used dataset and the number of clusters generated. This emphasizes the
applicability and sufficiency of applying new dynamic frequency model for
clustering based compression and aggregation model for XML messages in
real-world applications.

In this section we focus on the main steps of the clustering of XML
documents. The steps are as follows: (a) generating the vectors for the
XML documents, (b) computing the similarity of the documents using
their vectors, and (c) allocating the documents to their proper clusters.

a) Generating the XML Vectors
Any XML document in the dataset is modelled as a rooted tree. The
XML tree has two kinds of nodes: (a) structure node and (b) content
node. The structure refers to the nested tags (elements) that organise
the content information while the content refers to the data values of
the elements. We use depth-first search algorithm for traversing and
indexing XML nodes level by level since all the nodes obtain a unique
number as their index. To generate the XML vectors, we firstly
generate the structure vector vs and content vector vc

We select m terms for the structure vector and n-m for the content
vector, where m and n are usually application dependent and
constrained by storage. For each term t in the structure or content
vector, we use the tf.idf scheme to calculate the weight. The tf
measures the frequency of the term t in the document denoted by tf (t,
d) while the idf measures the importance of the term in the entire set
of documents denoted by

where df(t) presents the number of documents that contain t in the
dataset and N is the total number of XML documents in the dataset.
Formula 1 presents the tf.idf formula for a term t in the document d.
 (1)
After generating vs and vc, we combine these vectors to generate the
XML vector of a document. This vector is used to measure the
similarity score between the documents. The Eq.4presents the
combination formula whereαis the tuning parameter which trades off
between the importance of the structure and content terms of the
document. (2)

For example purpose, assume we have 6 documents in the dataset. The
XML vector for each document is generated by applying the
combination formula presented in Eq.2 using the tuning parameter
α=0.6. For each vector, there are 3 weights for the structural terms and
3 weights for the content terms. Table 1 presents the vectors for these
documents.

Table 1: Vectors generation

b) Similarity Measurement
We use the data vectors to measure the similarity degree between their
corresponding documents. The Euclidean distance measures the
similarity between vectors that has several advantages in data
clustering, such as simplicity and accuracy. Therefore, we use Eq.4 to
calculate the Euclidean distance between a pair of XML vectors, for
instancev1 andv2. In order to find the similar documents, we measure
the distance between all the XML vector pairs. The output
of this step is the similarity score for each vector with all other
vectors.

 (4)
Example 1.The distance between the XML vectors in Table 1 are as
follows:

c) XML Vectors Distribution
After measuring the pairwise similarity between the XML vectors, we
initialize the clusters for these vectors. To initialize the clusters, we
start with sorting the pairwise distance between every two vectors, as
shown in Example1.The pair with the minimum distance is first
checked whether it is less than a given threshold δ. The two vectors of
this pair are merged into a cluster if it is true. This process is carried
out to all the other vector pairs (vi, vj) for which dist(vi, vj)< δ, in the
order of increasing pairwise distance. After this first round, the
pairwise distance between the centroids of every two clusters are
computed and sorted in increasing order. Following the same process
as the first round, the clusters are merged if their distance is less than
δ. These rounds are continued until all the pairs satisfying the pairwise
distance condition have been processed.
Considering Example 1 and δ=0.21055, the distance between v1 and
v3, v6, and v4 is less than δ. While, the distance between v1andv2,
v1and v5 is greater than δ. As a result, v2and v5have a high similarity
and they will assign to the first clusterc1. While, v1, v3, v6, and v4
will assign to the second cluster c2.

Evaluation strategy

0

5000

10000

15000

20000

25000

30000

35000

large Very large

our solution

Dynamic TF-IDFIDF[1]

Dynamic fractal[2]

VSM [3]

0

20

40

60

80

100

120

140

160

180

200

small medium

our solution

Dynamic TF-IDFIDF[1]

Dynamic fractal[2]

VSM [3]

0

5000

10000

15000

20000

25000

30000

35000

small medium large

our solution

Dynamic TF-IDFIDF[1]

Dynamic fractal[2]

VSM [3]

60000

65000

70000

75000

80000

85000

Very large

our solution

Dynamic TF-IDFIDF[1]

Dynamic fractal[2]

VSM [3]

Clustering time in Millisecond for small, medium, large, and very large messages

Compression size for small, medium, large, and very large messages

111

