

Modeling and Calculation of Elasticity in Cloud Computing

A. Outamazirt, D. Aïssani et K. Barkaoui

Doctoriales de Recherche Opérationnelle, le 12 et 13 Décembre 2018

Introduction

cloud computing, elasticity is defined as e degree to which a system is able to apt to workload changes by provisioning d de provisioning resources in an tonomic manner, such that at each point time the available resources match the rrent demand as closely as possible.

Fig. 1: Vertical vs. horizontal elasticity.

oblems and Motivation:

The long unexpected VM shut-down me **____** resource over-provisioning.

Minimize the number of active servers.

Minimize the transition from "on" to ff" and vice versa.

Methodology

The proposed mathematical models are based primarily on queuing models and Markov chains (see Figure 2 and Figure 3). These models allow to calculate the elasticity value of a Cloud Computing platform.

$$E = \frac{T_{\text{normal}}}{T} = 1 - \frac{T_{\text{over}} + T_{\text{under}}}{T}.$$
 (1)

$$E = p_{\text{normal}} = 1 - (p_{\text{over}} + p_{\text{under}}).$$

(2)

Fig. 3: Markov chain

Fig. 4: pover, punder, pnormal vs. arrival rate $% \left[{{{\left[{{{\left[{{{c}} \right]}} \right]}_{{\rm{c}}}}_{{\rm{c}}}}} \right]_{{\rm{c}}}} \right]_{{\rm{c}}}} \right]$

<u>Discussion</u>: It is observed that as arrival rate increases, p decreases (i.e., more service requests result in less probability of over-provisioning), and punder changes slight (actually, increases and then decreases, i.e., more service requests result in slight change of the probability of under provisioning), and pnormal increases (i.e., the elasticity increases).

<u>Discussion</u>: It is observed that as service rate increases, p increases significantly (i.e., faster service rate results in greater probability of over-provisioning), and punder chang noticeably (actually, increases and then decreases, i.e.,

faster service rate results in noticeable change of the probability of under-provisioning), and p_{normal} decreases significantly (i.e., the elasticity decreases significantly).

Conclusion

We developed an analytical model to study elasticity by treating a Cloud platform as a queuing system, and we used a continuous time Markov chain model to precisely calculate the elasticity value of a Cloud platform.

orm. References

 K. Li, Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing, IEEE Transactions on Cloud Computing, pp. 1-1, 2017
W. Ai, K. Li, S. Lan, F. Zhang, J. Mei, K. Li, and R. Buyya, On Elasticity Measuremer

in Cloud Computing, pp.13, 2016. 3. Y. Al-Dhuraibi, F. Paraiso, N. Djarallah and Ph. Merle, Elasticity in Cloud Computin