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Résumé This paper investigates when the M /M /s model can be used to predict an estimate for the proximity
of the performance measures of queues with arrival processes that are slightly different from the Poisson process
assumed in the model. The arrival processes considered here are perturbed Poisson processes. The perturbations
are deviations from the exponential distribution of the inter-arrival times or from the assumption of independence
between successive inter-arrival times.

In this work, we apply the strong stability method to obtain an estimate for the proximity of the performance
measures in the GI/M/s queueing system to the same performance measures in the M/M/s system under the
assumption that the distributions of the arrival time are close and the service flows coincide. In addition to the
proof of the stability fact for the perturbed M/M/s queueing system, we obtain the inequalities of the stability.
These results give with precision the error, on the queue size stationary distribution, due to the approximation.
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8.1 Notations and Preliminaries

In this section we introduce necessary notations. For the basic theorems of the strong
stability method are given in [1]. The main tool for our analysis is the weighted supermum
norm, also called v-norm, denoted by |[|.||,, where v is some vector with elements v(k) > 1
for all £ € Z., and for any vector f with infinite dimension

— )]
1fllo = D) (8.1)

Let 1 be a probability measure on Z, , then the v-norm of y is defined as

el = 00 - (8.2)

320

The v-norm is extended to stochastic kernels on Z, in the following way : let P the matrix

with infinite dimension then
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[Pk, )l 1 .
Pll, =su =su V(J) | Pril- 8.3
IPL = sup S = s oy DI )

Note that v-norm convergence to 0 implies elementwise convergence to 0.

We associate to each transition kernel P the linear mappings :

(uP)e = piPi. (8.4)

i>0
(PF)(k) = f(i) P (8.5)

i>0
The strong stability method [2, 1] considers the problem of the perturbation of general
state space Markov chains using operator’s theory and with respect to a general class of
norms. The basic idea behind the concept of stability is that, for a strongly stable Markov
chain, a small perturbation in the transition kernel can lead to only a small deviation of

the stationary distribution.

Définition 8.1 A Markov chain X with transition kernel P and stationary distribution
7 is said to be strongly stable with respect to the norm ||.||, if |Pll. < oo and every
stochastic kernel () in some neighborhood {Q) : [|Q — P|, < e} admits a unique stationary
distribution v and

|lv—=7llo =0 as [|Q—Pl,—0. (8.6)

In fact, as shown in [2], X is strongly stable if and only if, there exists a positive constant
¢ = ¢(P) such that
[ = 7lly < cl|@Q = Pl (8.7)

In the sequel we use the following results.

Théoréme 8.1 ([2]) The Markov chain X with the transition kernel P and stationary
distribution m is strongly stable with respect to the norm ||.||,, if and only if there exists a
probability measure o = (a;) and a vector h = (h;) on Zy such that mh > 0, ol =1, ah

s a positive scalar, and

a. The matriz T' = P — ha is non-negative, where how = (a;;)i; such that a;; = hyo; for
1, € Ly.

b. There exists p < 1 such that Tv(k) < pv(k) for k € Z,.

c. [Py < oo.

Here ¥ is the vector having all the components equal to 1.
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Théoréme 8.2 ([1]) Let X be a strongly v-stable Markov chain that satisfies the conditions
of Theorem 8.1. If v is the probabilily invariant measure of a stochastic kernel (), then for
|All, < (1 —p)/c, we have the estimate

Iy =l < clAllollmllo(1 = p = el All) (8.8)

where A = Q — P, c =1+ [[¥],||7]l, and |||, < (av)(1 — p)~t(7h).

8.2 Analysis of the Model
8.2.1 Model Description

We consider a GI/M/s queueing system (s servers) with infinite capacity. Customers
arrive at time points ty = 0, ¢1, t9, ... where the interarrival times Z,, = t,41 — t,, n =
1,2, 3, ..., are independent identically distributed random variables (i.i.d r.v.’s) having a
non lattice c.d.f H(-) with mean v~!. The sevice times S;, Sy, ... are i.d.d r.v.’s having a
common exponentiel d.f with a finite mean p~!. Let «v/su be the traffic intensity, assumed
to be strictly less than one. Let @(t) be the number of customers in the system at time ¢
and define é(tn —-0) = @n, n=1,2,.... Thus Cjn is the number in the system just before

the nth arrival. Now consider the relationship between @n and @nﬂ. We have

én—&-l _ {Qn +1-— Xn+1 if Qn +1- Xn+i> 07 (89)

0 if Qp+1— X, <0,

where )?nﬂ is the total number of potential customers who can be served by s ser-
vers during an interarrival period Z,. Due to the exponentiel service time, the process
{Cjn, n=0,1,2, ...} is an homogeneous Markov chain. From (8.9), it is found that the
evolution of the homogeneous Markov chain (Q,),>1 is governed by the transition proba-
bility matrice P = (P(4, j))i j>o0 described by
P(i,j) =0 (i+1-75<0).
~ % (spt)y L . . . .
P(i,j) = (—e MdH(t) (1>s—1,7>s,i+1—72>0).

0

i+1—7)! t \
~ © 1+ 1 . . , - oo S
P(i,j) = TIH(] — oMYA (1) (1< s—1, 74 1—'>op"://
6= [ (e @eaonszore - [0 (2

(1>s,j<si+1—75>0).
Consider also an system M /M /s, which has the same distribution of service times,
where the interarrival times are independent identically distributed random variables and
vary according to an exponential distribution E)(-) with a finite mean A~!. Further, the

embedded Markov chain (Q),>1, representing the number of customers in the M/M/s
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queueing system. Denote by P = (P(i,7)); >0 the transition operators of the Markov
chains (Qn)n>1-

8.2.2 v-Strong Stability Conditions

the main work in strong stability method is finding 5 such that ||7||, < 1, where T
is a stochastic kernel. For that, we choose the function v(k) = 3%, 8 > 1, h; = I—g and
a; = Py, (see Theorem 8.1).

Théoreme 8.3 Suppose that in the M /M /s queueing system the following geometric ergo-
dicity condition, \/spu < 1, holds. Then for all B € R such that, 1 < 5 < By, the embedded
Markov chain (Q,)n>1 1s v-strongly stable for the test function v(k) = B*.

Proof. We have mh = g > 0, ol =1 and ah = ag = FPyy > 0.

0, ifi=0,
Tiﬂ'zpﬁ_hio‘j:{zﬂ ifi> 1.

R

(8.10)

Hence, the kernel T' is nonnegative.

According to Equation (8.5), we have :
i)=Y BTy (8.11)
Jj=0
(a) If i = 0, then
0)=>_ BTy =0. (8.12)

Jj=0

(b) If 1 <i < s—2, then

- o0 Z+1 —ut N i+1—
v(i) = Zﬁjpij — 6z+1/ (2 + 1) (1 —e M ) (e ") dE\(t)
=0 b

< g /0 N % (145 - 1>e**“f)2 dE(t)

>
We pose, plz/ B(l—l—(ﬁ—l)e“t ) dEN(t /f (t)dEA(t
0
(c) If i = s —1, then
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(s —1) Zﬁ P = iﬁjp(s—l)j + B°Pls—1)s
=0
- Z o [T, )am ey« g [T emano
— B /Oo (1 —e M n e—ut>sdE/\(t)
0 g

< Bs—l /OOO % (1 + (6 _ 1)e—ﬂt)2dE>\(t) — Bs—lp1

(d) If i > s, then

il s=1 i+l
vi)=) P = Y BPi+) AP
j=0 j=0 Jj=s
s—1 (8 7_) —s
4 / / (s—g)e G T)(l — Mty Jh e M sudrdE\(t)
]—0
5— —sut ( ,ut)n —sut S i+1-s = ((S B 1)lut)n
<p 1/0 {e # n;_s oy +(B—1)e (:) ’ n;_s !
—sut (Sﬂt)i—’—l_s
—pe u(z’—l—l——s)!}dEA(t)
it+1 i+1—s
7 A OO —sut (S:ut/ﬁ)n
And, ;B Pij = /B +1/0 (& nz% TdEA(t)
Therefore,
sl il
=Y FPi+Y APy
j=0 j=s
i <1 1 e~ sHt 6 —1 L —ut _ —sut —sut>
Sﬁ/o (B 5 +(—5 )(8_1)(6 e M) 4 Be dE\(t)
We pose,
_ <1 1 e~ SHt B —1 L —ut _—sut —sut _ >
= [ (G5 e - s )ano = [ atano

1
We have, with assumption that s > 2, L =1+ <2

-1 s—1
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Then, g@>——§;—-%e‘““%(51§¥1)<;{?3J<e‘“t—-e‘““>+Be—ﬂw (8.13)
<3(1+0-vem) = s (5.14)

this shows that p, = / g()dE\(t) < f()dEX(t) = p1.
0

It suffices to take, p = max(py, p2) = / —(1+ (8- 1)6_“t)2 dE\(t) which is smaller then
0

1 20B-1)  AB-1?

p=_+ 8.15
B BA+n)  B2u+A) (815)
. . 212
And, with assumption that > 1, We have p <1 = < ————.
AN+ )
2 2
We pose, [y = MA—/jLM) Then, for all g such that 1 < 8 < 3y, we have p < 1.
Now, we verify that || P||, < oco. We have
T=P—ha = P=T+ha = ||P|lo <|T|lo+ 2|l (8.16)
or, according to equation (8.3),
IT) = Y v()IT| < sup s pu(i) < p < 1 (8.17)
v — Sup —/—< v il S SUP —<pull) = . .
20 v(7) = PR =528 o) g
1
According to Equations (8.1) and (8.2), we have : ||h]|, = sup ﬂ|hz| =1,
i>0 V(1
And, |lalf, = Zv(j)‘aﬂ = ZﬂjPOj = Po+pPn < B(FPwo+Pn) < B8 < oo

J=0 j=0

Then, [|P||, < co.
The Markov chain (Q,),>1 being strongly stable then, the |7 — 7||, can be bounded in
terms of |P — P|,.

8.2.3 Bound on Perturbation

To be able to estimate numerically the margin between the stationary distributions of
the Markov chains (@Q,),>1 and (Q,)n,>1 we estimate the norm of the deviation of the

transition kernel.
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Lemme 8.1 Let P (respectively P) be the transition kernel of the Markov chain (Qp)n>1
(respectively of the Markov chain (Qn)n>1). Then, for all B such that 1 < B < By, we have :

|P— P, < / (1 + (8- 1)6_Nt) |H — E,|(dt) (8.18)
0
Proof. From Equation (8.3), we have
5 1PGi, ) = PG, )l R =
P — P, =su _ =sup — » v(j)| Py — Pyl. 8.19
|| || izg U(Z) iZIO) U(Z) ; (])| ]l ( )

(a) For i < s — 2, we have,

i+1 i+1

> v(i)|Py = Pyl =) B|P; — Pyl
7=0

Jj=0
i+1 . _ i+1—j
: </ P41 1 —e M T
<oy [ (m_j)( g ) (Y |H — By|(dt)
3=0

< p /OOO (1+ (8 —1)e ) |H — E,|(dt)

Then, ||P— P||, < /OOO (14 (8 — 1)e ™) |H — Ey|(dt). (8.20)

We pose, A, = /000 (1+(8—1)e™) |H — E,|(dt) = /000 C(t)|H — E,|(dt)

(b) For i = s — 1, we have,

s

> 0 Pis-1y; = Proyl
=0
s—1 _ B
= Z B Ps—1); — Plo—1)il + B[ Ple—1)s — Pls—1)s]
7=0

<3 o / N < s ) (1= )3 (e MY | — By|(d) + 6 / e H — B (d)

§—17J

:55/000 (1_;_M _|_e—ut> |H — Ey|(dt) < 55‘1/000 (1+(8—1)e ™) |H — E,\|(dt)

Then, .
1P —P|, < / (1+(8—1)e™™) |H — E|(dt) = A;. (8.21)
0

(c) For i > s, we have,
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i+1 i+1 s—1 i+1
> () |—ZBJ|PU Pyl = > BIP; - |+26J|Pw Py
J=0 J=0

we have,

ZBJ\P” Pyl

o[ /li () (=) o] e

n=i+1l—s ’I’L' s n=i+1l—s TL'
o (spt)itis
—Be utm |H — E,|(dt)
And,
i+1 i+1
) 3 t/B H—l —J
P — < [t spt (34 H — E,\|(dt
> 1P, - Pil<an [ > - Bl
i+1—s
__ @i+l —sut (Slut/ﬁ) .
_ 3 /Oe ;—n! H = Ey|(dt)
therefore,

i+1 oo B
Zv(j)\Pij - 13@]\ < ﬁi/o (l - 1675‘” + (%) (5 i 1)(6”” — e o) + Bes"t) |H — E\|(dt)

2 BB
Then,

1P=Pl< [T (5o (5D e =) se ) |- Bxlidn) (822
We pose,

B > 71 1 —Sl“f 6_1 i —ut _ —sut —s,ut) — > .
a0 = [(Ggemr ED E eemyse Jao = [ ali-El(@)

According to Equations (8.13), we have :
2
g(t) < %(1 + (B — 1)6—*“) < <1 + (6 — 1)e—“t) = ((t)

this shows that Ay — / (D) H — By|(dh) < / COOVH — By|(dt) = A,.
0 0

Finally, it suffices to take, ||P — ﬁ”v < A =max(A;, As) = / (1 + (B — 1)6_’“) |H — E,\|(dt).
0
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Lemme 8.2 Let 7 be the stationary distribution of the embedded Markov chain (Qy)n>1-
Then, for all 1 < 8 < By, we have :

7]} = (i (s0B) S,Aﬂ‘gﬂ) — ¢ (8.23)

k=0

where,

A
o=—<1
SK

o = [i: <S/§!)k N ((Sj)s) (1ig)]_

Proof. The stationary distribution of P is known to be equal to

[ mo(so)f /KR! if kE<s
Tk = mooks® /sl if k>s

and,

where,
o=—<1
SH

and,

s—1 k -

S s0)° 1
[ ()

— s! 0

Hence,

We have, with assumption that s > 2, fp = ——— =
Then, for all 1 < 8 < fy,

s—1 s /\
R 1*25))

k=0

Théoréme 8.4 Let m (respectively 7) be the stationary distribution of the embedded Mar-
kov chain (Qn)as1 (respectively of the embedded Markov chain (Qn)ns1). Then, for all
1< B < By, we have :

|7 = F|lo < cocA(l —p —cA)™?

where ¢ is given in (8.23) , ¢ =1+ ||7]],.
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Proof. According to Theorem 8.2,

¢ =1+ |Wlfol]lo,

where,
1
Wll, =sup — = 1.
el = sup =
Then,
c=1+||7|]o.
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