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Résumé In this paper, we analyzed the stability of the M/M/∞ system using the strong stability method, when
this system is subject to a little perturbation at the level of the : • arrivals rate (GI/M/∞), • structure (GI/M/s)
and • service rate (M/GI/∞).
For this purpose, we first determine the approximation conditions of the characteristics of the perturbed queuing
system by those of the ideal system. Subsequently, under these conditions, we obtain the stability inequalities of
the stationary distribution of the queue size.
Finally, to evaluate the performance of the strong stability method, we develop an algorithm that allows us to
calculate the different theoretical results obtained and this in order to compare its output results with those of the
simulation and to conclude on the quality of the method in question.
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6.1 Introduction

The ∞−server queue and the 1-server queue are the most analytically tractable queues

of practical importance. Thus, it makes sense to search for means of incorporating those

available results into exact and approximation methods to study the stationary behavior

of Markovian and non-Markovian ∞−server queue. That is, in fact, the main aim of this

paper.

Since the analytical results obtained in the analysis of the multi-server system are only

available in the form of a Laplace transform and/or a generating function, they cannot be

used in practice due to their complexity. In this work, we are interested in the approxima-

tion of the characteristics of the GI/M/∞ and M/GI/∞ systems by those of the M/M/∞
system and the characteristics of the GI/M/s system by those of GI/M/∞, in another

word, we propose to study the stability of the system M/M/∞ (as the ideal system) when

the arrivals flow (respectively the service rate) is subject to small perturbations to obtain

the GI/M/∞ (respectively M/GI/∞) and the stability of the system GI/M/∞ (ideal
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system) when the structure of this last system is subject to a perturbation at the number

of servers level (GI/M/s).

However, in recent years, practical needs have driven the research towards the determi-

nation of estimates and quantitative performance measurement methods of stability. It is

sometimes possible to estimate the numerically the error in the definition of the desired

characteristics for small perturbations of parameters. For this, in this article, we propose

to use the strong stability method because it performs, at the same time, a qualitative and

quantitative analysis of the queuing systems.

Among the existing works in the literature carried out in the same direction as our pro-

posal, on other waiting systems, we can quote the work of Benaouicha and Aı̈ssani [5],

Bouallouche and Aı̈ssani [7, 8], Bareche and Aı̈ssani [4], Berdjoudj et al. [6], ...

The first result is summarized in the construction of an upper bound of the absolute devia-

tion (L1 norm) between the stationary probabilities of the M/M/s system and M/M/∞
system, while the second result indicates that this absolute deviation tends to zero when

the number of servers tends to infinity. The studies of Aı̈ssani in 1992 [1, 2] where the

stability of the system GI/M/∞, by applying the strong stability method, was carried. In

these last two works, the author had given the stability’s conditions of the system with

respect to the norm υ(k) = βk(β > 1) and k = 1, 2, ... and he proved that when s tends to

the infinity, in the system GI/M/s, then the deviation, between transition operator of this

system and the GI/M/∞ system tends to zero. This leads the convergence of the deviation

between their stationary probabilities to zero for the same norm. The work of Ramalhoto

in 1999 [13], where the author gives a heuristic approximation of the infinite server queue

by the multi-server queue with and without retrials.

The paper is organized as follows : in section 1 a brief description of the two systems

GI/M/∞ and GI/Ms are presented. In section 2, we present the preliminary concepts of

strong stability method, then in section 3, we will the details of the study of the stability of

M/M/∞ and GI/M/∞ systems. Finally, before concluding, we will give some numerical

applications in section 4.

6.2 Description of GI/M/∞ and GI/M/s models

6.2.1 Description of GI/M/∞ model

To analyze the GI/M/∞ queue we can use the embedded markov chain technique which

consists to identify a set of renewal points and relate the state probabilities at successive

renewal points to each other.
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For this, suppose that the customers arrive at epochs T1, T2, ..., and assume that the

inter-arrival times Tk+1 − Tk (k = 0, 1, ...; T0 = 0) are random variables which are

mutually independent and identically distributed (i.i.d) with common distribution func-

tion H(t) = P{Tk+l − Tk ≤ t}(k = 0, 1, . . .) and mean inter-arrival time 1/λ. Let Xk be

the number of customers in the system just prior the arrival of the kth customer ; Xk

is the number of customers present at Tk − 0. Since the input is recurrent and the ser-

vice times are by assumption i.i.d exponential random variables with mean 1/µ and inde-

pendent of the arrival epochs, then the arrival epochs T1, T2, ..., are a renewal points. Hence,

X = (Xk; k = 0, 1, . . .) is an homogeneous Markov chain with a state space N = {0, 1, 2, . . .}
and its transition probability :

Pij = P{Xk+1 = j/Xk = i; (j = 0, 1, . . . ; i = 0, 1, . . .)}; (6.1)

are given as follows :

Pij =


∞∫
0

Cj
i+1e

−jµt (1− e−µt)i+1−j
dH(t), if i+ 1 ≥ j ;

0, else.
(6.2)

It can be shown also, using the theory of Markov chains, that a unique stationary distri-

bution

πj = lim
k→∞

P{Xk = j}; (j = 0, 1, . . .); (6.3)

exists if and only if
∞∫
0

tdH(t) <∞ [9].

Let consider the same situation as previous (GI/M/∞) but, this time we assume that the

inter-arrival times T̃k+1 − T̃k(k = 0, 1, ...;T0 = 0) are i.i.d exponential random variables

with mean 1/λ. Let X̃k be the number of customers in the system just prior the arrival of

the kth customer. The arrival epochs T̃1, T̃2, . . ., in this case are also renewal points.

Therefore, X̃ = (X̃k; k = 0, 1, . . .) is an homogeneous Markov chain with a state space

N = {0, 1, 2, . . .}. The transition probabilities

P̃ij = P{X̃k+1 = j/X̃k = i}; (j = 0, 1, . . . ; i = 0, 1, . . .); (6.4)

are given as follows :

P̃ij =


∞∫
0

Cj
i+1e

−jµt (1− e−µt)i+1−j
dEλ, if i+ 1 ≥ j ;

0, else.
(6.5)

It can be shown, also using the theory of Markov chains, that the system has a unique

stationary distribution defined as follow :

π̃j = lim
k→∞

P{X̃k = j} =
(λ/µ)j

j!
e−(λ/µ); (j = 0, 1, . . .); (j = 0, 1, . . .). (6.6)
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6.2.2 Description of GI/M/s model

To analyze the GI/M/s queue, we propose to use the same embedded Markov chain

used in [9] and which consists to identify a set of renewal points, relate the state probabili-

ties at successive renewal points to each other, assume the existence of a limiting stationary

distribution, and solve the resulting system of equations.

Suppose that customers arrive at epochs T̂1, T̂2, ..., and assume that the inter-arrival

times T̂k+1 − T̂k(k = 0, 1, ...; T̂0 = 0) are random variables which are mutually

independent and identically distributed (i.i.d) with common distribution function

H(t) = P{T̂k+l − T̂k ≤ t}(k = 0, 1, . . .) and mean inter-arrival time 1/λ. All customers wait

as long as necessary for service. Let X̂k be the number of customers in the system just prior

the arrival of the kth customer ; i.e. X̂k is the number of customers present at T̂k−0. Since

the input is recurrent and the service times are by assumption i.i.d exponential random

variables with mean 1/µ and independent of the arrival epochs, then the arrival epochs

T̂1, T̂2, ..., are renewal points. Hence, X̂ = (X̂k; k = 0, 1, . . .) is an homogeneous Markov

chain with a state apace N = {0, 1, 2, . . .}. The transition probabilities

P̂ij = P{X̂k+1 = j/X̂k = i}; (j = 0, 1, . . . ; i = 0, 1, . . .); (6.7)

of this system are given as follows,

P̂ij =



∞∫
0

(sµt)i+1−j

(i+1−j)! e
−sµtdH(t), if i ≥ s− 1, j ≥ s and i+ 1 ≥ j;

∞∫
0

Cji+1e
−jµt (1− e−µt)i+1−j

dH(t), if i ≤ s− 1 and i+ 1 ≥ j
∞∫
0

t∫
0

Cjse
−jµ(t−τ)

(
1− e−µ(t−τ)

)s−j
e−sµτ (sµτ)

(i−s)!
i−s

sµdτdH(t), if i ≥ s, j < s and i+ 1 ≥ j;

0, else.

(6.8)

It can be shown, using the theory of Markov chains, that a unique stationary distribution

π̂j = lim
k→∞

P{X̂k = j}; (j = 0, 1, . . .); (6.9)

exists if and only if ρ = λ/sµ < 1.

6.3 The strong stability criteria and preliminary notations

LetM = {νj} be the space of finite measures on N, and let N = {f(j)} be the space of

bounded measurable functions on N. We associate with each transition kernel P the linear

mapping :

(µP )k =
∑
j≥0

µjPik, (6.10)
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(Pf)(k) =
∑
i≥0

f(i)Pki. (6.11)

Introduce on M the υ-norm of the form :

‖ν‖υ =
∑
j≥0

υ(j) | νj |, (6.12)

where υ(k) = βk, for all k ∈ N and β > 1 is a real parameter. This norm induces in the

space N the norm

‖f‖υ = sup
k≥0

|f(k)|
υ(k)

. (6.13)

Moreover, for all ν ∈ M and f ∈ N , the symbols νf and f ◦ ν denote respectively the

summation and the kernel defined as below

νf =
+∞∑
k=0

f(k)νk, (6.14)

(f ◦ µ)(k, j) = f(k)µj, for all (k, j) ∈ N× N. (6.15)

Let us consider B, the space of linear operators, with the norm

‖Q‖υ = sup
k≥0

1

υ(k)

∑
j≥0

υ(j)Qkj. (6.16)

Let ν and ν̃ be two measures and suppose that these measures have finite υ-norm. For all

f such that |f(k)| ≤ Λβk for some finite positive number Λ, we have

| νf − ν̃f | ≤ ‖ν − ν̃‖υ‖f‖υ inf
k≥0

υ(k)

= ‖ν − ν̃‖υ‖f‖υ
= ‖ν − ν̃‖υ sup

k≥0

|f(k)|
βk

.
(6.17)

Let us give the definition of the strong stability for an homogeneous Markov chain in the

phase state (N,B(N)) with respect to the υ-norm. Here B(N) is the σ-algebra generated

by the singletons {j}.

Definition 6.1 The Markov chain X with a transition kernel P and an invariant measure

π is said to be strongly υ-stable with respect to the norm ‖.‖υ if ‖P‖υ < ∞ and each

stochastic kernel Q on the space (N,B(N)) in some neighborhood

{Q : ‖Q− P‖ < ε}

has a unique invariant measure ν = ν(Q) and ‖π − ν‖υ → 0 as ‖Q− P‖υ → 0
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The following theorem gives necessary and sufficient conditions for the strong stability of

a Markov chain.

Théorème 6.1 ([3]) A Markov chain X, with transition kernel P and stationary distri-

bution π, is strongly υ-stable if and only if there exists a measure α and a nonnegative

measurable function h on E such that

a) πh > 0, α1 = 1, αh > 0 ;

b) ‖P‖υ <∞ ;

c) T = P − h ◦ α ≥ 0 ;

d) there exists m ≥ 1 and ρ < 1 such that Tmυ(x) ≤ ρυ(x) for all x ∈ E ;

where 1 is the identity function.

The quantitative estimates can be obtained by using the following results.

Théorème 6.2 ([11]) Let X be a strongly υ−stable Markov chain, with an invariant mea-

sure π and satisfying the conditions of theorem 6.1. If ν is the invariant measure of a kernel

Q, then for the norm ‖Q− P‖υ sufficiently small, we have

ν = π [I −∆R0 (I −Π)]−1 = π +
∑
t≥1

π [∆R0 (I −Π)]t ;

where ∆ = Q− P , R0 = (I − T )−1, Π = 1 ◦ π is the stationary projector of the kernel P

and I the identity kernel on M.

Corollary 6.1 Under the conditions of theorem 6.1, for ‖∆‖υ < 1−ρ
c

we have the estima-

tion :

‖µ− π‖υ ≤ ‖∆‖υc‖π‖υ (1− ρ− c‖π‖υ)−1 ,

where c = m‖P‖m−1
υ (1 + ‖1‖υ‖π‖υ) and ‖π‖υ ≤ (αυ)(1− ρ)−1(πh)m‖P‖m−1

υ .

6.4 Strong stability in the M/M/∞ (FCFS,∞) system

6.4.1 Case : perturbation of the arrival rate

Strong stability conditions

the first step in implementing the strong stability method is determining the υ−stability

conditions of the considered system, in other word, it consists in delimiting the domain

within the Markov chain X̃k associate to the analyzed system is strongly υ-stable after a

small perturbation. In our case, the υ−stability conditions of the M/M/∞ system is given

by the theorem 6.3.
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Lemma 6.1 Suppose that in the M/M/∞ system, the condition λ < µ is fulfilled. Then,

there exists β ∈
]
1, 1 + (µ−λ)(2µ+λ)

λ(λ+µ)

[
such that,

ρ =
1

β

(
λ(β − 1)2

2µ+ λ
+

2λ(β − 1)

µ+ λ
+ 1

)
< 1. (6.18)

Théorème 6.3 Suppose that in the M/M/∞ queueing system the condition of the lemma

6.1 holds. Then, for all β such that 1 < β < β0 the embedded Markov chain X̃ is υ−strongly

stable for the test function υ(k) = βk. Where :

β0 = sup{β/β > 1, ρ =
1

β

(
λ(β − 1)2

2µ+ λ
+

2λ(β − 1)

µ+ λ
+ 1

)
< 1.

Estimation of the strong stability

Before estimating the deviation between stationary distributions of the imbedded Mar-

kov chains X̃ and X using the strong stability method, we must estimate the deviation

of transition operators firstly. This deviation, for the considered systems, is given by the

following theorem.

Théorème 6.4 Let P̃ (respectively P ) be the transition operator of the embedded Mar-

kov chain in the M/M/∞ system (respectively in the GI/M/∞ system). Then, for all

1 < β < β0, we have :

‖P − P̃‖υ ≤ βw, (6.19)

where w =
∞∫
0

| H(t)− Eλ(t) | dt.

After elaborating the stability conditions, it remains to determining the deviation between

the stationary distributions of the imbedded Markov chains X̃ and X which can be done

by using Theorem 6.2 and Corollary 6.1.

The following theorem allows us to obtain the stability inequalities with exactly computing

of the constants.

Théorème 6.5 Let π̃ and π be the stationary distributions of the embedded Markov chains

X̃ and X respectively. Then, for all 1 < β < β0, and under the condition :

w <
(2µ2 − λµβ − λ2β) (β − 1)

β2 (2µ+ λ) (µ+ λ) (1 + eλ/µ(β−1))
, (6.20)

we have :

‖π − π̃‖υ ≤
wβ2 (2µ+ λ) (µ+ λ)

(
eλ/µ(β−1)

) (
1 + eλ/µ(β−1)

)
(2µ2 − λµβ − λ2β) (β − 1)− wβ2 (2µ+ λ) (µ+ λ) (1 + eλ/µ(β−1))

; (6.21)

where w =
∞∫
0

| H(t)− Eλ(t) | dt.
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6.4.2 Case : perturbation of the system structure

Strong stability conditions

In this case, the domain within the Markov chain X̃k associate to the analyzed system

is strongly υ-stable after a small perturbation is given by the theorem 6.6.

Théorème 6.6 Suppose that in the GI/M/∞ system and suppose that the condi-

tion
∫∞

0
dH(t)/t < ∞ holds. Then, for all β such that 1 < β < β0, the embed-

ded Markov chain X̃ is υ−strongly stable for the test function υ(k) = βk. Where :

β0 = sup{β/β > 1, ρ = 1
β

∞∫
0

[1− e−µt + βe−µt]
2
dH(t) < 1}.

Estimation of the strong stability

After elaborating the υ-stability conditions, it remains to determining the deviation

between the stationary distributions of the imbedded Markov chains X̃ and X̂ which can

be done by using Theorem 6.2 and Corollary 6.1.

The following theorem allows us to obtain the stability inequalities with exactly computing

of the constants.

Théorème 6.7 Let π̃ and π be the stationary distributions of the embedded Markov chains

X̃ and X, respectively. Then, for all 1 < β < β0, and under the condition :

‖∆‖υ <
1− ρ
c0

, (6.22)

we have :

‖π̂ − π̃‖υ ≤ c0c‖∆‖υ(1− ρ− c0‖∆‖υ)−1 = Eβ; (6.23)

where :

c = ||π̃||υ =
∑
n≥0

n∏
k=1

g(kµ)
1−g(kµ)

(β − 1)n,

(here g(x) =
∫∞

0
e−xtdH(t));

(6.24)

c0 = 1 + c; (6.25)

and

‖∆‖υ = ‖P̃ − P̂‖υ. (6.26)

To illustrate the applicability of predicting performance perturbations, we will use the fact

that our norm distance implies a bound on the effect of switching from the nominal chain

to the perturbed one. For this, from the relation (6.17), we translate the norm bound in

theorem 6.7 to bounds for individual performance measures f .
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Corollary 6.2 Let π̃ and π̂ be the stationary distributions of the imbedded Markov chains

in the GI/M/∞ system and GI/M/s system, respectively. Suppose that the assumptions

of Theorem 6.7 hold and 1 < β < β0, then, for any f such that ‖f‖υ <∞, it holds that

|πf − π̃f | ≤ Eβ‖f‖υ, (6.27)

where Eβ is defined in (6.23).

If we assume that the inter-arrival times are i.i.d exponential random variables and we use

the associated Markov chains to the M/M/s and M/M/∞ systems, then the Theorems

6.6 and 6.7 can be rewritten, respectively, as follow :

Théorème 6.8 Suppose that in the M/M/∞ queueing system the condition λ/µ < 1

holds. Then, for all β such that 1 < β < µ/λ the Markov chain X̃ is υ−strongly stable for

the test function υ(k) = βk.

Théorème 6.9 Let π̃ and π be the stationary distributions of the Markov chains X̃ and

X̂, respectively. Then, for all 1 < β < µ/λ, and under the condition :

s ≥ α

((
1 + β2

β − 1

)(
1 + α

1− αβ

)(
1 + eα(β−1)

)
− 1

)
; (6.28)

we have

‖π − π̃‖ ≤
α (1 + α) (1 + β2)

(
1 + eα(β−1)

) (
eα(β−1)

)
(s+ α) (β − 1) (1− αβ)− α (1 + α) (1 + β2) (1 + eα(β−1))

. (6.29)

with α = λ/µ.

In addition, we can estimate the deviation between the two transition operators of the two

systems in question, which is given by the following theorem.

Théorème 6.10 Let P̃ (respectively P̂ ) be the transition operator of the Markov chain in

the M/M/∞ system (respectively in the M/M/s system). Then, for all 1 < β < β0 = µ/λ,

we have :

‖P − P̃‖υ =
α(1 + β2)

β(s+ α)
, where α =

λ

µ
. (6.30)

Remark 6.1 To prove the strong υ-stability of the imbedded Markov chain X̃ for the test

function υ(k) = βk , where β > 1, we use the strong stability criterion (Theorem 6.1). For

this, we choose the measurable function :

hi =

{
0, if i ≥ 1 ;
1, if i = 0.

(6.31)
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and

αj = P0j(∞) =

{
0, if j > 1 ;∫∞

0
(1− e−µt)1−je−µjtEλ(t), if j ≤ 1 ;

(6.32)

for the first case and

αj = P0j(∞) =

{
0, if j > 1 ;∫∞

0
(1− e−µt)1−je−µjtdH(t), if j ≤ 1 ;

(6.33)

for the second case. Then, check conditions (a), (b), (c), and (d) of Theorem 6.1.

6.5 Numerical Application

In this section we present some applications examples of results obtained in previous

sections, knowing that our goal is to validate and to illustrate the manner in which they

can be exploited in practice.
To do this, we developed an algorithm that allows us to check the different conditions

and calculate the various needed quantities where the steps of this algorithm is inspired
from the algorithm proposed by Bouallouche-Medjkoune and Aı̈ssani in [7, 8]. Thus, we
obtain the following algorithm :
1. Introduce the parameters of the system (input).

2. Verify the existence of β0

if β0 exists then
the system is stable
and goto 3
else
disp ’unable to conclude on the stability of the system’
and goto 4.

3. Determine the constant βopt the value of β minimizing the bound (6.21) (respectively (6.23)) checking the
constraint (6.20) (respectively (6.22))

4. end.

6.5.1 Case : perturbation of the arrival rate

The primary objective of this sub-section is to compare the bound put forward in Theo-

rem 6.5 against that given by simulation. Therefore, we consider two examples Cox2/M/∞
and E2/M/∞ and we will apply our bounds put forward in Theorem 6.5 and simulation.

Example 1

In this example, we consider the GI/M/∞ queuing system, where we set the service

rate µ = 2 and we assume that the distribution of the durations of inter-arrival H(t) is

a Coxian law with order two (a mixture of two exponential law), having the parameters

λ1 = 1.25, λ2 = 1.5 and α and defined by its probability density h(t) written as follow :
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h(t) = αλ1e
−λ1t + (1− α)λ2e

−λ2t, (t ≥ 0, 0 ≤ α ≤ 1). (6.34)

The obtained results by the execution of the previous algorithm and by the discrete event

simulation, for different values of α ∈ {0.1, 0.2, ..., 0.9}, are ranked in table 6.1 below :

α λ βopt
Algorithmic

errors
Simulated

errors

0.1 1.4706 1.2169 0.3923 0.1714
0.2 1.4423 1.2339 0.7611 0.1844
0.3 1.4151 1.2490 0.9987 0.3741
0.4 1.3889 1.2624 1.0476 0.9365
0.5 1.3636 1.2740 0.9387 0.7251
0.6 1.3393 1.2840 0.7461 0.5208
0.7 1.3158 1.2926 0.5317 0.3885
0.8 1.2931 1.2997 0.3292 0.2423
0.9 1.2712 1.3056 0.1513 0.1512

Table 6.1. Numeric results : Case Cox2/M/∞ (λ = (1.25, 1.5) and µ = 2).

Discussion of Results

We note that for small values of α, the deviation ‖π − π̃‖υ is small too, which is valid for

large enough values of α. This can be explained by the fact that :

1)For small values of α the law h(t) = λ2e
−λ2t + ε, which is very close to an exponential

law with parameter λ2.

2)For large values of α the law h(t) = λ1e
−λ1t + ε, which is very close to an exponential

law with parameter λ1.

That is to say, when the value of α is large enough or small enough, the Coxian law tends

to become an exponential law, hence the Cox2/M/∞ queue characteristics will be very

close to those of the M/M/∞ system.

If we compare the two numerical errors stored in the 4th and the 5th column of the Table

6.1 we see that the simulation results are always lower than the algorithmic results that

warrants and confirms that bound Eβ is an upper bound of the deviation ‖π − π̃‖υ.

Example 2 :

In this example, we take the same position as the first example, except the law of inter-

arrival H(t) which will be an Erlang law of order two (the sum of two exponential) having

the following probability density :

h(t) = λ2te−λt, t ≥ 0. (6.35)
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λ/n βopt
Algorithmic

errors
Simulated

errors

0.1000 9.9781 0.4396 0.3375
0.1125 9.0923 0.5166 0.3722
0.1250 8.3852 0.6007 0.4008
0.1375 7.8081 0.6931 0.4086
0.1500 7.3285 0.7948 0.5435
0.1625 6.9241 0.9075 0.5482
0.1750 6.5787 1.0329 0.6868
0.1875 6.2806 1.1733 0.7029
0.2000 6.0210 1.3316 0.7824
> 0.2 - - -

Table 6.2. Numeric results : Case E2/M/∞.

The obtained results in this case, for different values of λ ∈ {0.200, 0.225, ...}, are ranked

in Table 6.2.

Discussion of Results We note that, where the value of λ increases (arrivals rate λ/n

increases) the difference ‖π − π̃‖υ increases too, and this until λ = 0.4 (λ/n = 0.2) which

can be explained by the fact that Erlang law departs from the exponential law for a large

enough values.

We also, note that for λ ≥ 0.425 (λ/n ≥ 0.2125) the stability conditions are not satisfied.

This means that the system M/M∞ is not ν−strongly stable for the test function βk, for

this perturbation.

Comparing the two numerical errors stored in the 3th and the 4th column of the Table

6.2, we see that the bound Eβ is an upper-bound of the deviation ‖π − π̃‖υ for all errors

obtained by simulation which are below this bound.

6.5.2 Case : perturbation of the system service rate

In this sub-section we have consider the M/M/∞ system subject to a little perturbation

at the service rate level to obtain Cox2/M/∞ and E2/M/∞ queue. For the numerical

application we set the inter-arrivals rate λ = 1 and we assume that the distribution of the

durations of service time H(t) :

1st case : h(t) = αµ1e
−µ1t + (1−α)µ2e

−µ2t, with t ≥ 0, µ = (1.25, 1.5), and 0 < α < 1) ;

2nd case h(t) = µ2te−µt, t ≥ 0.

The obtained results by the execution of the previous algorithm and by the discrete event

simulation, for different values of α ∈ {0.1, 0.2, ..., 0.9} for the Coxian law (respectively for

µ = (0.200, 0.225, ...) for E2 law), are presented in Figure 6.1 (respectively Figure 6.2).

Discussion of Results We note that the same conclusions and remarks than section 6.5.1

can be realized.
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Figure 6.1. Comparative curves of the approximation errors : case Cox2 law.

Figure 6.2. Comparative curves of the approximation errors : case E2 law.

6.6 Conclusion

In this work, we applied for the first time the strong-stability method on the M/M/∞
queue (respectively, GI/M/∞ queue) which is subject, in a first case, to a small pertur-

bation in the arrivals rate and in a second case, to a small perturbation in the service rate

(respectively on its structure).

The application of the strong stability method, allows us to determine the stability’s

conditions of the M/M/∞ system (respectively, GI/M/∞ system) and a bounds of the

stability inequalities between the stationary characteristics of M/M/∞ system (respecti-

vely, GI/M/∞ system) and those of GI/M/∞ system in the case of the two perturbations

considered.

To validate the obtained theoretical results, we have developed an algorithm that its role is

to calculate with exactitude the stability inequalities constants. Finally, simulation studies

validate the outputs of the algorithm execution on real examples.
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