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 In this study, we present a novel method for increasing the 

performance of photovoltaic (PV) arrays by utilizing a hybrid 

optimization algorithm involving Particle Swarm Optimization and 

Artificial Neural Networks (PSO-ANN) to track maximum power 

points. Increasing global energy challenges have resulted in an 

increase in demand for efficient solar energy conversion techniques. 

The proposed hybrid MPPT algorithm combines the strengths of both 

PSO and ANN to overcome the limitations of traditional MPPT 

methods, which often have difficulty adapting to changing 

environments. As a result of this research, PV systems will yield 

significantly more energy, leading to more sustainable and reliable 

renewable energy generation. 
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I. Introduction  

As electrical energy becomes increasingly important in sustaining modern lifestyles, its demand has increased 

significantly. It is mainly generated with the use of fossil fuels. This source, however, contributes to air pollution 

and exacerbates global warming because of its emissions of greenhouse gases. Sunlight, wind, and swift water are 

used to generate energy as part of these resources by photovoltaic (PV) arrays, wind turbines, and hydropower 

stations, respectively. As an alternative to other renewable energy sources, PV systems boast a competitive cost. 

Additionally, their adaptability to installation across different locations and capacities makes them particularly 

attractive [1]. 

Various studies have demonstrated that the Earth's surface receives significant solar radiation. This amount of 

energy significantly surpasses the global demand for electrical power [2]. However, Photovoltaic (PV) systems are 

primarily inefficient, posing a primary challenge [3]. A maximum power point tracker (MPPT) technique has been 

developed to enhance the performance of PV systems, as illustrated in Figure 1. MPPTs are designed to generate 

optimal power regardless of atmospheric conditions. 

MPPT refers to delivering a duty cycle (D) to a power conversion system, such as a DC-DC converter, based on 

the PV module's output and input parameters. MPPT bolsters PV power generation stability and dependability 

when integrated with a grid and improves efficiency. A variety of techniques can be classified into two main types: 

classical methods, such as perturbation and observation (P&O), and artificial intelligence (AI), such as fuzzy logic 

controllers (FLCs) or artificial neural networks (ANNs) [4][5][6]. 

Conventional techniques like the P&O algorithm are extensively employed for PV-MPPT controllers due to their 

straightforward design and cost-effectiveness [7]. However, these controllers exhibit drawbacks such as sluggish 
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tracking speed, pronounced fluctuation, and drifting issues [6]. As a remedy, AI-based techniques have been put 

forth to address these concerns [8]. These AI techniques prevent the need for intricate mathematics and precise 

parameters in managing application systems. Among them, the Fuzzy Logic Controller (FLC) method is an 

attractive MPPT approach for PV systems due to its swifter tracking speed and reduced oscillation compared to 

classical MPPT methods. Nevertheless, it shares a drawback with traditional methods: susceptibility to the drift 

phenomenon caused by abrupt shifts in irradiance levels (G) and operating temperatures (T). This stems from the 

requirement of a solid understanding of PV systems to accurately define membership functions within the FLC 

model [9]. 

Recently, the issue with the conventional FLC-MPPT has been tackled using an Artificial Neural Network (ANN) 

technique, introducing heuristic output functions via numerical quantified data. Consequently, in designing the 

optimized MPPT controller, in-depth knowledge of PV parameters becomes unnecessary. However, a significant 

drawback of ANN lies in its training strategy when utilized as a prediction model [10]. 

In this study, a feedforward ANN technique is harnessed to forecast a PV array's Maximum Power Point (MPP), 

employing a comprehensive real-world training dataset sourced from experimental trials on a PV array. The 

Particle Swarm Optimization (PSO) algorithm enhances the ANN model's training strategy. This approach is 

bifurcated into two segments: first, determining the optimal topology, and subsequently, fine-tuning the initial 

weights of the feedforward ANN model. This addresses the trade-off between computational time and the optimal 

regression fit of ANN nodes' distribution in the first part and pursues the global minimum training error of the 

ANN model in the second. Consequently, the predictive capability of the proposed ANN method is elevated across 

diverse weather conditions. Atmospheric conditions' G and T values are inputs for the proposed ANN model, while 

the predictive power (Pref.) is the output. This, in turn, governs the duty cycle (D) of a DC–DC boost converter. A 

Proportional–Integral (PI) controller compares it with the actual power (Pact.) of the PV and converts D into the 

DC–DC converter signal using Pulse-Width Modulation (PWM) to regulate the operational MPP of the PV array, 

as depicted in Figure 1. 

Due to the increasing demand for optimized solar energy conversion techniques, this research paper introduces a 

groundbreaking approach using a Hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) 

algorithm to track maximum power points (MPPT). As a result of dynamically changing environmental conditions, 

traditional MPPT methods often fail to extract optimal amounts of energy. In addition to effectively exploring the 

solution space, Particle Swarm Optimization quickly converges upon the global maximum power point. Using 

historical data to predict future optimal MPPs, Artificial Neural Networks simultaneously act as dynamic 

predictors. In contrast to conventional MPPT techniques, this integration leverages the real-time adaptability of 

ANNs. Using these two robust methodologies, the hybrid PSO-ANN MPPT algorithm enables more efficient solar 

energy conversion and strengthens the prospects for renewable energy integration. 

The subsequent sections of this paper are structured as follows: Section One elaborates on the methodology, 

Section Two introduces the PV system modeling, Section Three outlines the proposed method, Section Four 

presents the results, and Section 5 concludes the study. Development. 

II. System Design 

 The Proposed System Design involves combining Particle Swarm Optimization (PSO) and Artificial Neural 

Networks (ANNs) to enhance Maximum Power Point Tracking (MPPT) in a photovoltaic array, optimizing energy 

extraction. 

 

 

 

 

 

 

  

Figure 1. System Schematic. 
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II.1. Photovoltaic PV System 

Solar photovoltaic (PV) panels convert sunlight into electrical energy using the photon-voltage phenomenon. Ideal 

solar cells don't possess series and shunt resistances, but in real-world scenarios, these are associated with the PV 

diode, as illustrated in Fig. 2. These resistances come into play due to the inherent resistance of the PV 

semiconductor and the suboptimal performance of the PN junction diode. Consequently, series and shunt 

resistances are integrated. 

 

 

 

 

 

 

 

Figure 2. Equivalent circuit of PV solar cell. 

 

The output current of the solar PV cell can be described using Kirchhoff's law (1). 

 
𝐼𝑃𝑉 = 𝐼𝐿 − 𝐼𝑑 − 𝐼𝑠ℎ                                                                    (1) 

 

Equation (2) gives the current generating diode, IL: 

 

 𝐼𝐿 = 𝐺{𝐼𝑆𝐶[1 + 𝑘𝑎(𝑇 − 𝑇𝑆𝑇𝐶)]}                                                           (2) 

 

Where, ISC represents the short circuit current of the PV cell's circuit, ka is the temperature coefficient, TSTC denotes 

the temperature during operation under standard test conditions, and Id stands for the revised current in the PV 

diode circuit as determined by Shockley's (3): 

 

 𝐼𝑑 =  𝐼0{exp (
𝑞𝑉𝑑

𝑛𝑘𝑇
) − 1}                                                                 (3) 

 

In this context, I0 represents the saturation current of the PV diode circuit, Vd signifies the voltage across the diode, 

q stands for the elementary charge (1.69 × 10−19 C), k denotes Boltzmann's constant (1.38 × 10−23 J/K), and n 

represents the conventional factor for the PV diode. 

Equation (4) universally defines the current-voltage behavior of the PV cell circuit: 

 

𝐼𝑃𝑉 = 𝐼𝐿 −  𝐼0 [exp (
𝑞(𝑉𝑃𝑉+𝐼𝑅𝑆)

𝑛𝑘𝑇
) − 1] − [

𝑉𝑃𝑉+𝐼𝑅𝑆

𝑅𝑠ℎ
]                                             (4) 

 

Where IPV and VPV are the output PV current and voltage. 

The PV module used in this study has a maximum power output equivalent to 250 W when measured under 

standard temperature conditions (STC). STC, T = Tref = 25 degrees Celsius, Solar irradiation Gref = 1000 watts 

per square meter.  
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The following is a listing of the electrical properties of this module that can be found in Table 1: 

Table 1. Electrical characteristics of PV module. 

Solar Photovoltaic Array 

Maximum power (Pmax) 250 W 

Voltage, Vmpp 30.7 V 

current, Impp 8.15 A 

Modules number at series, Ns 1 

Modules number at parallel, Np 1 

 

The I-V and P-V characteristics against different radiation levels through simulation are shown in Fig. 3: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. I-V and P-V of PV module. 

II.2. DC-DC Boost Converter Design 

Between the PV array and the inverter is a regulator called a DC-DC boost converter. The MPPT control [11] 

determines the duty cycle (α) of the converter, which in turn determines how much of the input DC voltage (Vpv) 

is transformed into the output DC voltage (Vdc).  

Continuous Conduction Mode (CCM) should be used to determine the boost converter parameters, Lpv, and Cdc. 

Where the boost converter's duty cycle is calculated according to the equation below [12]: 

 

𝛼 =
𝑉𝑑𝑐 − 𝑉𝑚𝑝𝑝𝑣

𝑉𝑑𝑐
                                                                            (5) 

 

The boost converter inductor can be determined as follows: 

 

𝐿 =
𝑉𝑚𝑝𝑝𝑣  𝛼

∆𝐼𝑓𝑠
                                                                              (6) 

 

Where: fS is the switching frequency, and ΔI is the current ripple. 

 

Table 2. Values for the boost converter's parameters 

Parameter Value 

Vdc_refrence 70 V 

C 100 uF 

L 0.33 mH 

α 0.55 

 

Equation (7) can determine the DC bus voltage (Vdc) at the input inverter. 
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𝑉𝑑𝑐 =
2√2 × 𝑉𝐿𝐿  

√3
                                                                          (7) 

 

Where, VLL represents the RMS line voltage of the IM. 

The VSI DC Link Capacitor is calculated by (8): 

 

𝐶𝑑𝑐 =
6𝛼 𝑉𝐿𝐿  𝐼𝐿𝑡

√3(𝑉𝑑𝑐
∗2−𝑉𝑑𝑐

2 )
                                                                        (8) 

 

Where, V∗
dc is the DC bus voltage reference, Vdc is the DC bus voltage measurement, t is the time in seconds that 

the DC-link voltage must be changed, α is the boost converter's duty cycle, and IL is the IM line current. The boost 

converter's input and output parameters are listed in Table 2 designations. 

III. MPPT Algorithm 

III.1. The proposed PSO-Neural Network Controller (PSO-NNC) 

The proposed method introduces an innovative strategy for enhancing the efficiency and accuracy of Maximum 

Power Point Tracking (MPPT) in solar photovoltaic systems. By synergistically combining the Particle Swarm 

Optimization (PSO) algorithm and Artificial Neural Networks (ANNs), this method aims to improve the 

performance of MPPT. The hybrid approach involves initializing a swarm of particles, each representing a set of 

parameters governing the solar panel's operating point. These parameters are continually adjusted based on 

evaluations performed using a trained ANN, which predicts the optimal power point using solar irradiance and 

temperature as inputs. The PSO component orchestrates the swarm's movement through parameter space, directing 

particles toward optimal configurations. Through this integration of PSO's optimization capabilities and ANN's 

predictive strengths, the proposed method endeavors to achieve more accurate and adaptable MPPT, thereby 

enhancing solar energy harvesting efficiency. Fig. 4 shows the PSO–ANN algorithm's training technique 

schematically. 

 

 

 

 

 

 

 

 

Figure 4. Training technique schematic. 

IV. MPPT Algorithm 

IV.1. Changing Load Condition 

Figures 5(a), 6(a), and 7(a) vividly depict the optimal voltage, current, and power extracted from the solar cell 

under ideal irradiation conditions of 1000 W/m². These figures showcase the algorithm's efficiency in quickly 

adapting to ensure optimal energy conversion. 
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Figures 5(b) and 7(b) illustrate the impact of the change in load on the system by showing an increase in load 

voltage and a decrease in load current. This sensitivity analysis provides valuable insights into how the system 

responds to external factors, contributing to a better understanding of its robustness and adaptability. 

Despite variations induced by the load, Figure 6(b) reveals that the load power remains remarkably stable. This 

stability is a crucial indicator of the algorithm's proficiency in swiftly adjusting system parameters to accommodate 

fluctuating load conditions. It suggests that the algorithm can maintain a consistent power output level even in the 

face of abrupt changes in load. The overall outcomes underscore the algorithm's rapid response and unwavering 

stability. These characteristics ensure photovoltaic systems' reliable and efficient operation, particularly in 

dynamic and unpredictable environments. The Hybrid PSO-ANN MPPT algorithm effectively addresses 

challenges associated with varying load conditions. The demonstrated efficiency, adaptability, and stability 

suggest its potential for practical applications in enhancing the performance of photovoltaic systems. 

 
 

Figure 5. PV voltage and load voltage under changing load conditions. 

 

 

 
 

Figure 6. PV current and load current under changing load conditions. 
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Figure 7. PV power and load power under changing load conditions. 

 

IV.2. Keep The Load Steady 

The results of the Hybrid Particle Swarm Optimization-Artificial Neural Network (PSO-ANN) Maximum Power 

Point Tracking (MPPT) algorithm, demonstrated in the described scenario, shed light on its effectiveness in 

dynamically adjusting to changing irradiance levels for enhanced photovoltaic performance. The system aims to 

optimize energy conversion under varying irradiance conditions, spanning from 1000 W/m² down to 200 W/m² at 

intervals of 0.2 seconds while maintaining a constant temperature of 25 degrees Celsius. Figures 8(a), 9(a), and 

10(a) showcase the algorithm's ability to rapidly adapt to shifting irradiance levels, with optimal voltage, current, 

and power outputs evolving in line with changing solar radiation. Figures 9(a) and 10(a) reveal a direct correlation 

between solar cell current, power output, and irradiance. As a result of diminished radiation, there has been a 

decrease in the flow of electric current and a decline in power. Impressively, despite these variations, the system 

exhibits prompt response dynamics. Figures 8(b), 9(b), and 10(b) offer insight into the applied load's behavior, 

underscoring its direct link to cell current and energy. Reductions in radiation levels prompt parallel decreases in 

load voltage, current, and power, consistent with the cell's behavior. These results underscore the algorithm's robust 

adaptability and stability, even in the face of rapid shifts in irradiance levels. This adaptive capability reinforces 

its potential to enhance photovoltaic system performance across various environmental conditions, ultimately 

contributing to more efficient and reliable solar energy utilization. 

 
Figure 8. PV module voltage and load voltage under varying radiation. 
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Figure 9. PV module current and load current under varying radiation. 

 

 
 

Figure 10. PV power and load power under varying radiation. 

V. Conclusion 

This research presents an innovative approach to enhance the efficiency of solar energy harvesting. The study 

introduces a method that combines the Particle Swarm Optimization (PSO) algorithm and Artificial Neural 

Networks (ANNs) to improve Maximum Power Point Tracking (MPPT) in photovoltaic arrays. By synergizing 

PSO's optimization capabilities with ANNs' predictive strengths, the proposed algorithm dynamically adjusts the 

array's operating point to maximize power output under varying environmental conditions. The hybrid approach 

demonstrates superior accuracy and adaptability compared to conventional MPPT methods, leading to optimized 

energy extraction from photovoltaic arrays. The results reinforce the algorithm's potential to enhance overall 

photovoltaic system performance. Its ability to adapt to varying conditions, track the maximum power point, and 

maintain stability in load power positions it as a promising tool for improving the efficiency and reliability of solar 

energy utilization. 

 



Algerian Journal of Renewable Energy and Sustainable Development 5(2) 2023: 150-158,  doi: 10.46657/ajresd.2023.5.2.7 

 

 

 

158 

References 

 

[1] G. C. Bakos and M. Soursos, “Technical feasibility and economic viability of a grid-connected PV 

installation for low cost electricity production,” Energy Build., vol. 34, no. 7, pp. 753–758, Aug. 2002, doi: 

10.1016/S0378-7788(01)00142-6. 

[2] R. Shah, N. Mithulananthan, R. C. Bansal, and V. K. Ramachandaramurthy, “A review of key power system 

stability challenges for large-scale PV integration,” Renew. Sustain. Energy Rev., vol. 41, pp. 1423–1436, 

Jan. 2015, doi: 10.1016/J.RSER.2014.09.027. 

[3] E. Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-

connected PV systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1066–1073, Jun. 2006, doi: 

10.1109/TIE.2006.878327. 

[4] V. Kamala Devi, K. Premkumar, A. Bisharathu Beevi, and S. Ramaiyer, “A modified Perturb & Observe 

MPPT technique to tackle steady state and rapidly varying atmospheric conditions,” Sol. Energy, vol. 157, 

pp. 419–426, Nov. 2017, doi: 10.1016/J.SOLENER.2017.08.059. 

[5] S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweshidy, “Design of an efficient maximum power point tracker 

based on ANFIS using an experimental photovoltaic system data,” Electron., vol. 8, no. 8, 2019, doi: 

10.3390/electronics8080858. 

[6] A. B. G. Bahgat, N. H. Helwa, G. E. Ahmad, and E. T. El Shenawy, “Maximum power point traking controller 

for PV systems using neural networks,” Renew. Energy, vol. 30, no. 8, pp. 1257–1268, Jul. 2005, doi: 

10.1016/J.RENENE.2004.09.011. 

[7] A. Mellit and S. A. Kalogirou, “Artificial intelligence techniques for photovoltaic applications: A review,” 

Prog. Energy Combust. Sci., vol. 34, no. 5, pp. 574–632, Oct. 2008, doi: 10.1016/J.PECS.2008.01.001. 

[8] M. A. Enany, M. A. Farahat, and A. Nasr, “Modeling and evaluation of main maximum power point tracking 

algorithms for photovoltaics systems,” Renew. Sustain. Energy Rev., vol. 58, pp. 1578–1586, May 2016, doi: 

10.1016/J.RSER.2015.12.356. 

[9] X. Li, H. Wen, Y. Hu, and L. Jiang, “A novel beta parameter based fuzzy-logic controller for photovoltaic 

MPPT application,” Renew. Energy, vol. 130, pp. 416–427, Jan. 2019, doi: 10.1016/J.RENENE.2018.06.071. 

[10] I. E. Livieris, “Improving the classification efficiency of an ANN utilizing a new training methodology,” 

Informatics, vol. 6, no. 1, pp. 1–17, 2019, doi: 10.3390/informatics6010001. 

[11] U. Sharma, S. Dwivedi, C. Jain, and B. Singh, “Single Stage Solar PV Array Fed Field Oriented Controlled 

Induction Motor Drive for Water Pump,” Npsc, no. December, 2014. 

[12] M. Shebani, T. I.-J. of R. Energy, and  undefined 2017, “Dynamic modeling, control, and analysis of a solar 

water pumping system for Libya,” hindawi.comMM Shebani, T IqbalJournal Renew. Energy, 2017. 

 


