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 In this article, we analyze the effect of transverse cracks on the natural 

frequencies of a Euler-Bernoulli functional gradient beam. The studied 

beam was discretized into finite elements and the global matrices of 

the motion equation are determined by applying the Lagrange equation 

to the beam kinetic and deformation energies. The material properties 

are considered to vary in the directions of the beam thickness, the 

gradation is described by the power-law distribution, the stiffness of 

the cracked element is determined based on the reduction of the beam 

cross-section. The numerical results obtained are compared with those 

available in the previous study. Finally, case studies were carried out 

to analyses the influence of the power law index, the depth and the 

opposition of the crack on the natural frequencies of the beam for 

different boundary conditions; these studies demonstrate the advantage 

of the FGM beam over the purely metal beam. 
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I. INTRODUCTION  

The FGM concept first appeared in Japan in 1984 as a suggested thermal barrier material capable of withstanding 

a surface temperature of 2000 K and a temperature gradient of 1000 K across a cross-section  < 1𝑚𝑚  [1] . In 

recent years, functionally graded materials (FGM) have been considered as one of the advanced inhomogeneous 

composite materials with great application potential in many high temperatures engineering fields such as 

aerospace vehicles, nuclear reactors, power generators, automotive industries. FGMs typically consist of a 

continuously gradient mixture of metals and ceramics in the compositional profile, so they can take advantage of 

the heat and corrosion resistance of ceramics and the mechanical toughness of metals, while reducing the extent 

of residual and thermal stresses.  

Cracks frequently appear in FG structures, which pose a serious threat to the safety of their performance. Many 

research efforts have been devoted to the analysis of the failure of FGMs with different configurations [2-4]. 

However, the early detection of cracks in FGM structures is necessary to prevent possible catastrophic failure. 

The presences of a crack in a structure will influence its stiffness and damping properties and change its vibrational 

characteristics, which can be measured and employed to detect and quantify the crack. Vibration-based inspection 

approaches have received considerable attention over the past three decades. There is a large body of literature 

that studies crack modeling, free and forced vibration, and crack diagnosis. Chondros and Dimarogonas [5] 

provided a detailed overview of approaches to predict the change in dynamic characteristics as function of crack 

location and size. Dimarogonas [6] reviewed analytical, numerical, and experimental studies on crack recognition 

based on dynamic feature changes. Doebling et al [7] reviewed methods for detecting, locating, and estimating the 
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severity of damage in structural systems by examining changes in measured vibration responses. 

Depending on the loading conditions and vibration amplitude, crack models are generally divided into two 

categories: the open and the breathing model [8]. In the open model, the crack is always open during vibration, 

while it alternately opens and closes in the breathing model. The open crack model mainly includes an equivalent 

linear spring or local flexibility connecting the two segments of the beam, a local change in the modulus of 

elasticity, reduced cross sections, and a continuous variation of the flexibility along the length of the beam. A 

breathing crack, usually simulated by a bilinear spring, can produce interesting and complicated nonlinear dynamic 

behavior. Most previous research uses the open crack model while comparatively few studies have been conducted 

applying the breathing crack model. Narkis [9] simulated the cracks as an equivalent rotating spring and studied 

the dynamics and identification problems of a uniform cracked, simply supported beam. Dado [10] reported a 

comprehensive crack identification algorithm for beams under different support conditions using the local 

flexibility approach. Christides and Barr [11] developed a one-dimensional continuous Euler-Bernoulli beam 

theory cracked by the generalized variational principle and an assumed crack perturbation function to be 

determined by experiments. Yang et al [12] proposed an expression for the continuously varying bending stiffness 

of beams with open crack based on the energy method. Chondros et al [8] used a bilinear crack model and the 

vibration theory of continuously cracked beams to predict changes in the transverse vibration of a simply supported 

beam with an open crack. It should be noted that these crack models must be properly applied taking into account 

the assumptions under which the models were derived or valid, otherwise incorrect conclusions would be drawn. 

In this study, we used the traditional finite element approach to examine the dynamic behavior of a functionally 

graded beam (h-FEM).The beam is discretised into finite elements Euler-Bernoulli beam and the global equation 

of motion is obtained applying the Lagrange’s equation taking into account the variation of the stiffness of the 

cracked element. According to the power law distribution, the material properties are considered graded in the 

thickness directions of the beam. The natural frequencies are determined numerically using a program developed 

in MATLAB, the obtained results are verified with those reported in literature for FG beam. Finally, The purpose 

of case studies is to illustrate the benefits of FGM and pure metallic models by showing how the power law index, 

the depth, and the position of the fracture affect the natural frequencies of the beam. 

II.  MATERIALS AND METHOD 

 Consider a beam with a length L, width b, and thickness h; which is composed of a metallic core and covered 

with ceramic as seen in Fig. 1. In our study, the material properties P of the beam vary continuously along the 

thickness (z axis) according to the following relation: 

 

𝑃(𝑧) = 𝑃1 𝑉1(𝑧) + 𝑃2 𝑉2(𝑧)               (1) 

 
 Figure 1. Schematic of FG beam 

  

Where 𝑃(𝑧) denotes either the density or the Young’s modulus E(z). V1(z) and V2(z) are the volume fractions of 

the metal and ceramic components, fulfilling the following relation 

 

𝑉1(𝑧) + 𝑉2(𝑧) = 1                                                               (2) 

 

𝑃(𝑧) = (𝑃2 − 𝑃1) (1 − (||
2𝑧

ℎ
| − 1|))

𝑛

+ 𝑃1   (3) 

 

Where:  

 n: represents the power index of the material’s gradation along the z axis (thickness direction). 
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From this relation, we can deduce several cases: 

• n = 0: the material properties vary only in the thickness direction (along the z axis). 

•  n =∞: denotes a pure ceramic beam (𝑉1(𝑥, 𝑧) =  0).  

• n = 0: denotes a pure metallic beam (𝑉1(𝑥, 𝑧)  = 1).  

• n = 1: denotes a linear gradation. 

For an element of length Le, the expression of the kinetic energy Ec and the strain energy Ep of the FG beam are 

given by 

 

𝐸𝑐 =  1
2⁄   ∫ 𝐴11𝑤̇2 𝑑𝑦

𝐿𝑒

0

                  (4) 

𝐸𝑝 =  1
2⁄   ∫ 𝐵11  (

𝜕2𝑤

𝜕𝑦2
)

2

𝑑𝑦
𝐿𝑒

0

                  (5) 

Where w represent the transverse displacement along the z-axis; the expression of 𝐴11and 𝐵11 are given as: 

𝐴11 = ∫ 𝜌(𝑧)𝑑𝑠 = b ∫ 𝜌(𝑧)
ℎ/2

−ℎ/2𝑠

𝑑𝑥 𝑑𝑧   
               (6) 

 

𝐵11 =  ∫ 𝐸(𝑧)
𝑠

𝑧2 𝑑𝑠 = 𝑏 ∫ 𝐸(𝑧)𝑧2  𝑑𝑥𝑑𝑧 
ℎ/2

−ℎ/2

 (7) 

 

According to the Eq.4, The Young’s modulus 𝐸(𝑥, 𝑧) and mass density 𝜌(𝑥, 𝑧)are given as:  

𝜌(𝑧) = (𝜌2 − 𝜌1 ) (1 − (||
2𝑧

ℎ
| − 1|))

𝑛

+ 𝜌1     (8) 

𝐸(𝑧) = (𝐸2 − 𝐸1 ) (1 − (||
2𝑧

ℎ
| − 1|))

𝑛

+ 𝐸1  (9) 

 

II.1. Finite element method 

Beam was discretised into 10 elements with two degree of freedom of one element, as shown in Fig. 2, the 

transverse displacement w is replaced with the vector of shape functions Nw [13]  and the vector of generalized 

coordinates qw. 

    𝑤 = [𝑁𝑤]{𝑞𝑤}                                                                  (10)  

While the expression of the kinetic energy Ec and the strain energy Ep of the FG beam will be: 

𝐸𝑐 =  1
2⁄   ∫ 𝐴11{𝑞̇𝑤}𝑡 {𝑁𝑤}𝑡 {𝑁𝑤} {𝑞̇𝑤} 𝑑𝑦

𝐿𝑒

0

       (11) 

𝐸𝑝 =  1
2⁄   ∫ 𝐵11 {𝑞𝑤}𝑡{𝑁𝑤

′′}𝑡{𝑁𝑤
′′} {𝑞𝑤} 𝑑𝑦

𝐿𝑒

0

      (12) 

II.2.  Modelling of cracked elements 

In fig. 2, Lc represent the crack location from the left end of the beam and a is the depth of the crack, the non-

dimensional parameters of the crack are given as: 

{
𝑙 ̅ =

𝐿𝑐

𝐿

ℎ̅ =
2𝑎

ℎ

       (13) 

 

The previous studies on the cracked beams denote that the cracks reduced its stiffness, in our study, the reduce of 

the beam’s stiffness will translated by the reduction of the cross-section of the beam due to the crack depth 

propagation as shown in Fig. 2. In this case, the expression of the coefficient B11 is given as: 
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𝐵11 𝑐𝑟𝑎𝑐𝑘 = 𝑏 ∫ 𝐸(𝑧) 𝑍2𝑑𝑧
(
ℎ
2

−𝑎)

−ℎ/2

 
(14) 

 

 

Figure 2. Cross section of the cracked element 

II.3. Total Equation of Movement  

The elementary masse [Me] and stiffness matrices of uncracked [Ke] and cracked [Kec] element of the studied 

beam are developed by the application of Lagrange’s equation. 

𝑑

𝑑𝑡
(

𝜕𝐸𝐶

𝜕𝑞̇𝑤

) +
𝜕𝐸𝑝

𝜕𝑞𝑤

= 0 (15) 

 

Where: 

[𝑀𝑒] = 𝐴11 ∫ {𝑁𝑤}𝑡 
𝐿𝑒

0

{𝑁𝑤} 𝑑𝑦 (16) 

[𝐾𝑒] = 𝐵11 ∫  {𝑁𝑤
′′}𝑡{𝑁𝑤

′′} 
𝐿𝑒

0

 𝑑𝑦    (17) 

[𝐾𝑒𝑐] = 𝐵11𝑐𝑟𝑎𝑐𝑘 ∫  {𝑁𝑤
′′}𝑡{𝑁𝑤

′′} 
𝐿𝑒

0

 𝑑𝑦    (18) 

 

The assembly of previous matrices taking into account the location of the cracked element allow us to determine 

the global masse [M] and stiffness [K] matrices of the governing equation of motion. 

[𝑀]{𝑞̈𝑤} + [𝐾]{𝑞𝑤} = 0 (19) 

The natural frequencies  are obtained from the eigen solution of the equation given as: 

|[𝐾] − 𝜔2[𝑀]| = 0 (20) 

 

II.4. Validation  

In order to validate the developed FE model for cracked FG beam and given the lack of studies on this model, we 

choose to compare our results in the case of uncracked FG cantilever beam with those given by Piovan et al [14] 

where the material gradation vary in the thickness direction , the geometric and material characteristic of the beam 

are given in table.1.  

Fig. 4 illustrates the comparison between the obtained natural frequencies of first three modes of the cantilever 

beam compared with Piovan et el [14]. The obtained results are in an excellent agreement with the results of Piovan 

et el  [14] . 

 

 

 

Table 1. Geometric and material properties of FG beam. 

Geometric properties 
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Length 𝐿
= 1 𝑚 

Width 𝑏
= 0.01 𝑚 

Thickness ℎ
= 0.02 𝑚 

Material properties 

 Steel (metal) Alumina 

Al2O3(ceramic) 

Young’s 

modulus 𝐸 

[GPa] 

2,14 3,9 

Mass density 𝜌 

[Kg.m-3] 

7800 3200 

 

 

Figure 4. Validation of the natural frequencies of the first three modes. 

III. RESULTS 

 In this section, several case studies were conducted to analyse the influence of power law index, depth and 

crack location on the natural frequencies of the beam for different boundary conditions; the geometric and material 

parameters of the beam are given in table 1. 

These studies demonstrate the advantage of the model of FG beam and the metallic models. 

Table 2 represents the variation of the natural frequencies of the first three modes of vibration for un uncracked 

FG beam as function to the power index for different boundary conditions. From the results of this table, we can 

see that the natural frequencies of FG beam are comprised between the natural frequencies of pure ceramic and 

pure metallic beam. For the same value of power index; the frequencies of FG beam approach to the pure metallic 

more than the FG beam; that mean the characteristics (lower elastic modulus and higher density) of bi-directional 

model are more close to the pure metallic more than the unidirectional model. 

The effect of the crack depth h  and crack location l  on the natural frequencies of pure metallic and FG beams is 

shown in tables 3 and 5.   

 The frequency’s decrease is more important in the case of cantilever beam compared to the simply supported and 

clamped beams for the two models. 

In the case of cantilever beams, the severity of crack’s location increase when the crack approach to the fixed side 

for the first and second modes, for the third mode, it increase when the crack approach to the middle. In the case 

of Simply Supported and Clamped-Clamped beams, it increase when the crack approach to the middle. 
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Table 2. Natural frequencies of the uncracked beam according to the power law index for different boundary 

conditions. 

Power index 

 

 

Natural frequencies (Hz) 

FG beam 

F1 F2 F3 

Cantilever beam 

0 (pure ceramic) 35.7 223.5 626 

0.25 30.88 193.55 542.06 

1 25.62 160.6 449.77 

4 20.95 131.33 367.80 

10 18.97 118.92 333.04 

20 18.06 113.20 317.04 

∞ (pure metallic) 16.92 106.06 297.03 

 Simply Supported beam 

0 (pure ceramic) 100.12 400.52 901.55 

0.25 86.69 346.8 780.63 

1 71.93 287.75 647.72 

4 58.82 235.31 529.68 

10 53.26 213.07 479.62 

20 50.70 202.83 456.57 

∞ (pure metallic) 47.50 190.03 427.75 

 Clamped-Clamped beam 

0 (pure ceramic) 226.97 625.78 1227.7 

0.25 196.52 541.85 1063.0 

1 163.07 449.6 882.03 

4 133.35 367.66 721.28 

10 120.74 332.91 653.11 

20 114.94 316.91 621.73 

∞ (pure metallic) 107.68 296.91 582.48 

 

Table 3. Influence of the crack depth on the natural frequencies of the FGM beam for different boundary 

conditions where l ̅=0.15 

Non-dimensional 

crack depth ℎ̅ 

Natural frequencies (Hz) 

Pure metallic beam 

(n =  ∞) 

FG beam 

( n = 2) 

F1 F2 F3 F1 F2 F3 

 Cantilever beam 

0 16.92 106.06 297.03 23.07 144.59 404.96 

0.25 16.11 105.25 295.98 21.81 143.34 403.33 
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0.5 15.47 104.63 295.06 20.98 142.54 402.11 

0.75 15.16 104.34 294.59 20.65 142.24 401.60 

1 15.11 104.2 294.1 20.6 142.2 401.5 

 Simply Supported beam 

0 47.50 190.03 427.75 64.8 259.1 583.2 

0.25 47.09 185.22 413.46 64.1 251.6 561 

0.5 46.73 181.12 402.71 63.65 246.22 547.28 

0.75 46.55 179.12 397.89 63.45 244.09 542.17 

1 46.52 178.81 397.15 63.42 243.79 541.48 

 Clamped-Clamped beam 

0 107.68 296.91 582.48 146.8 404.8 794.2 

0.25 106.77 295.85 573.81 145.4 403.2 780.7 

0.5 106.07 294.92 566.98 144.5 401.9 771.9 

0.75 105.75 294.44 563.80 144.2 401.4 768.5 

1 105.7 294.3 563.3 144 401.3 768.0 

Table 4. Influence of the crack location on the natural frequencies of the FGM beam for different boundary 

conditions where ℎ̅ = 0.35  

Non-dimensional 

crack location 𝑙 ̅

Natural frequencies (Hz) 

Pure metallic beam 

(n = ∞) 

FG beam 

( n = 2) 

F1 F2 F3 F1 F2 F3 

 Cantilever beam 

0.15 15.82 104.96 295.57 21.41 142.95 402.76 

0.25 16.14 105.71 287.34 21.89 144.07 390.40 

0.35 16.41 103.59 286.50 22.29 140.87 389.20 

0.55 16.76 100.50 293.87 22.83 136.22 400.21 

0.85 16.91 105.56 290.58 23.06 143.85 395.14 

 Simply Supported beam 

0.15 46.93 183.39 408.51 63.90 249.03 554.33 

0.25 46.19 180.75 417.66 62.8 245.1 568.1 

0.35 45.49 183.91 425.57 61.72 249.90 579.88 

0.55 45.08 188.81 411.97 61.1 257.2 559.5 

0.85 46.93 183.39 408.51 63.90 249.03 554.33 

 Clamped-Clamped beam 

0.15 106.5 295.4 570.7 145. 402.6 776.4 

0.25 107.4 287.1 563.6 146. 390.1 766.1 

0.35 105.74 286.15 579.37 143.9 388.7 789.4 
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0.55 103.98 294.28 562.89 141.2 400.9 764.8 

0.85 106.45 295.44 295.44 145.0 402.6 776.4 

IV. CONCLUSION 

In the present paper, a finite element model is developed for a functionally graded beam using the Euler-Bernoulli 

beam theory. Various analyses are carried out to evaluate the influence of crack depth and location on the natural 

frequencies of a pure metallic and FG beams, the obtained results show that: 

• The natural frequencies of FG beam are comprised between the natural frequencies of pure ceramic and 

pure metallic beam. 

• The natural frequencies decrease when the crack depth increases for the different studied model. 

• The crack depth and location had an important effect on the stiffness of the FG beam compared to Pure 

metallic beam. 
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