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 This work explores numerically a computational study of free 
convection in a grooved porous enclosure filled with water-based 

hybrid-nanoliquid in the presence of an external magnetic field. To 

solve the governing equations of the problem, the Galerkin finite 

element technique is utilized. For a several governing parameters such 

as Rayleigh number (102≤Ra ≤106), magnetic field parameter 

(0≤Ha≤100), Darcy number (10-2≤ Da ≤10-4) the results are obtained 

and discussed via streamlines, isotherms and average Nusselt number. 

The magnetic field has a good regulating effect for the fluid flow and 

the heat transfer in porous media. 
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I. Introduction 

The various applications of the free convection in industrial and engineering fields such as solar technology, heat 

exchangers, mobile device cooling, house heating and cooling systems, aeronautics, nuclear reactors, 

petrochemical industries and geophysical fluid dynamics are receiving significant attention from researchers and 

scientists around the world. The efficiency of thermal output depends on the creation of heat transfer mechanisms, 

especially as most engineering processes produce high temperatures. To do this, several approaches have been 

used to rise the efficiency of heat transfer in thermal engineering. Recently, referencing to Choi [1], nanoliquid, a 

colloidal blend of  NPs into base liquids (such as water, ethylene glycol and oil), has been used to boost the 
effectiveness of heat transport mechanisms. As the rise in heat flow is an important problem for energy efficiency, 

free convection plays a crucial role in thermal engineering in nanolquid inside enclosures. In this way, a variety of 

computational and experimental studies are performed. The research conducted by Khanafer et al. [2] listed as the 

initial efforts of heat transport improvement using nanoliquid. They simulated the problem of the nanofluid heat 

transfer characteristics in a two-dimensional enclosure, in their investigation the heat transfer rate increases 

significantly with the suspended nanoparticles at any value of Grashof. Mebarek-Oudina [3] inspected the thermal 

and hydrodynamic characteristics of Titania nanoparticles with different base fluids utilizing cylindrical annulus. 

Laterly Jou and Tzeng [4] applied a model to evaluate a related analysis in nanofluid-filled rectangular cavities. 

The heat transfer coefficient is important in nanofuids relative to pure fluids and grows with the rise of Ra. In a 

two-sided lid-driven square enclosure, Tiwari and Das [5] built a model to study the heat transport properties of 

nanofuids. The suspended nanoparticles improve the base liquid's heat transfer potential, which is more 

pronounced with an augment in the solid volume fraction. Also, the differing Ri numbers and the moving walls 

directions influenced fluid flow and heat transfer within the cavity. Various studies using different nanoparticles 
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and base fluids are published by different authors [6-31]. Kakac and Pramuanjaroenkij [32] found that nanofluids 

dramatically increase the ability of thermal processes to transfer heat. Izadi et al. [33] utilized the numerical method 

to analyze the effect of nanoparticles concentration and inclination angle of on mixed convection in an inclined 

square enclosure with a moving top wall. In another publication, Izadi et al. [34] analyzed the thermal non-

equilibrium model with free convection inside a porous cavity in a micropolar nanoliquid. The heat transfer rate 

in the porous medium rises with a reduce in the thermal resistance of the fuel domain with an augment in the 

thermal conductivity ratio. Sabour et al. [35] examined the free convection of nanofuid in a square enclosure. They 

revealed that the improvement in heat transfer is ensured as the volume of nanofuid increases with Rayleighs 

number. The efficiency of the employ of nanoliquids influenced by the nanoparticles shape as well as the base 
liquid is also observed. In a nanofluid square cavity with separate inner geometries, Roy [36] conducted a 

computational analysis of free convection, the Nusselt number increases linearly with the rise in the nanoparticle 

volume fraction. He noticed that the form of various inner geometries influences the rising rate of the heat transfer 

coefficient. Bondarenko et al. [37] studied a free convection cooling device utilizing a heat-generating source and 

a heat-conducting portion at diverse positions on the bottom wall of a square enclosure. They found that the cooling 

efficiency depends on the position of the heat source due to the addition of nanoparticles in the base liquid. Using 

Buongiorno's nanofuid model, Elshehabey and Ahmed [38] annalyzed the mixed convection in a lid-driven 

enclosure. Noghrehabadi et al. [39] investigated the free convection flow of nanoliquid in a square cavity in the 

presence of heat source and sink. On the other hand, the study of electrically conducting fluid in the presence of 

magnetic field effect has signifcant applications in industrial and engineering fields such as crystal growth in 

liquids, cooling of microelectronic devices and nuclear reactors. Bourantas and Loukopoulos [40] utilized mesh 

less point collocation with velocity correction technique to simulate the transient free convection flow of 

micropolar nanoliquid in an inclined square enclosure subjected to a magnetic feld. The flow and temperature are 

affected significantly by the strength and orientation of magnetic feld. Kasaeipoor et al. [41] studied the effect of 

magnetized Cooper-Water nanoliquid mixed convection flow in a T-shaped cavity and proposed that some range 

of Re number and Ha number depends on rising heat transport rate with augmenting volume fraction. With 

magnetic field, Job and Gunakala [42] studied the impact of joule dissipation and viscous on two-dimensional 
unstable buoyancy-driven Alumina-water and SWCNT-water nanoliquids in a wavy trapezoidal enclosure. They 

reported that the flow propagation diminishes and the rate of heat transfer rises for greater wavy bottom wall 

amplitude. As the intensity values and the inclination angle of the magnetic field increase, the rate of heat transfer 

decreases. The flow and thermal fields influenced by the variable thermal boundary conditions are also analyzed. 

In a differentially heated hexagonal enclosure, Ali et al. [43] introduced the finite element method to analyze MHD 

free convection flow. They studied the effect of the magnetic field on free nanoliquid convection in a grooved 

cavity with varying thermal conditions. Due to the varying thermal conditions, flow and thermal fields are greatly 

affected. Also with the increase in the Rayleigh number and the nanoparticles volume fraction, the rate of heat 

transfer increases. An experimental investigation of the effect of the free convection in a differentially heated cubic 

enclosure is made by Dixit and Pattamatta [44]. They also shown that due of the magnetic field effects, the heat 

transport rate turns down. Alsoy-Akgün [45] later extended the Dual Reciprocity Boundary Element Approach 

(DRBEM) to model unstable free convection in Alumina-water nanofluid into square enclosure subjected to an 

uniform magnetic field. Due to Ra number, the effect of magnetic field on heat transfer efficiency and temperature 

profiles depends on buoyancy power. The effect of the concentration of nanoparticles on the liquid behaviors 

associated with the magnetic field parameter effect is also observed. Izadi et al. [46] are numerically studied the 

free convection in magnetized hybrid nanoliquid-filled porous enclosure. With rising porosity coefficient and Ha 

number, the heat transfer rate increases and decreases. The fractional volume of nanoparticles affects the 
streamlines. Ideal geometric modifications with additional surfaces such as fins, grooves, corrugations and baffles 

can also increase the performance of thermal devices. Therefore, for a basic geometric model, the disadvantage of 

the lower heat transfer rate motivated us to create a new geometric model with square grooves to improve the heat 

transport rate. In this respect, numerous experiments with various configurations are carried out to study the 

activities of flow and heat transfer. Han and Rhi analyzed experimentally the thermal efficiency of a grooved 

heated pipe filled with nanoliquid and hybrid nanoliquid [47]. They found that thermal resistance is high with 

increasing concentrations of nanoparticles. With the presence of an adiabatic baffle, Sharma et al. [48] studied 

mixed convection in a grooved channel. They concluded that the rate of heat transfer rises due to the presence of 

a baffle in this mode of convection. Kumar et al. [49] published an experimental analysis on turbulent free 

convection in a cavity with a smooth or grooved bottom area in the presence of heat fux. A numerical study on the 

mixed convective flow of nanoliquids in a grooved channel like solid cylinders with the efffect of magnetic field 

is carried out by Job and Gunakala [50]. They showed that the diverse groove geometries, cylinder radius and other 

related parameters influenced flow and thermal fields. 
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It is clear from the analysis of the literature that there is no research on free convection in a special enclosure filled 
with MgO-Ag / water hybrid nanofluid (50%-50%). Additionally, it is possible to use the magnetic field to regulate 

fluid flow and heat transfer. 

 The object of this work is to analyze numerically the thermal and dynamic field of the flow in terms of streamlines, 

and isotherms in the presence of a magnetic field in a porous medium. 

 

In the construction of thermal equipment such as heat exchangers, electronic cooling equipment and biomedical 

equipment where high temperatures and fluid flow need to be controlled, the forecasts and even the results of this 

type of study can be a useful reference. 

II. Problem Description 

 Figure 1 describes the physical model of the present investigation. The working fuid inside the enclosure is 

assumed as water.  Ag, MgO are the nanoparticles used here [52], where Tc is the initial temperature.  

 

Figure 1. Scheme of the grooved enclosure used. 

 

The thermo-physical properties of the base fluid and nanoparticles used here are detailled in Table 1. 

 

Table 1. Base liquid and nanparticules properties. [52] 

 H2O MgO Ag 

Cp (J/kg∙ k) 4179 765 383 

(kg/m3) 997.1 3600 8954 

K (W/m∙ k) 0.6 46 400 

β∙10-5 (K -1 ) 21 0.63 1.67 

𝜎 ∙ 10−6(Ω
−1m−1) 5.5 2.7 59.6 

III. Validation and Grid Test Analysis 

This numerical simulation is validated by comparing the present numerical results with the previously published 

results. We have used our numerical code to simulate the identical problem of those Ghasemi et al. [51]. The 

comparison shows that the results are consistent with each other. From the Fig. 2 the contours of total entropy 

generation are almost identical.  
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Figure 2. Streamlines results at Ra = 105, a)Ghasemi et al. [51], b)Present work. 

Table 2. Grid dependency of ψmax at the left heated wall when Ra = 106, Ha = 0, = 0.05 and Da = 0.1. 

Number of elements 1898 4678 7258 17248 42548 53190 

max 7.2665  7.2275 7.2143 7.1994 7.1977 7.1976 

IV. Developement model 

 The dimensionless governing equations are: 
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Dimensionless numbers are written as: 
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The associated dimensionless boundary conditions are : 

1.  On the internal walls: 

U = V = 0, 𝜃 = 0                                                                                                                                          (7) 
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2. On the top horizontal walls 

U = V = 0, 
𝜕𝜃

𝜕𝑌
= 0                                                                                                                                    (8) 

3. On the bottom horizontal and vertical walls: 

U = V = 0, 𝜃 = 1                                                                                                                                     (9) 
 

IV.1. Nanofluid Thermophysical Caracteristics 

Designed for nanoparticles MgO and Ag, the properties are obtained : 
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The effective dynamic viscosity based on the Brinkman mode is considered as  
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The electric conductively and the thermal conductivity respectively: 
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V. Graphical illustration & Discussion 

 

 

   
(a) Ra =103 

  
(b) Ra =104 

  
(c) Ra =105 
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(d) Ra =106 

Figure 3. Variations of the streamlines (left) and isotherms (right) with various Rayleigh number (Ra), Ha = 0, 

Da = 0.1, ε = 0.4 and  

 

   
                                                                                  (a) Ha = 0 

           

                                                                                 (b) Ha = 25 

                                                
                                                                                 (c) Ha = 50 
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                                                                                 (d) Ha =100 

Figure 4. Variations of the streamlines (left) and isotherms (right) with various Hartmann number (Ha), = 0.02, Ra 
=106 and Da = 0.1. 

 

 

 

 
 

Figure 5. Vertical velocity component (V) vs Ha for Ra=105. 
 

 
 

Figure 6. NuAvg vs Da for various Ha. 
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Figures 4 and 3 illustrate the effect of the Ra numbers and Ha numbers on the of the streamlines and isotherms, 
respectively. For various Rayleigh numbers (102 - 106) the study are perfomed.  

For the low numbers of Ra the lines of the isotherms are vertical straight lines without deformation, this is very 

well explained by the dominant of the conductive mode. (Figs. 3 a and b) 

But with the increase in the value of the Ra number the lines of the isotherms are deformed favoring the convective 

mode, and this mode of transfer persists for large values of Ra where the deformation of the isotherms is clear. 

(Fig. 3d). 

Two large separate towing cells; the negative (on the right) and the positive (on the left) appear in the studied 

system. Keeping in mind that the maximum and minimum values are located at the center of the cells, we can 

clearly notice that: 

1. this value increases with the increase in the Ra number where the voltex widens and the convective mode reigns 

in the flow, of which: Ψmax=0.0069 for Ra = 102 and Ψmax= 4.1 for Ra = 106. (Fig. 3) 

2. this value increases with the rise in the intensity of the magnetic field, of which without magnetic field: Ψmin=-

4.4 and for Ha = 100 Ψmin= -1.6. (Fig. 4) 

In order to study the effect of the application of the magnetic field on this porous enclosure, values of Ha between 

0 and 100 and Da between 10-2 and 10-4 are used. Figure 5 shows the vertical velocity profiles (V) for a horizontal 

plane located at the mid-section of the enclosure. Here, the plotted values of the velocity components indicate the 

direction of the fluid movement within the enclosure. By comparing the velocity profiles in the two figures, it is 
evident that the amplitude of the velocity components decreases with rising strength of the magnetic field. The 

substitution in the Nuavg is demonstrated by Figure 6 along with the hot wall for various Da and Ha values, at Ra 

= 105, φ = 0,02, ε = 0.4. Similarly, it can be concluded that when the Da augments, the Nuavg enhanced. 

Accordingly, for the Da at high values (i.e., Da = 10-2), it is noticed that the process of the heat exchange is 

sufficient. Regarding the effect of Ha on heat transfer, it can be predicted that as Ha increases, Nuavg decreases, 

this is due to the external magnetic field, which dominates at the suppression of the flow field. As results, for a 

good transfer we must lower the Ha number. 

Regarding the effect of Ha on the Nuavg findings, it can be predicted that as the Ha increases, they would decrease. 

This behavior can be attributed to the outside magnetic field, which dominates to the suppression of the flow field. 

As a consequence, the Nuavg is predicted to drop with the Ha. 

VI. Main results 

In this investigation, the effects of magnetic feld on natural convection in a special enclosure filled with nanofuid 

are studied numerically. The dimensionless governing equations are solved using Galerkin fnite element method. 

Computations are performed to analyze the effects of pertinent parameters on the fluid fow, temperature and heat 
transfer rate, respectively.  

The important conclusions can be compiled as: 

1. Fluid flow strength accelerates significantly with rising Ra and decelerates with an augmentation in magnetic 

feld strength. Isotherms distributions become more concentrated with greater Ra and lower Ha. 

2. The rise in Ra increases the convective heat transfer coefficient, and the convectif mode perciste in the range of 

105 to 106. 

3. The maximum and minimum values of the stream function rise with the increase in the value of the Ra number 

and the Ha number.  

4. The magnetic field is a good regulator for the fluid flow and the heat transfer. 

5. For good heat transfer, it is necessary to reduce the Hartmann number and increase the Da number. 
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