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Abstract 

In liquid-liquid equilibrium (ELL) calculations several thermodynamic models may be used for the 

calculation of the activity coefficient. In the present study the NRTL (Nonrandom Two-Liquids) was used. It 

is based on the concept of local composition and it requires binary interaction parameters which are 

calculated from experimental data by minimizing an objective function expressed either in terms of activities 

or mole fractions. The used minimization technique was the stochastic optimization method, known as the 

Particle Swarm Optimization. The considered ternary and quaternary systems were Water as diluent, Ethanol 

as the solute and Dichloromethane, Chloroform and Diethyl ether as solvents, considered individually or as 

binary mixtures. The obtained results were assessed by comparison with the experimental values, by 

calculating the Root-Mean-Square Error. This showed that the nature of the objective function did influence 

the agreement with the experimental values with the hybrid (PSO-), leading to the best accuracy and with 

diethyl ether and 50% dichloromethane (DCM) +50% diethyl ether (DEE)} in the ternary and quaternary 

systems, as  the best individual and -mixed solvents, respectively. 
 

Keywords: Nonrandom Two-Liquid model, Objective Function, Particle Swarm Optimization and 

Thermodynamic systems. 

 
 

 

 

 

 

I. Introduction 

 
Liquid-liquid extraction known also as solvent 

extraction is a separation technique used to separate 

constituents from liquid mixtures, particularly when 

their volatilities are close, giving azeotropes or are 

easily thermo-degradable [1]. It is a fundamental 

mass transfer operation between two liquid phases 

totally or partially miscible or immiscible. It 

consists of extracting one or more solutes from a 

solution (liquid mixture) by dissolution in a solvent 

(individual or mixed). Provided a sufficient contact 

time is allowed, the liquid-liquid equilibrium of the 

system is obtained with two distinct phases that can 

be separated by a simple decantation [1]. The 

considered systems can be binary, ternary, 

quaternary, etc depending on the number of the 

constituents [2, 3]. 

Many recent research works have focused on 

liquid-liquid equilibrium (LLE) difficulties such as 

phase equilibrium calculations, chemical 

equilibrium calculations, binary interaction 

parameter identification of thermodynamic models, 

phase stability analysis, and other fluid 

characterization problems [4]. 

Liquid phases in equilibrium can be modeled using 

thermodynamic models such as NRTL (Non-

Random, Two-Liquids) model and its expansions. 

However the use of these thermodynamic models 

depends on the availability of interaction 

parameters which should be appropriately regressed 

from experimental data [5]. 

Recently several optimization methods have been 

used to simulate and calculate liquid-liquid 

equilibrium [6] and one can cite: Simulated 

Annealing (SA), Simulated Genetic Algorithms 
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(GA), Tabu Search (TS) method, Harmony Search 

(HS) method, Ant Colony Optimization (ACO), 

Random Tunneling (RT) method, Differential 

Evolution (DE) method and Particle Swarm 

Optimization (PSO) [4, 7, 8].  

The NRTL parameters were effectively regressed 

from liquid-liquid equilibria data using the PSO 

method, a global optimization algorithm [5]. 

In this paper, the PSO method was used to regress 

the adjustable parameters of the NRTL model for 

ternary and quaternary liquid-liquid systems 

reported in [9]. In general, there are two methods 

for calculating the LLE, such as the Gibbs energy 

minimization or solving the isoactivity equations 

(the K-value method) and for determining the phase 

behavior of LLE systems [10]. But in this paper, 

solving the isoactivity equations was used due to its 

simplicity compared to the Gibbs free energy 

minimization [11]. 

 

II. Liquid-liquid equilibrium conditions 

In chemical thermodynamics, the phase equilibrium 

condition between two phases I and II for any 

constituent i of the liquid-liquid mixture, is given 

by the equality of the temperatures T, pressures P 

and chemical potentials μ of the constituents in 

each phase, and the system of equations can be 

written [12–15] as: 

𝑇𝐼  = 𝑇𝐼𝐼
                                                             (1) 

𝑃𝐼  = 𝑃𝐼𝐼                                                              (2) 

μ𝑖
𝐼  = μ𝑖

𝐼𝐼                                                             (3)  

Where: 

𝑇𝐼 𝑎𝑛𝑑 𝑇𝐼𝐼
  are the temperature of the phase I and 

II respectively;                            

𝑃𝐼 𝑎𝑛𝑑 𝑃𝐼𝐼   are the pressures of the phase I and II 

respectively;                             

μ𝑖
𝐼 𝑎𝑛𝑑 μ𝑖

𝐼𝐼  are the chemical potentials of 

component i , in phase I and II respectively.                                   

The chemical potential can be considered as the 

driving force during mass transfer that results in 

phase equilibrium. 

For a same reference state the chemical potential 

is related to activity as [16]:  

μ𝑖
𝐼  = 𝑅. 𝑇. 𝑙𝑛 a𝑖

𝐼                                                     (4) 

μ𝑖
𝐼𝐼  = 𝑅. 𝑇. 𝑙𝑛 a𝑖

𝐼𝐼                                                   (5) 

From the systems of equation (3)-(5), the activities 

of each constituent in each phase are equal and the 

equilibrium condition (3) becomes [13, 17]:   

  𝑎𝑖
𝐼 = 𝑎𝑖

𝐼𝐼                                                                 (6)                                                                                                                                 

Where:  

a𝑖
𝐼 𝑎𝑛𝑑 a𝑖

𝐼𝐼  are the chemical activities of component 

i in phase I and II respectively.     

The equation (6) allows us to conclude that the 

equilibrium state of a system is reached only when 

the chemical potential of each of the constituents is 

identical in the two phases. In our work, the system 

of equations (6) is the basis of all equilibrium 

calculations between phases. 

The fugacity is equal in the two phases at 

equilibrium leading to a the following system of 

equations  [12]:   

 𝑓𝑖
𝐼 =  𝑓𝑖

𝐼𝐼                                                                (7)  

Where:   

fi
I and  fiII  are the fugacities of component i , in 

phase I and II respectively.                                 

In addition, the fugacity expression of a component 

i in phase can be written as [2]: 

𝑓𝑖
𝐼 =  𝑓𝑖

𝑅𝑖 . 𝑥𝑖
𝐼 . 𝛾𝑖

𝐼                           (8)  

𝑓𝑖
𝐼𝐼 =  𝑓𝑖

𝑅𝑖 . 𝑥𝑖
𝐼𝐼 . 𝛾𝑖

𝐼𝐼                                                  (9) 

Where: 

𝑓𝑖
𝑅𝑖  is the fugacity of a component i in a real 

solution, 

𝑥𝑖
𝐼  𝑎𝑛𝑑 𝑥𝑖

𝐼𝐼  are the mole fraction of a component i in 

phase I and II respectively, 

𝛾𝑖
𝐼 and 𝛾𝑖

𝐼𝐼  are the activity coefficients of 

component i, in phase I and II,  respectively. 

If the same reference state is considered , Equations  

(7)-(9) equations take the following forms [5, 18–

21]: 

𝑥𝑖
𝐼  𝛾𝑖

𝐼 =  𝑥𝑖
𝐼𝐼 𝛾𝑖

𝐼𝐼                                                    (10) 

The material balance must constrain these 

isoactivity equations, which can be calculated by 

entering the total amount of each component in the 

following equation [5, 11]:   

𝑛𝑖
𝐼  +  𝑛𝑖

𝐼𝐼  =  𝑛𝑖                                                      (11) 
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Where: 

ni
I and ni

II are the number of moles of mole of 

component i in phase I and I, I respectively,  

ni is the total amount of component i in the system. 

The mole fraction normalization requires two 

equations for any equilibrium systems. Therefore 

the  mass  balance for  a  two-phase  LLE  system 

constraints  can  be  written as [6, 18, 19, 21]:  

∑ 𝑥𝑖
𝐼𝑁

𝑖=1  = 1                                                          (12)                                                                                                             

∑ 𝑥𝑖
𝐼𝐼𝑁

𝑖=1  = 1                                                         (13) 

Finally, the Equation solving isoactivity approach 

utilizes uniformity of chemical potential of a 

component in all the phases. Therefore, the 

isoactivity equations for phase equilibrium are (3)-

(13). The isoactivity equations under mass balance 

constraints are the basic equations for both 

correlation and prediction of the LLE system. For 

the calculation of LLE systems reported in [9, 22] , 

the last mentioned operations was to solve with a 

specified concentration of one component in one 

phase. With an initial estimation, a solution can be 

found by numerically solving the equations. The 

activity coefficient can be calculated by solving the 

Gibbs excess free energy equation. The latter is 

determined by a thermodynamic model such as 

NRTL, UNIQUAC and UNIFAC [9]. 

  

III. Regression of NRTL parameters using 

PSO  

A. NRTL  

The thermodynamic model was used in this paper is 

the Nonrandom Two-Liquid (NRTL) model as an 

activity coefficient (𝛾) model for calculating phase 

equilibria [23, 24]. This model accurately 

represents VLE and LLE systems that are 

significantly non-ideal [14]. The activity coefficient 

(γ) expression for a binary system is shown [11, 

18–21, 23, 25, 26] 

ln 𝛾𝑖 =
∑ 𝜏𝑗𝑖.  𝐺𝑗𝑖 .  𝑥𝑗

𝑁
𝑗=1

∑ 𝐺𝑘𝑖 .  𝑥𝑘
𝑁
𝑘=1

+ ∑
𝑥𝑗 .  𝐺𝑖𝑗

∑ 𝐺𝑘𝑗 .  𝑥𝑘
𝑁
𝑘=1

(𝜏𝑖𝑗 −𝑁
𝑗=1

∑ 𝑥𝑙.  𝜏𝑙𝑗.  𝐺𝑙𝑗
N
l=1

∑ 𝐺𝑘𝑗.  𝑥𝑘
N
k=1

)                                                      (14) 

With Gij and τij defined as follows [18–20, 23, 27]: 

𝐺𝑖𝑗 = exp(α𝑖𝑗 . τ𝑖𝑗 )                                            (15) 

τ𝑖𝑗 =   
𝐴𝑖𝑗

𝑅.  𝑇
                                                           (16) 

Where:  

𝐴𝑖𝑗  is the energy interaction between i and j 

molecules,  

α𝑖𝑗  is the non-randomness factor in the mixture, 

α𝑖𝑗 = α𝑗𝑖  , 

R is the universal gas constant in cal K−1 mol−1,  

T is the mixture temperature in K. 

The NRTL model has three adjustable parameters 

specific to a particular pair of molecules, two 

adjustable energy parameters 

(τ𝑖𝑗 and τ𝑗𝑖  or 𝐴𝑖𝑗  and 𝐴𝑗𝑖 and one non-randomness 

parameter ( α𝑖𝑗 = α𝑗𝑖 ), are independent of 

composition and temperature, and are determined 

through regression of experimental data for a 

specific system [5, 24]. The non-randomness 

parameter in the mixture (α𝑖𝑗 ) varies from 0.2 to 

0.47 [14] and is usually set at a constant value of 

0.2 for LLE systems [28]. This model is frequently 

used to simulate and compare data that is able to 

correlate vapour-liquid equilibria [28, 29] and 

liquid-liquid equilibria systems [21, 29, 31, 32] 

with reasonable accuracy and can predict equilibria 

of ternary systems from binary data, including 

highly non-ideal mixes, particularly partially 

immiscible systems. Furthermore, the LLE of 

quaternary systems has been accurately predicted 

using parameters fitted from ternary LLE data [33, 

34] . 

B. Particle Swarm Optimization Algorithm  

Since Kennedy and Eberhart first created the 

particle cluster optimization algorithm in 1995 [19, 

35, 36], it has drawn much attention and 

investigation from many researchers [37]. Particle 

swarm optimization is a population-based 

evolutionary method with ideological sources in 

artificial life theory and evolutionary computing 

[38]. 

The term "particle swarm optimization" comes 

from the study of birds foraging behavior, in which 

a group of birds searches for food at random. If 

there is only one piece of food in this area, the most 

straightforward and efficient search approach is to 

look for food in the closest location to the food. 

Recently, this model was used to address 

optimization problems. [39, 40]. 
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The PSO [41] is a computational approach for 

optimizing a problem by iteratively trying to 

develop a candidate solution in terms of a given 

quality measure in computational science. It solves 

a problem by generating a population of candidate 

solutions, which are referred to as particles, and 

moving them around in the search space using a 

simple mathematical formula based on their 

position and velocity. The movement of each 

particle is influenced by its local best-known 

location, but it is also guided toward the best-

known positions in the search space, which are 

modified as better positions are discovered by other 

particles. The swarm is supposed to shift toward the 

best solutions as a result of this. 

The PSO is a problem-solving algorithm based on a 

population of individuals, or particles, where each 

particle is considered a solution to the problem. 

During displacement, each particle's location is 

altered based on its best-produced position as well 

as the global position based on its neighbors [36]. 

The particle has a suitable value determined by the 

objective function in addition to its position and 

velocity. Each particle remembers and follows the 

current ideal particle while it explores the solution 

space: each search (iteration) includes some random 

factors, but they are not fully random. If a better 

solution is identified, this can be used to find the 

next best solution. Particle swarm optimization, in 

particular, begins with a random beginning particle 

[42]. 

The particle changes its position in each iteration by 

tracking two "extreme points": one is the particle's 

best solution (i.e., individual extreme point, 𝑝𝑏𝑒𝑠𝑡), 

and the other is the extreme point (𝑔𝑏𝑒𝑠𝑡 ) of the 

entire particle swarm or the entire neighborhood 

(𝑙𝑏𝑒𝑠𝑡 ). Particles modify their flight direction and 

speed based on the original inertia to preserve the 

overall optimum [43, 44]. 

In the PSO, the position vectors of the particles are 

the candidate optimal solutions to the optimization 

problem. By flying in the search space of the 

optimization problem, the PSO can accomplish the 

fast exploration of the search space and converge to 

a global/local optimal solution. The velocity and 

position vectors of the PSO algorithm are updated 

by equations (17) and (18) [45]. Therefore, the 

mathematical description of the origin PSO method 

is as follows [36, 46, 47]:  

𝑣𝑖  =  𝜔 ∗  𝑣𝑖 + 𝐶1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) + 𝐶2 ∗ 𝑟2 ∗

(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)                                                         (17) 

𝑥𝑖 = 𝑥𝑖 + 𝑘𝑃𝑆𝑂 ∗ 𝑣𝑖                                              (18) 

Where:  

𝑣𝑖    is the velocity of the particle i, 𝑥𝑖 is the current 

position, ω is inertia weight, 𝑘𝑃𝑆𝑂 is  constriction  

factor, 𝑟1  𝑎𝑛𝑑 𝑟1    are  two  random  numbers 

distributed  in the interval [0, 1], 𝐶1 𝑎𝑛𝑑 𝐶2  are 

positive or nonnegative acceleration constants; also 

known as convergence factors.  

The convergence factor 𝐶1  is called cognitive 

constant, which represents the characteristics of 

particles learning from their own optimal state. 

These two parameters represent the acceleration 

weights of particles approaching individual and 

global extrema, respectively. The size 

of 𝐶1 determines the cognitive ability of particles, 

that is, the ability of particles to learn from 

themselves. The size of 𝐶1 determines the social 

information sharing ability of particles, that is, the 

ability of particles to advance toward the current 

global optimal value [42], 

𝑝𝑏𝑒𝑠𝑡 is the best personal position at the tth 

iterations, which refers to the best solution found so 

far by the ith particle, 𝑔𝑏𝑒𝑠𝑡  is the global best 

position, which refers to the global best solution 

found so far by the swarm in the ith particle’s 

neighbourhood that has the best objective function 

value. 

It can be seen from the velocity update equation 

(17) that the first flying speed of a particle is mainly 

determined by the following three components [42]. 

The previous velocity is the first part that is the 

speed of the particle at time t, which represents the 

particle’s trust in the flight speed at time t and 

makes inertial motion according to its velocity at 

time t. The cognitive part of the particle itself is the 

second part, which represents the particle’s thinking 

about its position, thinking about the position 

before the particle itself, to determine the next step. 

The cognitive part indicates that a particle learns 

from its searching experience. The social part of 

particles is the third part, which represents the 

information exchange and cooperation between 

particles and their peers. The social part indicates 

that a particle can learn from other particles or learn 

from the global best solution. In the process of 

searching, particles synthesize their previous flight 

experience and the experience of their companions 

and finally determine their own flight speed 

according to the formula (17). The position particle 
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was updated in the search space at each iteration 

using equation (18). 

B.1. PSO Algorithm Description 

The PSO algorithm can be explained as the 

following six main steps [36, 42]: 

1- Initialization: The essential parameters of the 

method, as well as the position and velocity of all 

particles (population size n), are randomly 

initialized in this process. 

2- Evaluation of the initial population: The initial 

fitness value of each particle in the population is 

determined, and using the initial position of each 

particle as an individual extremum, the optimal 

position of the current population is obtained. The 

particle with the highest fitness is chosen as the 

global best particle '𝑔𝑏𝑒𝑠𝑡 '. 

3- Updating position and velocity: Update the 

position and the velocity of each particle according 

to two equations previously mentioned (4) and (5). 

4- Evaluation of the updated population: this is 

based on the comparison of the current fitness and 

the previous best values. If the current fitness value 

is higher than the previous best value, the particle's 

previous best value is changed to the current fitness 

value, and its position is updated '𝑝𝑏𝑒𝑠𝑡 '. 

5-Check to see if the terminal condition is met: If 

the current fitness value is better than the previous 

population best value, the previous population best 

value is set as the current fitness value to update the 

global best solution of the population. 

6- Output results and check the end conditions: 

In this step is output when the best solution is 

obtained “gbest” during the optimization process 

and the iteration is terminated. If the optimization 

results meet the conditions for the iteration stops. 

Otherwise, go back to step 4 and continue the 

optimization until the iteration stop condition is 

met. 

C. Estimation of NRTL model’s parameter 

by objective functions suitable  

The binary interaction parameters for the NRTL 

model were estimated from the experimental 

equilibrium LLE data [48] by minimizing a suitable 

objective function with constrained minimization 

using the PSO method (bacha et all). There are two 

types of objective functions that are usually used to 

regress the parameters, including objective 

functions in terms of activities and objective 

functions in terms of mole fractions 

(concentrations) [12], the objective functions were 

the sum of the square of the error between the 

experimental and calculated compositions of all the 

components over the entire set of tie lines, which 

are given by: 

C.1. Objective functions in terms of activities 
(𝑂𝐹𝑎) [12, 49]:  

𝑂𝐹𝑎 = ∑ ∑ (𝑥𝑖𝑘
𝐼 . 𝛾𝑖𝑘

𝐼 − 𝑥𝑖𝑘
𝐼𝐼 . 𝛾𝑖𝑘

𝐼𝐼 )2𝑀
𝑘=1

3
𝑖=1                (19) 

Where: 

𝑥𝑖𝑘
𝐼  𝑎𝑛𝑑 𝑥𝑖𝑘

𝐼𝐼  are the mole fraction of component i in  

phase I and II  at tie line  k respectively.  

 𝛾𝑖𝑘
𝐼 𝑎𝑛𝑑  𝛾𝑖𝑘

𝐼𝐼  are the activity coefficient of 

component i in phase I and II at tie line  k 

respectively. 

The activity coefficients calculated are dependent 

on the experimental mole fractions and parameters 

of a thermodynamic model [12]. 

C.2. Objective functions in terms of mole 

fractions (𝑂𝐹𝑥) [12, 27, 50, 51]: 

𝑂𝐹𝑥  = ∑ ∑ ∑ (𝑥𝑖𝑘 𝑐𝑎𝑙
𝑗

−  𝑥𝑖𝑘 𝑒𝑥𝑝
𝑗

)2𝑀
𝑘=1

2
𝑗=1

3
𝑖=1          (20) 

Where:    

𝑥𝑖𝑘 𝑐𝑎𝑙
𝑗

 𝑎𝑛𝑑 𝑥𝑖𝑘 𝑒𝑥𝑝
𝑗

 are the experimental and 

calculated mole fraction of component  i  in phase  j 

at tie line  k, respectively.   

The parameters of a thermodynamic model have an 

impact on the calculated mole fractions [12]. 

In this study, for the convenience of evaluating the 

quality of correlation in case using the PSO 

method, two methods were applied: a hybrid (PSO-

𝑂𝐹𝑎) and a hybrid (PSO-𝑂𝐹𝑥) methods. In addition, 

the goodness of the model predictions was judged 

by calculating the variance or Root Mean Square 

Error (RMSE), which is used to determine the 

accuracy of the fit between the experimental and 

predicted data by the NRTL model, the following 

equation of RMSE is defined as [22, 47, 51, 52]: 

𝑅𝑀𝑆𝐸 = √
𝐹

𝑁𝑃+𝑁𝑏+𝑁𝐶
                                          (21) 

Where: F is the objective functions in terms of 

activities when using the hybrid (PSO-𝑂𝐹𝑎) method 

or the objective functions in terms of mole fractions 
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when using the hybrid (PSO-𝑂𝐹𝑥) method, Np, Nb 

and Nc, Number of phases, Number of conodals and 

Number of constituents respectively. 

D. Binary interaction parameters and 

RMSE values  

Determining the interaction parameters is the most 

difficult, and it necessitates the use of extremely 

rigorous optimization approaches that can yield 

relatively accurate outcomes. Therefore, in the 

framework of this study, the PSO method is used as 

an optimization technique. 

To predict the LLE data using a specific 

thermodynamic activity model, the experimental 

tie-line data for ternary and quaternary systems  

previously mentioned were correlated using the  

NRTL model at T =293.15 K and 1 atm [9].  

Firstly, all the non-randomness parameters (α𝑖𝑗) are 

fixed as 0.2 [49] and the energy parameters 

(τ𝑖𝑗 and τ𝑗𝑖) are searched in the range of [-15, 15]. 

In addition, the positive acceleration constants 𝐶1= 

1.49445 and 𝐶1 = 𝐶2  [5]. Then, the objective 

function was minimized using 200 particles that are 

generated randomly, each particle is a group of six 

energy parameters of the NRTL model. The 

optimization method was further tested by 

regressing ternary and quaternary LLE systems and 

1000 iterations in all these systems. 

All of the correlating results show good agreements 

with the experimental data for the chemical 

systems.  The low values of root mean square error 

(RMSE) confirm the ability of the NRTL model to 

predict the given experimental data. The NRTL 

model’s binary interaction parameters were 

estimated from the experimental data with 

minimizing by two suitable objective functions for 

the liquid-liquid equilibrium of the systems studied 

with constrained minimization using the PSO 

algorithm of MATLAB optimization toolbox.  

IV. Results and discussion 

The binary interaction parameters and RMSE 

values have been showing in Tables 1 and 2. 

First, the distribution coefficient (D) and the 

separation factor (S) were calculated for the 

quaternary systems and were presented in [9]. Then, 

the distribution coefficient is used to evaluate the 

distributed components in the equilibrium phase 

and the separation factor is used to evaluate the 

solvent extraction ability. Therefore, these 

parameters are necessary and very important to 

determine the factors influencing the liquid-liquid 

extraction such as the properties of the solvent and 

the solute, the temperature of the extraction [1]. 

The extraction capacity of the mixed solvents 

calculated by the distribution coefficients and the 

separation factor showed that the system of mixture 

solvent (50% DCM+ 50% DEE) had a higher 

separation factor when compared to others systems 

{Water +Ethanol+ mixed solvent (25% DCM+ 75% 

DEE) or  (75% DCM+ 25% DEE)} 

On the other hand, the mixed solvent (50% CHCl3+ 

50% DEE) was the best in terms of distribution 
coefficient and separation factor when comparing 

with other systems {Water + ethanol + mixture 

solvent (25% CHCl3 + 75% DEE) or (75% 

CH3Cl+ 25% DEE)} [9]. 

 Table 1. NRTL binary interaction parameters and RMSE values for ternary systems {Water + Ethanol} using individual organic solvents 

(DEE, DCM or CHCl3) 

 Water + Ethanol + DEE Water + Ethanol + DCM Water + Ethanol +CHCl3 

i-j Aij Aji RMSE Aij Aji RMSE Aij Aji RMSE 

The hybrid (PSO-𝑂𝐹𝑎) 

1-2 7.7473 6.5152 0.1692% 2.6475 2.134 0.0963% 0.9347 2.5185 0.0249% 

1-3 3.4246 3.2551 4.5338 6.4604 6.1405 5.0296 

2-3 1.0404 8.9014 2.5433 2.4544 2.3008 1.6437 

The hybrid (PSO-𝑂𝐹𝑥) 

1-2 0.0352 3.5913 0.0112% 

 

8.5366 1.9053 0.0161% 10.3143 1.846 0.0137% 

       

1-3 6.1661 4.7208 4.2771 4.4592 -8.4507 5.9755 

2-3 3.1735 15 1.9498 7.6684 -13.5031 2.8034 
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 Table. 2.  NRTL binary interaction parameters and RMSE values for quaternary systems {Water + Ethanol} using mixed solvents (DEE + 

DCM) or (DEE + CHCl 3) 

Water + Ethanol+ mixture solvent (50% DCM +50%DEE) or (50%CHCl3 +50%DEE) 

 Water + Ethanol+ (50% DCM +50%DEE) Water + Ethanol+ (50%CHCl3 + 50%DEE) 

i-j Aij Aji RMSE Aij Aji RMSE 

The hybrid (PSO-𝑂𝐹𝑎) 

1-2 2.5218 2.6097 0.072% 0.4117 2.6080 0.1282 % 

1-3 4.4875 6.7426 3.9536 7.2047 

2-3 2.5931 2.6208 6.4331 2.4984 

The hybrid (PSO-𝑂𝐹𝑥) 

1-2 4.70.68 10.1229 0.0324 % 15 4.5306 0.0575 % 

1-3 3.0007 4.6614 7.9338 3.9851 

2-3 10.6621 4.5641 2.5301 8.3620 

 

A. Analysis of the results for ternary and 

quaternary system: 

From the table 1 and the table 2, the values of 

RMSE were obtained less than 0.1692 and 0.1282 

for the individual solvent DEE and for the mixture 

solvent {Water + Ethanol + (50% CHCl3 + 50% 

DEE)} respectively, when using the hybrid (PSO-

OFa) method. 

Therefore, the results were compared in order to 

choose the best method and to find the best solvent 

for the considered liquid-liquid extractions with 

respect to the ternary and the quaternary systems 

previously mentioned. The best results were 

obtained when using the hybrid (PSO-𝑂𝐹𝑥) method 

rather than the hybrid (PSO-𝑂𝐹𝑎) and this according 

to low values of RMSE which were 0.0112%, 

0.0161 % and 0.0137% for individual solvent DEE, 

DCM and CHCl3 respectively and 0.0324 and 

0.0575 % for the mixture solvent (50% DCM 

+50%DEE) and the mixture solvent (50%CHCl3 + 

50%DEE), respectively.  

In addition the lowest value of RMSE was obtained  

when using individual solvent DEE, therefore it 

was the best individual solvent and the lowest value 

of RMSE is when using mixture solvent (50% 

DCM +50%DEE), therefore it was the best mixed 

solvent.  

Finally, the RMSE results demonstrate that the 

thermodynamic model NRTL was able to represent 

better the liquid-liquid equilibrium [49] in the 

presence of individual or mixed solvents using the 

hybrid (PSO- 𝑂𝐹𝑎 ) and the hybrid (PSO- 𝑂𝐹𝑥 ) 

methods. 

V. Conclusion 

The liquid-liquid equilibria of the ternary and 

quaternary systems that have been used and are   

Water + ethanol + solvent (DCM, DEE or CHCl3) 

is the ternary systems, {Water + Ethanol + mixed 

solvent (50% CHCl3 + 50% DEE) or (50% DCM + 

50%DEE)} are the quaternary systems. All these 

systems were presented in [9].In this research, the 

hybrid (PSO- 𝑂𝐹𝑎 ) and the hybrid (PSO- 𝑂𝐹𝑎 ) 

methods have been used to regress the interaction 

parameters of the NRTL model for the systems 

previously mentioned. 

In addition, the approach solving isoactivity 

equations was used to determine the phase behavior 

of LLE systems and for calculating the LLE. 

Then, the parameter identification is performed 

using LLE experimental data via the minimization 

of a suitable objective function. Besides, it is 

essential to note deeply and focus that the selection 

of the objective function used for the parameter 

identification influences both prediction and 

correlation results of NRTL models [25]. In this 

study, current functions were used: the objective 

function in term of activity (𝑂𝐹𝑎) or the objective 

function in term of mole fraction (concentration) 

(𝑂𝐹𝑥).  

Finally, the results were compared, to select the 

best method and the best solvent for liquid–liquid 

equilibria data. As the Root-Mean-Square Error 

(RMSE) was calculated to determine the accuracy 

of the fit between experimental equilibrium data 

and calculate data predicted by the NRTL model. 

Therefore, the results show that the hybrid (PSO-

𝑂𝐹𝑥) method performs better in the accuracy of the 

fit than the hybrid (PSO-𝑂𝐹𝑎) method. As a result, 

objective functions expressed in terms of LLE 

concentrations (i.e. experimental tie-lines) are better 

for parameter identification in thermodynamic 

models. For the LLE data modeling, the next 

objective function was employed based on these 

facts [25]. In addition, the best solvent is DEE for 

ternary system and the best mixed solvent is (50% 

DCM +50%DEE) for quaternary system. 
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Nomenclature and units 

LLE Liquid-Liquid Equilibrium 

PSO Particle Swarm Optimization 

NRTL Nonrandom Two-Liquid 

𝑂𝐹𝑥 Objective functions in terms of 

mole fractions 

𝑂𝐹𝑎 Objective functions in terms of 

activities  

RMSE Root-Mean-Square Error  

D Distribution coefficient  

S Separation factor  

T Temperature of mixture [K] 

R Universal gas constant [J·mol–

1·K–1] 

G Energy interaction  

a Activity 

α Non-randomness factor in the 

mixture 

 τ Energy parameters 

γ Activity coefficient 

vi Moving velocity of the particle 

 xi Current location 

ω Inertia weight 

𝐶1 𝑎𝑛𝑑 𝐶2  Positive acceleration factors 

𝑟1  𝑎𝑛𝑑 𝑟2  Two random numbers 

distributed in the range of [0, 1] 

𝑘𝑃𝑆𝑂 Constriction factor 

𝑝𝑏𝑒𝑠𝑡  Personal best 

𝑔𝑏𝑒𝑠𝑡   Local best 

μ
𝑖
𝐼 , μ

𝑖
𝐼𝐼   Chemical potentials of 

component i, in phase I and II 

respectively.                                   

μ  Chemical potential  

f  Fugacity  

 𝑓𝑖
𝐼 , 𝑓𝑖

𝐼𝐼    Fugacities of component i , in 

phase I and II respectively.                                 
  𝑓𝑖

𝑅𝑖  Fugacity of a component i in a 

real solution, 

𝛾𝑖
𝐼 , 𝛾𝑖

𝐼𝐼    the activity coefficient of a 

component i, in phase I and II 

respectively, 

 𝑥𝑖
𝐼 ,  𝑥𝑖

𝐼𝐼   Mole fraction of a component i, 

in phase I and II respectively.  

 𝑎𝑖
𝐼 , 𝑎𝑖

𝐼𝐼   Activities of component i, in 

phase I and II respectively.     

𝑛𝑖
𝐼 , 𝑛𝑖

𝐼𝐼   Mole number of component i , 

in phase I and II respectively,  

𝑛𝑖 Total amount of component i , 

in the system. 

𝑤𝑖𝑘    Weight associated with 

component i in phase j at tie 

line k, 

m  Number of experimental tie-

lines used in the correlation 

procedure, 

n   Number of components 

𝑥𝑖𝑘 𝑐𝑎𝑙
𝑗

 Calculate mole fractions  

𝑥𝑖𝑘 𝑒𝑥𝑝
𝑗

  Experimental mole fractions  

𝑥𝑖𝑘
𝐼   Mole fraction in phase I  

 𝑥𝑖𝑘
𝐼𝐼  Mole fraction i in phase II   

i Component 

j Liquid Phase 

 k Number of tie lines 
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