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ABSTRACT

Portable X-ray fluorescence (PXRF) technology can offer rapid and cost-effective

determination of the trace elements concentrations in soils. The aim of this study was to

assess the influence of soil moisture content under different condition on PXRF measurement

quality. For this purpose, PXRF was used to evaluate the soil elemental concentrations for Ca,

Mg, Cd, Cr, Cu, Ni, Zn, P, Fe, Mn and Pb in 60 samples in a perimeter irrigated with treated

wastewater (Cebala Borj Touil, North-east Tunisia). Scanning was conducted under four

moisture conditions: in-situ, dried soil at 105°C, 40% moisture content soil and saturated soil.

All were then compared relatively to dried sample scans. As expected, the relationship

between dried vs both in-situ and 40% moisture content elements concentrations were linear.

However, PXRF readings from saturated samples were significantly underestimated

compared to the measurements on dry samples. Furthermore, soil moisture content caused a

significant under-reporting of elemental concentrations compared to the scanning on dry

samples. PXRF acted differently for each element following the moisture content of soil. In

fact, attenuation coefficient σ of Cr, Fe and Mn were the most affected by saturation of soil

samples, whilst Ca, Mg and Ni were more affected for 40% moisture content while Cd, Pb,

Zn, Cu and P were affected for in-situ measurements. Correction equations enhanced the error

produced by the water influence moisture content and corrected PXRF measurements.
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1. INTRODUCTION

Trace elements in soil can be detected by several conventional laboratory methods such as

ICP-AES (inductively coupled plasma atomic emission spectrometry), ICP-OES (inductively

coupled plasma optical emission spectrometry), AAS (atomic absorption spectrophotometry)

and AFS (atomic fluorescence spectrometry). However, these techniques are severely limited

by the high costs of analysis, laboratory consumables and time used in laboratory processing

[1-2]. Therefore, there is a need for rapid, cost-effective and accurate analytical methods. The

portable X-ray fluorescence (PXRF) can rapidly determine element concentrations on sites of

interests directly by in situ measurements and can be used for quick field screening of

potential contaminated soil contamination [3-6].

Previous studies indicated that PXRF analysis was capable of detecting soil trace elements

similar to those detected by conventional laboratory methods [3,7,8]. Although PXRF will not

replace laboratory techniques such as ICP-OES for high precision analyses, but it offers a

number of distinct advantages including in situ measurements without pre-treatment and

sampling, simultaneous analyses of a wide range of elements, rapid, nondestructive, increased

total speed and throughput and accurate identification of many elements simultaneously

[3,9,10].

However, several physico-chemical parameters of soil are known to affect the quality and the

precision of PXRF reading, essentially sample matrix, surface irregularity, interfering

elements, mineralogy, particle size and soil moisture [9,11-18].

Nevertheless in many previous PXRF studies on soil, moisture content has been considered as

one of the most influential sources of error, especially when soil moisture content ranges

between 40% [19]. Indeed, several authors have shown that water causes an exponential

decrease in the intensity of X-rays which lead to a lower precision, poor detection limit and

overall lower accuracy [13]. Essentially, water in soil acts as both an absorption layer and a

scattering layer, produces an exponential decrease in effective X-ray penetration depth which

leads to a lower precision of PXRF scanning [20].

Thus it’s necessary to assessment of precision and accuracy of PXRF for applications to

provide results that may be used for a spatial distribution interpretation of trace elements

contamination. Therefore certain method has been treated in the literature for correcting the

moisture influence on wet soil analysis measured by PXRF [13,21].
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Therefore, the aim of this study was to evaluate the influence of soil moisture on the PXRF

scanning, in particular Ca, Mg, Cd, Cr, Cu, Ni, Zn, P, Fe, Mn and Pb concentration and apply

a moisture correction equations to increase the accuracy of PXRF measurements.

2. MATERIALS AND METHODS

2.1. Field sampling and scanning

Field sampling was conducted from Cebala Borj Touil (North-east Tunisia) (Figure1). The

perimeter covers a total area of 3139 ha and irrigated with treated wastewater (TWW) since

1989. The perimeter is irrigated by gravity method witch cause a prolonged stagnation of

water in depressions plots, especially in areas where the aquifer flush. In this case, there is a

risk of contamination of surface water with TWW.

Fig.1. Location of sampling sites in Cebala Borj Touil- Tunisia (Southwestern Tunisia)

A total of 60 soil samples were collected using a stratified random sampling design, from

topsoil horizons (0-20cm) for scanning with PXRF under different moisture content

conditions and for physicochemical lab analysis.

The soil samples were air-dried and sieved using a 2 mm mesh stainless steel sieve. Soil pH

was determined with a pH electrode (Sen Tix 41 (WTW) PLUS) in 1:2.5 distilled water to soil

extracts [22]. Electrical conductivity (EC) was also determined from saturated soil-paste with
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Tetra 325 electrode (WTW) according to U.S. Salinity Laboratory Staff [23]. Particle size

distribution was determined following oxidation of organic matter with hydrogen peroxide,

the upper fraction (down to 50 mm) being separated by sieving and the lower one used for

subjection to the internationally endorsed procedure [24]. Organic matter (OM) content was

determined by soil oxidation with potassium dichromate (K2Cr2O2) and concentrated H2SO4

[25]. Moisture content was determined by trace system soil moisture equipment TDR (Time

Domain Reflectometry) with coated sensors (8 Cm).

For determining trace elements concentration in situ, the samples were scanned with PXRF

under field moisture conditions. For laboratory analyses, all scannings were performed with

PXRF on pressed pellets (Ø: 3cm). A portable Bruker S1 Titan 600 with calibration range of

37 elements, including light elements Mg, Al and Si was used for determining trace elements

concentrations in soil samples. The analyser is characterized by fast SDD® detector and

ShieldTM detector protecting the sensor window from being punctured by sharp objects under

analysis. The analyser was equipped with X-ray tube Rh target operating at a maximum of 50

kV and five position motorized filter changer.

Portable XRF scanning for elemental quantification were chosen for the elements most

common on wastewater eventually Ca, Mg, Cd, Cr, Cu, Ni, Zn, P, Fe, Mn and Pb [26].

Scanning was conducted for 30 s per beam, for a total of 60 s per scan.

To assess the influence of soil moisture on XRF signal absorption, the 60 soil samples were

analysed by portable XRF with four conditions: in-situ scanning, dried soil at 105°C, 40%

moisture content soil and saturated soil with distillated water in the sample cups.

2.2. Statistical analyses

Statistical analyses were performed using the software SPSS® for Windows version 20.0.

Different measurements of XRF scanning were compared using simple regression to

investigate the relationship between the concentrations obtained on dried soil and those

measured on different soil treatments. The regression equation, coefficient of determination

(R2), slope and root mean square error (RMSE) were calculated to compare differences

between soil treatments. RMSE was calculated by:

RMSE = ( a − b )
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Xai and Xbi are the XRF measurements of ith sample with treatments a and b, and n is the

total number of XRF measurements on the samples with both treatments.

The X-ray intensities emitted from the elements in the wet samples (dIx) decrease with

increasing water content in the soil sample (dw) due to the X-ray absorption effect of the

interstitial water. Equation 2 shows the following relation:d = −μ
Ge et al. [13] proposed a model for the correction of soil moisture on PXRF measurement

based on Lambert-Beer law that the reduction in X-ray intensity is proportional to the

increment of water content of the sample:CwetCdry =
where Cwet is the PXRF elemental concentration with a water content ω, Cdry is the PXRF

elemental concentration in the dry sample, and σ is the attenuation coefficient due to soil

moisture.

3. RESULTS AND DISCUSSION

Descriptive statistics for physico-chemical soil characteristics of analyzed samples were

summarized in Table 1. Soil texture estimated to be Silty Clay Loam according to soil textural

triangle [27]. The pH did not vary much and was basic (7.90–9.49), which suggests alkaline

conditions for all the soil samples. Bulk density and EC showed limited variation. Organic

matter content in the soils varied slightly from 0.54% to 1.89%. Soil moisture content was

highly variable between 9.12% in dry areas and 22.67% in irrigated areas. Carbonates vary

slightly between 35 and 46%. Summarily the soil samples possessed a limited range of

physicochemical characteristics which minimize their effect on PXRF scanning accuracy.

Table 1. Basic statistics of physicochemical properties of Cebala Borj Touil soils

Min Max Mean STD Median
Sand (%) 2 25 9 7.16 5
Silt (%) 40 81 54 8.64 52
Clay (%) 10 51 38 11.46 42
pH 7.9 9.49 8.48 0.37 8.39
EC (ds/m) 0.24 0.72 0.47 0.14 0.48
BD (g/cm3) 0.34 1.01 0.46 0.37 0.35
OM (%) 0.54 1.89 0.74 0.14 0.75
MC (%) 9.12 22.67 19.92 11.33 15.91
Carbonates (%) 35 46 38 2.58 37
EC: electrical conductivity, BD: Bulk density, OM: Organic matter, MC: Moisture content
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Table 2 summarizes the basic statistics of the investigated trace elements. The PXRF

concentrations decreased with increasing water content in soil samples for all studied

elements. In fact, standard deviation and CV of the measurements are relatively different

particularly between dry soil samples and saturated soil samples for the majority of the

elements. Previous researches on the effect of water on XRF scanning have found similar

results [9,13-15,18,19].

Variation created an ambiguity in the diagnosis of trace elements concentrations in the studied

site between samples of different moisture. For this reason PXRF concentrations in non-dried

samples were fitted using the Lambert-Beer equation (Equation 3, Table 3).

Table 2. Basic statistics of trace elements (mg kg-1) in soils of Cebala (n=60)

Min Max Mean STD Median

Dry

Cd 52 95 70.28 8.74 69
Pb 26 55 33.60 7.41 30.5
Zn 17 124 73.57 24.04 77
Ca 119651 243929 167013 29974 159750
Cu 34 71 50.03 7.40 49.5
Cr 53 72 61.65 4.99 62
Mg 11000 29000 18717 5429 19954
Ni 78 169 115.20 23.09 110.5
P 1985 10602 3106 1209 2805
Fe 25425 48602 37525 5074 37519
Mn 264 668 428 76 429

In situ

Cd 46 90 63.12 8.66 62.5
Pb 20 46 27.92 6.04 26
Zn 15 109 55.02 21.146 56.5
Ca 93586 198836 142003 23390 141201
Cu 32 64 43.20 6.265 43.5
Cr 45 63 55.8 3.7 57
Mg 9713 25000 13266 3821 12000
Ni 59 126 86.8 12.92 84
P 1665 4976 2441 550 2340.5
Fe 21380 44579 31524 5400 31977
Mn 255 481 357 58 359
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(Continued)

40%

Cd 33 72 53 7 54
Pb 18 42 24 5 23
Zn 15 89 40.17 20 42
Ca 93570 174779 121921 20217 117146
Cu 15 61 37.7 8 38
Cr 43 54 48.7 3 50
Mg 9131 22495 10969 1848 11000
Ni 49 94 70.35 11.8 70
P 1410 3748 2039 424 2015
Fe 17341 38524 26365 4438 25929
Mn 187 432 299 53 293

Saturated

Cd 22 67 47.4 7.4 49
Pb 15 33 20.4 3.7 20
Zn 13 80 26 16.1 17
Ca 43387 137697 95103 22128 94568
Cu 13 54 29.4 9.8 31.5
Cr 27 51 41.75 5.1 41.5
Mg 3442 12000 8874 1802 9211
Ni 20 65 41.72 15 48.5
P 781 2406 1552 352 1539
Fe 10260 31472 21448.23 4882 20376
Mn 74 362 235 55 230

The influence of water content on the PXRF measurements and corrected regression

equations were presented in Table 3 and figure 2. The PXRF readings were correlated more

closely with in-situ samples and 40% moisture content samples with similar R2 values and

thus had nominal effects on PXRF accuracy.

Nevertheless PXRF readings were significantly underestimated with saturated samples

compared to the readings on dry samples. Correspondingly, moisture-corrected sample PXRF

readings provided better correlation to PXRF scans of the dry soil samples as indicated by

higher R2 values, lower RMSE, and slopes closer to 1 in the regression equations for in-situ

samples and 40% moisture content samples (Table 3).
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Fig. 2. PXRF readings on soil samples from Cebala Borj Touil under different conditions: in-

situ vs. dry (a), 40% moisture content sample vs. dry (b) and Saturated vs. dry (c).

Coefficients in this study were slightly higher than those of Radu and Diamond [3] and Laiho

and Perämäki [19]. This is mainly because soils in the study area had lower trace elements
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distribution variation. Furthermore, these results are consistent with previous findings of

Piorek [28] and Laiho and Peramaki [19] for PXRF analysis in 5%–40% moisture soils and

showed that soil moisture of >20% caused nominal errors to PXRF elemental measurements

and can safely be neglected. In addition, Weindorf et al. [9] noted that even for soil with <

40% moisture contents caused fluorescence denudation and thus a significant amount of

variance in PXRF readings.

Table 3. Correlation parameters of portable XRF measurements on soil samples under

different conditions (Y) with scanning on in-situ samples, 40% moisture content samples, and

saturated samples (X) from Cebala Borj Touil

Soil condition Regression equation R2 RMSE Cwet/Cdry σ Corrected R2

In situ y = 0.8474x - 237.34 0.998 0.538 82.403 0.577 y = 0.8868x - 676.4 0.999

40% y = 0.7272x - 304.42 0.998 0.711 69.131 0.106 y = 0.7303x - 94.339 0.999

Saturated y = 0.5744x - 279.33 0.992 0.873 53.777 0.039 y = 0.5799x - 85.82 0.995

As described by Ge et al. [13] the deviations of the PXRF -scan to the dry scan readings are

caused by the decreasing of the intensity of characteristic x-rays of analytes as the interstitial

water of the sample increases owing to the stronger x-ray absorption by water than by air in

fractures and macropores in soil samples.

Also Weindorf et al. [9] noted that when the moisture content of the soil exceeded its field

capacity, the pressure inserted by the contact of PXRF during the scanning process could

induce the release of interstitial water from macro pores, which might subsequently form a

layer of water between the soil and the scanning window of the PXRF. When soil water

content was high, a noticeable layer of water covering the window was often observed after

the scanning was completed which leads to a lower precision, poorer detection limit and lower

accuracy.

In order to further analyze the moisture content effect on PXRF scanning, the measurements

under the same scanning conditions of the samples were plotted against scans on dry samples

for each element (Table 4, Figure 3). Even at the higher moisture contents in saturated

samples, the PXRF was capable of measuring all studied trace elements concentrations in the

samples and there is a linear relationship between these concentrations and the moisture

content (Figure 3). However, for the scans on the saturated samples, PXRF underestimated

almost all the elements owing to moisture, exhibiting a poor relationship with dry scans by the

low slopes in the regression equations (ranging from 0.539 for Mg to 0.898 for Cd (Table 4)).
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Only Ca, Cr, Fe and Mn showed a significantly close correlation between saturated and dry

sample scans (R2≥ 0.905). Furthermore, the RMSE values of the saturated against dry sample

scans were always the highest for all elements.

Most elements of the scans in-situ samples acceptably compared to dry sample scans, with R2

values ranging from 0.791 for Mg to 0.984 for Ca. However, underestimation of the scans on

40% moisture content samples was still quite apparent, as the regression slopes varied

between 0.621 for Mg and 0.974 for Ca.

The improved quality of the PXRF-scan data, corrected with Equation 2, is clearly expressed

by higher correlation coefficients for almost all elements (Table 3, Figure 3). In fact, after

moisture correction using Lambert-Beer equation, R2 values increased more or less and the

slopes in the regression equations shifted much closer to 1, although the RMSE values of

some elements slightly increased.
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Table 4. PXRF readings of each element under different moisture content conditions vs. readings on dried samples

Element Soil water content Regression equation R2 RMSE Cwet/Cdry σ Corrected R2 RMSE

In situ y = 0.9805x - 5.7934 0.979 0.044 89.69 0.588 y = 1.0432x - 7.2132 0.983 0.034

40% y = 0.7867x - 2.275 0.941 0.069 75.36 0.108 y = 0.7487x + 0.8042 0.945 0.054

Saturated y = 0.8038x - 9.0774 0.898 0.080 67.22 0.042 y = 0.7205x - 2.6422 0.921 0.041

Pb In situ y = 0.7968x + 1.1437 0.955 0.039 83.23 0.578 y = 0.799x + 2.6299 0.970 0.042

40% y = 0.6703x + 2.1929 0.947 0.049 73.83 0.108 y = 0.6914x + 1.798 0.963 0.033

Saturated y = 0.4572x + 5.0372 0.802 0.060 61.30 0.041 y = 0.459x + 5.0628 0.802 0.033

Zn In situ y = 0.8579x - 8.0998 0.952 0.071 73.59 0.561 y = 0.887x - 7.6236 0.964 0.069

40% y = 0.7752x - 16.86 0.854 0.095 53.17 0.098 y = 0.9074x - 27.753 0.906 0.064

Saturated y = 0.5312x - 12.932 0.624 0.112 35.54 0.035 y = 0.6542x - 23.123 0.695 0.059

Ca In situ y = 0.6691x + 10177 0.984 3.517 73.19 0.107 y = 0.6717x + 10264 0.984 2.348

40% y = 0.7701x + 13384 0.974 2.607 85.22 0.582 y = 0.7838x + 17944 0.978 2.338

Saturated y = 0.7023x - 22190 0.905 4.457 56.42 0.040 y = 0.667x - 15153 0.921 2.733

Cu In situ y = 0.8251x + 1.9178 0.952 0.043 86.42 0.584 y = 0.8487x + 2.8674 0.954 0.045

40% y = 1.0561x - 15.123 0.930 0.058 74.67 0.107 y = 0.9875x - 11.256 0.945 0.039

Saturated y = 1.2295x - 32.118 0.854 0.075 57.33 0.040 y = 1.2249x - 30.831 0.870 0.054

Cr In situ y = 0.5726x + 13.452 0.960 0.060 79.21 0.109 y = 0.5745x + 13.542 0.976 0.031

40% y = 1.0102x - 20.532 0.950 0.074 67.50 0.042 y = 0.9406x - 15.853 0.970 0.044

Saturated y = 0.7142x + 11.85 0.928 0.040 90.77 0.590 y = 0.6849x + 16.408 0.960 0.045

Mg In situ y = 0.2953x + 3347.8 0.791 1.618 48.99 0.039 y = 0.2142x + 5216.5 0.920 0.734

40% y = 0.5545x + 2887.5 0.621 1.160 72.97 0.558 y = 0.2126x + 8469.8 0.909 0.802

Saturated y = 0.2498x + 6293.1 0.539 1.399 62.05 0.102 y = 0.1927x + 7243.7 0.864 1.384

Ni In situ y = 0.4934x + 13.515 0.932 0.111 61.46 0.103 y = 0.4752x + 16.245 0.969 0.091

40% y = 0.5329x + 25.444 0.906 0.087 76.27 0.567 y = 0.4445x + 38.429 0.938 0.070

Saturated y = 0.6164x - 29.289 0.819 0.142 35.11 0.035 y = 0.5987x - 25.617 0.842 0.093
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(Continued)

P In situ y = 0.4255x + 1119.9 0.875 0.405 80.84 0.575 y = 0.6212x + 655.42 0.915 0.372

40% y = 0.315x + 1061.4 0.806 0.526 67.63 0.105 y = 0.4871x + 568.02 0.915 0.335

Saturated y = 0.2257x + 851 0.599 0.643 51.23 0.039 y = 0.5328x - 25.656 0.898 0.386

Fe In situ y = 0.9441x - 13980 0.963 2.112 56.47 0.040 y = 0.9347x - 13583 0.968 1.204

40% y = 0.8556x - 5742.2 0.957 1.758 70.01 0.106 y = 0.8155x - 4242.8 0.964 1.250

Saturated y = 1.0369x - 7387.4 0.949 1.285 83.67 0.579 y = 1.1629x - 10862 0.956 1.188

Mn In situ y = 0.6856x + 5.457 0.963 0.189 69.86 0.106 y = 0.7483x - 18.589 0.974 0.129

40% y = 0.6984x - 63.625 0.936 0.231 54.44 0.040 y = 0.7999x - 104.49 0.972 0.134

Saturated y = 0.7413x + 40 0.934 0.138 83.77 0.580 y = 0.8672x + 4.6192 0.958 0.143
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Attenuation coefficient σ for each element was determined using the simple regression

equations based on the Lambert-Beer law based on the ratio Cwet/Cdry (Table 4). These

coefficients are indicators of the moisture content influence on the PXRF elemental

concentrations. A high σ value for a given element indicates that an increase in moisture

content produced an underestimation in PXRF measurements.

The PXRF measurements of Cr, Fe and Mn were the most affected by saturation of soil

samples (Table 3, Figure 3). Their σ values were highest in saturated samples with 0.590,

0.579 and 0.580, respectively. Whilst the σ values for Ca, Mg and Ni for 40% moisture

content samples were 0.582, 0.558 and 0.567 indicating that at such moisture content caused

an underestimated scanning for these elements. Notably σ values for Cd, Pb, Zn, Cu and P

were highest in less moisture content (in-situ samples) indicating that PXRF scanning were

affected even at low water content. Results are not in covenant with previous studies that

showed that the attenuation coefficient σ associated with an increase in moisture content was

greater for lighter elements and with atomic number below Z=40 or 26 [13-15,19,29]. Indeed,

moisture content affected PXRF scanning differently for each element.
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4. CONCLUSION

For each element, an increase in soil moisture content caused a significant decrease in FPXRF

concentrations. Each applied moisture content, PXRF measurements presented an

underestimation scanning for some elements. Cr, Fe and Mn were the most affected by

saturation of soil samples, whereas from 40% moisture content Ca, Mg and Ni scanning were

underestimated. While the decrease in Cd, Pb, Zn, Cu and P concentrations were more

pronounced in the in-situ samples moisture content. Application of Lambert-Beer law

significantly improved the error produced by the water influence moisture content and

corrected PXRF measurements corresponded much better to the PXRF measurements in dry

soils and thus might gradually substitute conventional laboratory methods for the analysis of

soil samples. Results of this study could be adopted as a rapid methodology for screening

trace elements pollution in irrigated perimeters suffering from water stagnation.
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