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Abstract:

The purpose of this work is to model the ductile facture of porous metals from a micromechanical poinof view.
To do this, the Rousselier model is implemented ithe finite element code ABAQUS using a VUMat (Vectized
User MATerial) subroutine. The integration algorithm selected for the implementation is the Aravas atgithm,
which is based on the ‘backward-Euler method; it bllows the principle of the elastic prediction — mstic
correction. To check the validity of the implementd model, simulations of academic examples and fraate
mechanics problems (i.e. CT test and Charpy testya performed, and a good description of the fractue process

is obtained.
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1. Introduction

The mechanisms behind the ductile fracture of
metals are associated with the development of the
cavities within the material. We distinguish generfly
three phases which are the germination, growth and
coalescence of cavities. The Rousselier model issbd
on microstructural assumptions which introduce a
microstructure consisting of cavities and a matrix
whose elastic deformations are negligible compared
to plastic deformations [1].
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Formulated by G. Rousselier [2-4], and
considered as a variant of the A. L. Gurson model],

it remains little used compared to this
However, modifications and extensions were made to
him [6-8]. It has also been applied by many authors

for the study of ductile fracture of steels and atlys

latter.

through academic examples and industrial issues
[9-13].

In this work, we list the steps required for the
implementation of the Rousselier model in a finite
element code, in order to simulate the ductile fraare
in Abaqus explicit, application of this model to
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academic and fracture nechanics examples i
performed in order to verify its validity.

2. Formulation of the Rousselier mode
Introduced by Rousselier [2], it's considered as

thermodynamically consistent ductile damage theory
The plastic potential in this model has the form

% e q)+B(ﬂ)DeXF{ j:o (1)
P POy
Where: B=22D ex;{ﬁj @)
POy
p(B) = ! @)
1-f,+ foexpl)

o, foexpB)
= fo+ foexpB )

B(A) =1 (4)

B is a scalar danage variable. Its evolution is

determined by equation (2)
B is the damage function, p is a dimensionles:
density which depends on 8. D and o are

material constants, f, is the initial void volume
fraction.

H (e, q) is a term describing the hardening properties

of material. Usually this is equal to the yield stess of

the undamaged material, H (k) = oy(£8)

3. The Rousselier model integratio

The numerical integration of the constitutive
relations of the model is done using the Arave
algorithm [14].
elastic predictor,
backward Euler method whose schentic description
is given in figure I.

It's based on the principle of the
plastic corrector including the
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Figure . Geometric interpretation of the backward-Euler

method in the stress space [1
We assume strain rate decompositior
£=¢g +E (5)
With: _ée =C:.o

The rate of plastic strain §p is obtained by

considering the normality rule

) a¢7 3 3 S fD Okk
=(1-f)p—F=p|l——+—exp————1(6
( )pag |:20eq 3 3(1—f)r71']}( )

1 is a second order tensor,S is the deviator of the

stress tensor. The evolution of porosity is givenybthe
principle of mass conservation

f=@-f)re,=@-f)p D exp[ @)

Ik
3(1-f)oy
bis found with the consistenc condition ¢= O,(b: 0

, p is the usual strain rate of von Mises given by

p= ,g—ép _ep , where ép is the deviator of _ép

The threshold function involves thel1® and the 2
invariant of the stress tensor, it's given by

(KPH eq'Hn):O (8)

Where: B, is the hydrostatic stress
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with: HY,a=12,..n is the sum of state variables  (1- f)aodzp =o:.deP (13)
@<0 :The response is elastic )
where: de’ =&
1-f)o,

We will adopt, by convention, the following notatim
Integration of the Rousselier continuous material

P =R, : The hydrostatic stress damage model for a single integration point is show
0= 0,, : The von Mises equivalent stress below. Where explicit time is not given, t,; is
assumed.
- The flow rule is written: If we substitute differentials by finite differences, the
dg complete set of equations will have the form
deP = A 9
o
B(B) g
: i iti Agh —Ael Dexg —™ (=0 14
Where: dA is a positive scalar m eq 30, 00, (14)
- For dynamic solutions, the flow rule becomes
lo}
Lon 3 224 _H (L) +B(B) Dex;{ﬁj =0 (15)
deP =dA| -=9914+99 (10) P P%
3dp dq
Op=0m—3KAER (16)
Wwith: g=9g(pqH') is the flow potential and
3 Oeq = Toq—3GAEL, (7)
=—s (20)
2q
With this notation, the stress tensor can be writte: AB = Asequ ex;{g—;] (18)
1
o=-pl +Eqn (11)
3
The plasticity model is completed by describing the H e 1 . 3 oo o .
evolution of the state variables Where: O =391 %eqa =359 § =% ~n
dH? =’ (deP, 0, HF) (12) oy =Ey & and &, = &/(t) +Ag (19)
The details of the integration procedure are in
. . ‘Eeq = “:gq(t l) +Ae gq (20)
illustrated in [14].
B=Bt)+0B (21)
4. The Rousselier model development following the
Aravas algorithm The equations from (14) to (21) are solved by the

Newton's method. The strain incrementsAg? and
We assume that the Rousselier model is a Asepq are primarily unknowns. We find them by
variant of the Gurson model, within the meaning of  solving the equations (14) and (15). If we write
the latter; the equivalent macroscopic deformatioris ~ equations (14) and (15) as:
assumed to vary according to the expression of the

plastic work. f(Aeh, Al AB)=0
e (22)

o(Agh AeE,AB) = 0
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5. Applications and results

Once the Rousselier model is implemented as
VUMat subroutine via the FORTRAN code in the
ABAQUS explicit packager, it's applied to academic
examples and conventional frature mechanics tests
In terms of the model parameters, the values the
occur more often in the literature are usedand they
are shown in the Table 1 The meaning of eact
parameter is given above in the second sectiol

E v Ce n o1 D fo
(GPa) (MPa) (MPa)
210 0.3 300 0.2 44t 2 0.003

Table 1 The model parameter

5.1. Axisymmetric notched specimen

The model used for the simulation of a tensile te:
on axisymmetric notched specimen and the stre:
distribution is shown in the figure Il. With the
consideration of the geometric and the loadin
symmetry, only 1/8 of the specimen needs to |
modeled.
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Figure Il. Dimensions andstress distribution in the

axisymmetric notched sampl
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The stress-strain curveis given in Figure Ill
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Figure Ill. Stress-strain curve for the axisymmetric notched

specimen tension te:

We can see thathe stiffness of the material degrades,
this is due to neckingbroadcast ir the notch, and this
type of specimen undergoes cup and cone fracture
when it is subject toa tensile tes.

5.2. Cylindrical specimenloadec in compression

The initial length of the specime is [, = 35 mm,
which is compressedthis trial is common in material
forming, the stress distributior is given in Figure IV

and the stress -strain curve is given in the figureV.

S, Mises

(Avg: 75%)
+4.931e+02
+4.591e+02
+4.251e+02
+3.911e+02
+3.571e+02
+3.232e+02
+2.692e+02
+2.552e+02
+2.21z2e+02
+1.872e+02
+1.532e+02
+1.192e+02
+5.525e+01

Figure IV. Stress distribution for the cylindrical sample
compression tes
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Stress (MPa)

Figure V. Stress -strain curve for the compressions test o
the cylindrical sample

5.3.CT Specimen (compact tension)

This kind of specimen is often used in th
framework of fracture mechanics for the fracture
toughness andhe crack propagation assessment. Th
dimensions of the CT specimen and the stre:
distribution are given in the figure VI, when the
stress —strain curve is illustrated by figure VII. We
can deduce that the fracture process is well desbed
by the stiffness degradation of the material, proo
that the damage is taken into account before th
initiation of the macroscopic crack and its
propagation.

Figure VI. Stress distribution and dimensions of CT

specimen

Revue « Nature & Technologie ». AScience fondamentales et Engineering, n° 15/ Juin 2016.

Stress (MPa)

0 T T T 1

Figure VII. Stress-strain curve for the CT specimei

5.4.Charpy test

This test is considered as a reference for tt
impact resistance evaluation, the dimensions chos
are in accordance with ASTM E 399 [15], the CTOL
versus the crack propagation is given by the curve ¢
figure VIII and the evolution of the Charpy test
during the simulation is shown in figure IX.

CTOD (mm)

Figure VIIl. CTOD versus crack propagation for the
Charpy test

Page 32 a4 38



The Rousselier model implementati for a dynamic explicit analysis of the ductile fraare 37

Figure 1X. Evolution of the specimen state during the

Charpy test

In the case of the Charpy test, the failure of th
specimen occurs instantaneously. Once again, t
Rousselier model allows the reproduction of the rui
process successfully, see [11], [16].

6. Conclusion

In this work, the Rousselier model is
implemented via VUMat subroutine in Abaqus, to
simulate the ductile fracture of metallic materials
simulations were performed and we find that the
Rousselier model simulate successfully the ducti
fracture with the respect of the different steps of th

material behavior.
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