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Abstract: 

 

The purpose of this work is to model the ductile fracture of porous metals from a micromechanical point of view. 

To do this, the Rousselier model is implemented in the finite element code ABAQUS using a VUMat (Vectorized 

User MATerial) subroutine. The integration algorithm selected for the implementation is the Aravas algorithm, 

which is based on the ‘backward-Euler’ method; it follows the principle of the elastic prediction – plastic 

correction. To check the validity of the implemented model, simulations of academic examples and fracture 

mechanics problems (i.e. CT test and Charpy test) are performed, and a good description of the fracture process 

is obtained.  
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1. Introduction  

 

The mechanisms behind the ductile fracture of 

metals are associated with the development of the 

cavities within the material. We distinguish generally 

three phases which are the germination, growth and 

coalescence of cavities. The Rousselier model is based 

on microstructural assumptions which introduce a 

microstructure consisting of cavities and a matrix 

whose elastic deformations are negligible compared 

to plastic deformations [1].  

 Formulated by G. Rousselier [2-4], and 

considered as a variant of the A. L. Gurson model [5], 

it remains little used compared to this latter. 

However, modifications and extensions were made to 

him [6-8]. It has also been applied by many authors 

for the study of ductile fracture of steels and alloys 

through academic examples and industrial issues 

[9-13]. 

 In this work, we list the steps required for the 

implementation of the Rousselier model in a finite 

element code, in order to simulate the ductile fracture 

in Abaqus explicit, application of this model to 
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academic and fracture mechanics examples is 

performed in order to verify its validity.

 

2. Formulation of the Rousselier model

 

Introduced by Rousselier [2], it’s considered as a 

thermodynamically consistent ductile damage theory. 

The plastic potential in this model has the form 
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β  is a scalar damage variable. Its evolution is 

determined by equation (2) 

B is the damage function, ρ is a dimensionless 

density which depends on β . 

material constants, 0f  is the initial void volume 

fraction. 

( )p
eqH ε is a term describing the hardening properties 

of material. Usually this is equal to the yield stress of 

the undamaged material, ( ) ( )p p
eq Y eqH ε σ ε=

 
3. The Rousselier model integration

 

The numerical integration of the constitutive 

relations of the model is done using the Aravas 

algorithm [14]. It’s based on the principle of the 

elastic predictor, plastic corrector,

backward Euler method whose schema

is given in figure I.                              

The Rousselier model implementation for a dynamic explicit analysis of the ductile fracture

Sciences fondamentales et Engineering, n° 15/ Juin 2016. 

echanics examples is 

performed in order to verify its validity.  

Formulation of the Rousselier model 

Introduced by Rousselier [2], it’s considered as a 

thermodynamically consistent ductile damage theory. 

The plastic potential in this model has the form  

       (1) 

 
 
 

     (2)         

                  (3)    

   (4) 

mage variable. Its evolution is 

is a dimensionless 

D  and 1σ are 

is the initial void volume 

is a term describing the hardening properties 

of material. Usually this is equal to the yield stress of 

( ) ( )p p
eq Y eqε σ ε  

The Rousselier model integration   

The numerical integration of the constitutive 

relations of the model is done using the Aravas 

algorithm [14]. It’s based on the principle of the 

elastic predictor, plastic corrector, including the 

backward Euler method whose schematic description 

                              

Figure I. Geometric interpretation of the backward

method in the stress space [14]

 

We assume strain rate decomposition 
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The rate of plastic strain 
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1 is a second order tensor, 

stress tensor. The evolution of porosity is given by the 

principle of mass conservation 
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, 
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p  is the usual strain rate of von Mises given by 
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.

pe  is the deviator of 

The threshold function involves the 

invariant of the stress tensor, it’s given by 
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Where: HP  is the hydrostatic stress 
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Figure I. Geometric interpretation of the backward-Euler 

method in the stress space [14] 

We assume strain rate decomposition  

        (5) 

The rate of plastic strain 
.

pε  is obtained by 

considering the normality rule  
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is a second order tensor, s is the deviator of the 

stress tensor. The evolution of porosity is given by the 

principle of mass conservation  
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is found with the consistency condition 
.

0, 0φ φ= =

is the usual strain rate of von Mises given by 

is the deviator of 
.

pε  

The threshold function involves the 1st and the 2nd 

invariant of the stress tensor, it’s given by  

         (8) 

is the hydrostatic stress  
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with: , 1,2,...,H nα α =  is the sum of state variables  

0φ <  : The response is elastic 

 

We will adopt, by convention, the following notation  

 

HP P=  : The hydrostatic stress   

eqq σ=  : The von Mises equivalent stress   

- The flow rule is written: 

p g
d dε

σ
∂= Λ
∂

                (9) 

Where: dΛ  is a positive scalar  

- For dynamic solutions, the flow rule becomes  

1
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With: ( , , )g g p q Hα=  is the flow potential and 

3

2
n s

q
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With this notation, the stress tensor can be written: 

2

3
pI qnσ = − +               (11) 

The plasticity model is completed by describing the 

evolution of the state variables  

( , , )pdH h d H
αα βε σ=              (12) 

The details of the integration procedure are in 

illustrated in [14]. 

 

4. The Rousselier model development following the 

Aravas algorithm 

 

We assume that the Rousselier model is a 

variant of the Gurson model, within the meaning of 

the latter; the equivalent macroscopic deformation is 

assumed to vary according to the expression of the 

plastic work.  
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Integration of the Rousselier continuous material 

damage model for a single integration point is shown 

below. Where explicit time is not given, 1it +  is 

assumed.  

If we substitute differentials by finite differences, the 

complete set of equations will have the form  
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The equations from (14) to (21) are solved by the 

Newton's method. The strain increments p
mε∆  and 

p
eqε∆  are primarily unknowns. We find them by 

solving the equations (14) and (15). If we write the 

equations (14) and (15) as: 
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5. Applications and results 

 

Once the Rousselier model is implemented as a 

VUMat subroutine via the FORTRAN code in the 

ABAQUS explicit packager, it’s applied to academic 

examples and conventional fracture mechanics tests. 

In terms of the model parameters, the values that 

occur more often in the literature are used 

are shown in the Table 1. The meaning of each 

parameter is given above in the second section. 

 
E 

(GPa) 
ν σe 

(MPa) 
n σ1 

(MPa)

210 0.3 300 0.2 445

 

Table 1. The model parameters

 

5.1. Axisymmetric notched specimen 

The model used for the simulation of a tensile test 

on axisymmetric notched specimen and the stress 

distribution is shown in the figure 

consideration of the geometric and the loading 

symmetry, only 1/8 of the specimen needs to be 

modeled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. Dimensions and stress distribution

axisymmetric notched sample
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(MPa) 
D f0 

445 2 0.003 

. The model parameters 

 

The model used for the simulation of a tensile test 

on axisymmetric notched specimen and the stress 

shown in the figure II. With the 

consideration of the geometric and the loading 

symmetry, only 1/8 of the specimen needs to be 

The stress-strain curve is

Figure III. Stress-strain curve for the axisymmetric notched 

specimen tension test

 

We can see that the stiffness of the

this is due to necking broadcast in

type of specimen undergoes 

when it is subject to a tensile test

 

5.2. Cylindrical specimen loaded

The initial length of the specimen

which is compressed, this trial 

forming, the stress distribution

and the stress – strain curve is given in the figure 

Figure IV. Stress distribution for the

compression test

 

 

 
stress distribution in the 

axisymmetric notched sample 
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is given in Figure III 

 
strain curve for the axisymmetric notched 

specimen tension test 

the stiffness of the material degrades, 

broadcast in the notch, and this 

 a cup and cone fracture 

a tensile test. 

loaded in compression 

length of the specimen is l0 = 35 mm, 

, this trial is common in material 

the stress distribution is given in Figure IV 

strain curve is given in the figure V. 

 

Figure IV. Stress distribution for the cylindrical sample 

compression test 
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Figure V. Stress – strain curve for the compressions test on 

the cylindrical sample 

 

5.3. CT Specimen (compact tension) 

This kind of specimen is often used in the 

framework of fracture mechanics for the fracture 

toughness and the crack propagation assessment. The 

dimensions of the CT specimen and the stress 

distribution are given in the figure 

stress – strain curve is illustrated by figure 

can deduce that the fracture process is well described 

by the stiffness degradation of the material, proof 

that the damage is taken into account before the 

initiation of the macroscopic crack and its 

propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI. Stress distribution and dimensions of CT 

specimen 
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strain curve for the compressions test on 

 

 

This kind of specimen is often used in the 

framework of fracture mechanics for the fracture 

the crack propagation assessment. The 

dimensions of the CT specimen and the stress 

distribution are given in the figure VI, when the 

strain curve is illustrated by figure VII. We 

can deduce that the fracture process is well described 

ness degradation of the material, proof 

that the damage is taken into account before the 

initiation of the macroscopic crack and its 

 Figure VII. Stress-strain curve for the CT specimen

 

5.4. Charpy test 

This test is considered as a reference for the 

impact resistance evaluation, the dimensions chosen 

are in accordance with ASTM E 399 [15], the CTOD 

versus the crack propagation is given by the curve of 

figure VIII and the evolution of the Charpy test 

during the simulation is shown in figure IX

 

 

 

 

 

 

 

 

 

 

 

 

Figure VIII. CTOD versus crack propagation for the 

Charpy test

 

 

 

 

 

 

 

 
 

Figure VI. Stress distribution and dimensions of CT 
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strain curve for the CT specimen 

This test is considered as a reference for the 

impact resistance evaluation, the dimensions chosen 

are in accordance with ASTM E 399 [15], the CTOD 

us the crack propagation is given by the curve of 

figure VIII and the evolution of the Charpy test 

during the simulation is shown in figure IX. 

Figure VIII. CTOD versus crack propagation for the 

Charpy test 
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Figure IX. Evolution of the specimen state during the 

Charpy test 

 

In the case of the Charpy test, the failure of the 

specimen occurs instantaneously. Once again, the 

Rousselier model allows the reproduction of the ruin 

process successfully, see [11], [16]. 

 

6. Conclusion 

In this work, the Rousselier model is 

implemented via VUMat subroutine in Abaqus, to 

simulate the ductile fracture of metallic materials, 

simulations were performed and we find that the 

Rousselier model simulate successfully the ductile 

fracture with the r espect of the different steps of the 

material behavior.  
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