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Abstract 

Prediction provides discipline and pragmatic importance to empirical research. Two stages design is commonly used in phase II 
experimental trials. This design possesses good frequentist properties and allows early termination of the trial when the interim data 
indicate that the experimental regimen is inefficacious. The design with the predictive probability approach provides an excellent 
alternative for conducting multi-stage phase II trials. It is efficient and flexible and possesses desirable statistical properties. Often, 
preliminary experimental information is already available as a “pilot”, where a first experience that we ask for confirmation of results. 
Formally, we consider the following situation: Given a first sample of data, we want to plan an experiment (or a new sample) to have good 
chances of getting the relief sought if the experiment is not abandoned. We propose the procedure based on the notion of satisfaction index 
which is a function of the p- value and we expect, given the available data to calculate an estimate of satisfaction for future data as 
Bayesian predictive index conditional on previous observations. To illustrate the proposed procedure, several models have been studied by 
choosing the prior distribution justifying the motivations of objectivity or neutrality that underlie the analysis of experimental data. 
 
Key words: Predictive Bayesian approach, experimental trials, p-value, two-stage design.  
 

 
 

1. Introduction 

In many situations in experimental trials, the goal of 

statistical analysis is to predict values of a future sample.  

In clinical trials, sequential methods are used when there 

are formal interim analyses. An interim analysis is an 

analysis intended to assess treatment effect with respect to 

efficacy or safety at any time prior to the completion of a 

clinical trial. Because interim analysis results may 

introduce bias to subsequent clinical evaluation of the 

subjects who enter the trial, all interim analyses should be 

carefully planned in advance and described in the study 

protocol. The concept of sequential statistical methods was 

originally motivated by the need to obtain clinical benefits 

under certain economic constraints. For a trial with a 

positive result, early stopping means that a new product can 

be exploited sooner. If a negative result is indicated, early 

stopping ensures that resources are not wasted. Sequential 

methods typically lead to saving in sample size, time, and 

cost when compared with the standard fixed sample 

procedures. Interim analyses enable management to make 

appropriate decisions regarding the allocation of limited 

resources for continued development of the promising 

treatment. Under special circumstances, there may be a 

need for an interim analysis that was not planned originally. 

In this case, a protocol amendment describing the rationale 

for such an interim analysis should be implemented prior to 

any clinical data being unblinded. The acceptance and 

application of Bayesian methods in virtually all branches of 
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science and engineering have significantly increased over 

the past few decades [1]. This increase is largely due to 

advances in simulation-based computational tools for 

implementing Bayesian methods. The Bayesian approach 

provides greater flexibility in the statistical methodology of 

experimental trials, it can be found in this respect [2, 3].The 

aim of an exploratory experimental trial is to determine 

whether a new intervention is promising for further testing 

in confirmatory experimental trials. Most exploratory 

clinical trials for example are designed as single-arm trials 

using a binary outcome with or without interim monitoring 

for early stopping. Prediction models are important in 

various fields, including medicine, physics, meteorology, 

and reliability. Prediction models will become more 

relevant in the medical field with the increase in knowledge 

on potential predictors of outcome, e.g. from genetics. 

Also, the number of applications will increase, e.g. with 

targeted early detection of disease, and individualized 

approaches to diagnostic testing and treatment. The current 

era of evidence-based medicine asks for an individualized 

approach to medical decision-making. Evidence-based 

medicine has a central place for meta-analysis to 

summarize results from randomized controlled trials; 

similarly prediction models may summarize the effects of 

predictors to provide individualized predictions of a 

diagnostic or prognostic outcome. In this work, we define 

indices of satisfaction and prediction of satisfaction related 

to hypothesis testing, we calculate the predictive 

probabilities of achieving a successful result at the end of 

the trial using the analysis prior in order to stop the trial in 

case of low or high efficacy [4, 5, 6], in several models 

(Poisson, Binomial, Gaussian).Bayesian modeling will be 

used. We treated our applications given by software: 

Matlab and R. The outline of the paper is as follows. 

Section 2 introduces the basic idea of sequential prediction 

in experimental design. In section 3, we propose a study 

predictive sue the binomial model, we present an 

illustrative example and conclude with a discussion in 

Section 4. 

2. Model selection in the experimental planning 

 

2.1. Bayesian predictive design 

 

We use the Bayesian framework as a tool to design clinical 

trials with desirable frequentist properties. Taking the 

Bayesian approach, we derive an efficient and flexible 

design. 

Statistical methodology has already been used [7, 8]. 

Remember that, the Bayesian model was introduced in the 

context of J. Mr. Grouin [9] and after improved in [10, 11, 

12].  

We specify the experimental context by choosing 

Θ∈θθ )(P a family of probability observations on a space Ω 

and where Θ is the space of unknown parameters and is to 

test the null hypothesis Θ0 against the alternative 

hypothesis Θ1. In classical asymmetric design test 

problems, such a situation is generally in the experimenter, 

a desire to put in evidence a significant result, that is to say, 

to conclude the rejection of the null hypothesis. 

 

2.2. Satisfaction index 

 

   If adopted a procedure deterministic test , relative to a 

level α , leading to partition Ω in a region of not- rejection 

Ω0
( α )  and a rejection region Ω1

( α )  , an index particularly 

simple satisfaction is the indicator function of Ω0
( α )  . It is 

satisfied if the result is significant at α, if dissatisfied. But 

very often users want rather face an outcome that seems 

likely to lead to their rejection of Θ₀, know what its degree 

of significance; that is to say, know how far the results 

appear significant. 

 

Using the fact that any reasonable test technique leads to a 

family of not -rejection regions Ω0
( α )  in the sense of 
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decreasing inclusion when α increases, that is to say, when 

our precautions s' mitigate , then use a new index of 

satisfaction , a little less rough than the previous one , 

denoted ( )Φ α , and defined as a function of p- value , the 

simplest as zero on the region of not- rejection Ω0
( α )  and 

equal to ( 1 -p ) , or more generally ( α-p )l with l > 0 

otherwise. In other words it offers a satisfaction index 

which is zero if it is not detected significant and otherwise 

a decreasing function of the p- value, and therefore, the 

more p is small and the experimenter believes that the 

result is significant [13] remind that the p- value is 

considered as a measure of credibility to attach to the null 

hypothesis that practitioners often use to meet several 

critical and disadvantages of approach Neymann of 

Pearson. The value of this index satisfaction and an 

extended family of indices in the concept of predicting 

satisfaction of a sample future as a first sample. 

 

2.3. Prediction of satisfaction 

     

Experimental contexts that we have mentioned in the 

introduction often lend themselves to analysis in several 

phases [14] , and we limit ourselves to two phases and the 

situation , which corresponds to the requirements in the 

experimental trials, where the first phase is that indicative 

and is intended only to consider whether to resume testing 

for a second phase , conducted independently of the first 

and of which only the test result based on the conclusion of 

which is the ultimate purpose of the study . We note here Ω 

, Ω' and Ω '' sets complete results , the results of the first 

phase and the results of the second phase ( Ω = Ω' + Ω'') . 

    It is in this context that has proposed to introduce a 

Bayesian model with a prior distribution on Θ and the 

family of probabilities Θ∈θθ )(P on Ω. He sees in this model 

the probability of Ω '' , influenced by the outcome of the 

first phase ω', which we denote by '
''

ω
ΩP  , recall that, 

according to the usual Bayesian terminology , the term 

predictive probability , the probability PΩ on the space of 

complete results , which is used here is the probability on 

Ω'' which is deduced by conditioning by ω' . We find as a 

prediction on the view of the first phase of a significant 

result in the second phase, the value '''
ω

ΩP ( )(''
1

αΩ ), where 

)(''
1

αΩ  is the rejection region of the classical test made on 

the basis of the results of the second phase. It is in this 

sense that here is practice both classical statistics and 

Bayesian  statistics. 

    We propose here, more typically associate with any 

satisfaction index on the second phase index forecasting is 

the mathematical expectation with respect to '''
ω

ΩP , 

satisfaction provided by Consider the second phase of the 

experiment and the predicted using the first . 

    It is shown elementarily that the value ω ' an index of 

prediction can also be obtained as the expectation with 

respect to the posterior distribution based on ω ', the 

average value of the index of satisfaction related to the law 

sampling the second phase. The problem that arises is that 

of the calculation of this hope in situations of tests, for a 

choice of prior distribution. Several models are considered 

to illustrate the Bayesian predictive procedure proposed. 

 

2.4. Statistical inference for the design 

    We define the indices of satisfaction and anticipation of 

satisfaction related to a decreasing hypothesis test as a 

function of the p-value, satisfaction is higher than the null 

hypothesis is rejected more broadly, that is to say that p-

value is small. We consider the case of a two-step 

procedure, which is often done in the case of clinical trials 

where these satisfaction indices are interesting protocols 

and when the inference concerns an effect evaluated from 

the future sample only. 

 

     Consider the satisfaction provided by the second phase 

of the experiment and the predicted using the first. We 

saplings under which the statistician "wants" to observe a 
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significant result, i.e. reject the null hypothesisΘ0 His 

"satisfaction" will be greater in the case of rejection, and 

even generally much larger than the observation that led to 

the rejection is more significant.  

Being fixed α, a level α test defined by the critical first 

satisfaction index region ( )Ω α"
1 : 

( ) ( )( )"1" " ωωφ αΩ=  

The default of the above rudimentary index is that it 

expresses a satisfaction in "all or nothing". It is interesting 

to take into account to what level will the result always 

appears significant. One thus uses a new index of 

satisfaction defined by:  

  

αωωφ −≥= 1 )"(  if   0  )''( p  

      ( )( )"p ωL=   else. 

 

Where L is a decreasing function. We can generalize this 

procedure to a family of limited indices defined by:  

L(p) = (1 – p)l where  l ≥ 0. 

It is preferable to choose limited indexes because of their 

easier interpretation. In the case where l=1, )''(1 ωφ−  is 

the p-value and in the case where l=0, one finds the 

indicator function of the critical region. 

For the sequel, we choose l=1, L(p) = (1 – p) therefore 

αωωφ −≥= 1 )"(   0  )''(  if p  

            = (1 – p)   else. 

 

Based on the fact that most clinical trials meeting "legal" 

requirements (imposed by the control authorities for the 

authorization of placing drugs on the drug market) use as 

primary criterion of evaluation the significance level of a 

frequentist test, which is no else than the p-value. May we 

recall for this purpose that the p-value is always regarded as 

a measure of credibility to be attached to the null 

hypothesis that practitioners often use to answer several 

criticisms and disadvantages of the Neymann Pearson 

approach 

Recall that p= ( ){ }Ω∈ βωβ "
1

",inf   is what practitioners 

note the associated ω" and is called the p-value, it is 

considered a measure of credibility to be attached to the 

null hypothesis and practitioners often use to meet several 

critical and disadvantages of the approach Neymann -

Pearson, you can see why. Therefore, the more that p is, the 

more the practitioner Considers that the resulis significant. 

An indicator of prediction is given by: 

∫ ∫

∫

Θ ΘΩ Ω

Ω Ω






=

=

).'()''()''(

)''()''()'(

'
''

'
''

)(''
1

)(''
1

θωωφ

ωωφωπ

ωθ

ω

α

α

dPdP

dP

 

 

It is noticed that∫Ω Ω)(''
1

)''()''( ''α ωωφ θ dP   generalizes the 

power of the test in the logic of the index of satisfaction 

proposed. Therefore, this index of prediction can be used to 

determine whether the trial should be stopped early due to 

efficacy/futility or continued because the current data are 

not yet conclusive; it is the experimenter to take the final 

decision. 

 

3. Applications of prediction models 

       It is proposed to calculate the prediction of satisfaction 

in several models where the law of the unknown parameter 

θ is a conjugate prior or non informative. The sequential 

aspect can be a particularly innovative element relative to 

existing technology, it helps alleviate studies multiphase,  

also authorized the statistical analysis, one observation at a 

time, sometimes is ethical or economic as it allows  to stop 

quickly and least late the experience 

3.1. Poisson model 

For the Poisson model, the mean number of failures per 

unit time is the unknown model parameter. 

Independent identically distributed observations are carried 

out, the first result is a sequence of   n observations Poisson 
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parameter θ  , Yt (t=1, 2,…, T) and is chosen as prior 

distribution for θ the gamma distribution ( )βα ,G  , where 

0>α and  0>β     For reasons of completeness we set 

∑=
=

T

t
TY

1
'ω  we know that θ / ω' follows the  

Law ( )βα ,G , where 'ωαα +=   and ( )11 −− += Tββ . In 

the case of a frequentist test, the threshold α, where the null 

hypothesis is of the type: θ ≤ θ₀, the satisfaction index is 

given for a future observation of ω'' Poisson parameter θ 

by:  

"  if  0)"('' )( ωωφ α =  < 0q  

0

1"

0

0 "  if  
!

)(
  0 q

s

n
e

s

s
n ≥= ∑

−

=

− ω
θω

θ , 

where












−≥= ∑
−

=

−
1

0

0
0   1   

!

)(
   ;inf  0

u

s

s
n

s

n
euq α

θθ
, 

secondly the density f of the predictive distribution of 

conditional ω'' knowing ω' is: 

( ) ( ) ( ) θωθθωωω dfff '"'"
1

0
∫=  

( )
( )( ) ( )

( ) ( )
( ) 

























 Γ

+Γ+− +−

=









−−Γ

−
∫
∞













 −
=










αβ αω

ωαβ
ωα

θβθθ ααβ α
ω

θθ ω

"!

"11 "

0exp1
0

1

0 "!

0exp"
0 d

 

Therefore, the prediction becomes 

( ) ( ) ( ) ( )
( ) 


















Γ

+Γ+− +−

∑∞ ∑ −=









=
−

=

αβαω

ωαβ
ωα

θθωπ ω
ω

!"

"11 "

!
00'

0"
1"

0
s

s
eq s

 

 

3.2. The Bernoulli model 

The concept of sequential statistical methods was originally 

motivated by the need to obtain clinical benefits under 

certain economic constraints. For a trial with a positive 

result, early stopping means that a new product can be 

exploited sooner. If a negative result is indicated, early 

stopping ensures that resources are not wasted. 

Several phase II clinical trial designs are proposed in the 

statistical literature anmost of them are conducted in two 

stages. Let ix be the dichotomous response variable [15], 

which assumes value 1 if the clinicians classify the patient i 

as responder to the treatment t and 0 otherwise. In a typical 

two-stage design, T patients are accrued and treated at the 

first stage. If the observed number of treatment successes 

 

∑ == T
i iX1

'  'ω    is less than or equal to1r , the experiment 

stops  for lack of treatment efficacy. Otherwise, the trial 

continues to the second stage, which involves  additional 

patients. 

We denote θ the probability that an individual suffering 

from a disease is cured with   the treatment t. It is also 

considered that the medication (treatment related t) may be 

marketed only if θθ 0≥ . From a statistical point of view, 

we can formulate the problem using the following test: 

                             θθ 00 : ≤H . 

We work in the framework of the sampling model where 

we assume that are realizations of independent random 

variables iX and even Bernoulli parameterθ , again for the 

sake of completeness we take ∑
=

=
T

i
ix

1

'ω   . If we choose as 

prior distribution for θ a beta law ( )δα ,B  is then known 

that the posterior distribution of   'ωθ  is still a beta law  

( )δα ,B  with 'ωαα +=   and 'ωδδ ++= T  

 

The satisfaction index for observation 0"=ω  or 1 is: 
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q"  if  0)"( 0<= ωωφ  

    

 ∑
−

=

− ≥−=
1"

0
0

1
00 "  if  )1(  

ω

ωθθ
s

ss q , 

 

with 







 ≤−= ∑

=

−
1

1
000   )1(    ;inf  

us

stuq αθθ . 

 

 

On the other hand, the predictive density ω"/ω' is no other 

than the beta-binomial: 

( ) ( ) ( ) θωθθωωω dfff '"'"
1

0
∫=    

                                                                    

 

( ) ( )[ ] ( ) θθ δ
θ αδαβθ ω

θ ω d− −−−− −
∫= 







1
11,

1
1

"1"
1

0

 

( ) ( )
( )

( )
( ) ( )







ΓΓ
+Γ










++Γ
−+Γ+Γ=

δα
δα

δα
ωδωα

1

"1"  

                    

Hence the prediction of satisfaction is 

 

( ) ( ) ( )
( )βα

ωδωα
θω θωπ ω

+
−++− −∑ ∑ == =

−

B

Bs
s

s
q

"1,"
01 11

0'
0"

1"
0

 

Moreover, due to ethical considerations, the phase II 

clinical studies are planned as a multi-stage design to 

ensure that the trials do not last too long if the treatment 

shows a clear inadequateness. 

 

 

 

3.3. The Binomial model 

 

Note that we can generalize the (3.2) Bernoulli model and 

take T’ additional patients, then ∑= =
n
i iX1

""ω , The 

satisfaction index is: 

 

  "  if  0)"( ωωφ = < q0 

 ∑
−

=

− ≥−=
1"

0
000 "  if  )1(  

ω
ωθθ

t

tNtt
N qC , 

 

 

where 









≤−= ∑
=

−'
'

00'0   )1(    ;inf  
T

ut

tTtt
TCuq αθθ . 

                                                                                                                             

Then the Bayesian prediction  distribution of '" ωω  

                                                                           

( ) ( ) ( ) θωθθωωω dfff '"'"
1

0
∫=  

                  

( )( ) ( )[ ]

( )θ δθ α

βαβθθ

− −−×

− −
∫= −

1 11

,1 "'"
1

0

"
'

1wTwC w
T

 

             
( )[ ]

( )[ ]δαβ
δαβ
,

"',""
'

wTw
Cw

T
−++=  

 

From here on, observed  the response of the first step 'ω , 

the prediction ( )'ωπ  is  

∑ ∑
−+++

−−++++−
=

−
=

−'
"

1"
0

''
00'

0

"

)' ,'( 

)"'' ,"'( 
 )1(   T

q t
TtTtt

T Tba

TTbaC
C

ω
ω

ω

ωωβ
ωωωωβθθ

 

 

We illustrate this Bayesian design with two kinds of prior 

distributions. 
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3.3.1 An illustrative example for a uniform prior 

Prediction models are important in various fields, including 

physics, meteorology, and reliability. The predictive 

probability design under the Bayesian framework provides 

an ideal environment for learnisng. For example,  in 

reliability, in the case of failure probabilities of launch 

vehicles, we need to estimate the number of new launch 

vehicles that will succeed in, say,  T future launches 

scheduled during the next calendar year, we can see [16]. 

Calculating the predictive distribution for the number of 

successes of a new launch vehicle. Assume that a uniform 

distribution B (1, 1) is used to model the prior distribution 

on the launch vehicle success probability. With this prior 

distribution, we previously found the prediction when 

20'== TT and 0θ  = 0.5 

Simulation results 

 

Fig. I. the graphical presentation of prediction with 

uniform prior 

 

 

TableI:Index of  prediction with uniform prior B (1, 1) 

 

 

 

 

 

Vehicle Observations 

'ω  

( )'ωπ  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.00000006 

0.000005 

0.000015 

0.000076 

0.00031 

0.00108 

0.00314 

0.00797 

0.01807 

0.0371 

0.0701 

0.1221 

0.1977 

0.2987 

0.4220 

0.5591 

0.6957 

0.8153 

0.9040 

0.9559 

0.9765 

 

We note in Table I, where ω' is included in [0, 17], the 

result of 0θ  = 0.5 varies from 0.00000006 to 0.8153. 

Therefore we conclude H0 for 'ω  <17. On the other hand, 

when ω' is included in [18, 20] the result ( )'ωπ  varies 

from 0.9040 to 0.9765. In this case, instead of deciding for 

H1: 5.0>θ  considering the predictive probability is the 

weighted average of the indicator of a test which runs until 

the end of the study. 
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3.3.2An illustrative example for non informative prior 

 

The aim of exploratory clinical trials, such as phase II 

trials and proof-of-concept studies, is to determine whether 

a new intervention is promising for further testing in 

confirmatory clinical trials, such as phase III randomised 

controlled trials.   

 

The clinical trial, a prospective study to evaluate the effect 

of interventions in humans under prespecified conditions, is 

a standard and integral part of modern medicine. Many 

adaptive and sequential approaches have been proposed for 

use in clinical trials to allow adaptations or modifications to 

aspects of a trial after its initiation without undermining the 

validity and integrity of the trial. 

 

In all rigor, the Jeffreys rule gives different priors for the 

different designs, since it is based on the Fisher 

information, showd that Jeffreys prior offers new  

perspectives for the development of Bayesian procedures 

with good frequentist properties in hypothesis testing 

procedures.  

 

Suppose two imaging modalities (e.g., CT vs.MRI) for 

diagnosing lung cancer are to be compared on the basis of 

test accuracy (sensitivity, specificity, and the area under the 

ROC curve) [17]. 

 

Suppose 20'== TT are the sample sizes of the two groups 

and the prior probability of the null hypotheses is 0θ  =0.5,       

The predictive probability at each point ( )'ωπ is calculated 

via simulation in table II. 

 

 

 

 

 

           Simulation results 

 

Fig. II. The graphical presentation of prediction with non 

informative prior 

Table. II: Representation of prediction with non- 

informative prior B (0.5, 0.5). 

 

Patients Observations 'ω  ( )'ωπ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.0000007 
0.000006 
0.00002 
0.00010 
0.00039 
0.00125 
0.0034 
0.0083 
0.0183 
0.0367 
0.0679 
0.1166 
0.1869 
0.2809 
0.3965 
0.5269 
0.6602 
0.7818 
0.8779 
0.9404 
 0.9708 
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We note in Table II where 'ω  is included in [0, 18], the 

result of 0θ  = 0.5 varies from 0.0000007 to 0.8153. 

Therefore we conclude H0 for 'ω <18. On the other hand, 

when ω is included in [18, 20] the result p varies from 

0.9040 to 0.9765. In this case, instead of deciding for H1 

considering the predictive probability is the weighted 

average of the indicator of a test which runs until the end of 

the study. 

  As can be concluded from two tables when the parameters 

of the beta law are equal and equal to 0.5 and the value of 

0θ  = 0.5 we get the best convergence predictive 

probability. 

The predictive probability approach still offers a consistent 

way to evaluate the strength of the treatment efficacy based 

on the observed data. 

 

3.4 Gaussian model 

 

   Several cases are considered according to the choice of 

the a priori and the study of the test.  

 

We perform independent observations and of same normal 

random variable Ν(θ, σ2). In all that follows, Φ ( resp.ϕ) 

indicates the cumulative distribution function (resp. the 

density) of the distribution N(0, 1). 

The first result is 
T
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We wish to test a null assumption of type θ ≤θ0. The 

distribution of the result "ω is obviously stochastically 

increasing in θ,  

We use here a usual test ranging on ω", whose critical 

region is] [ , 0 +∞q , where ++= ασθ uq      200 , +αu  indicating 

the upper α quantile of the standard normal distribution  

N (0, 1): Φ( +αu ) =1-α. The satisfaction index is naturally 

defined as: 
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To study the prediction we distinguish two cases: 

 

3.4.1. Known variance:  variance σ 2   is known but  θ  

unknown  

1-If we choose a conjugate prior, we can see [18] if θ has a 

normal prior distribution ( )τδ 2,N , then the posterior 

distribution of θ  knowing 'ω  is a normal distribution: 
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Finally the forecasting satisfaction is given by: 
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Where ( )'" ωωv  is the conditional distribution density of  

"ω knowing 'ω  . 
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It is noted that π( 'ω ) only depends of the three real 

numbers which we will call essential parameters: two 

parameters of scale, d and t, in the expressions of which 

intervene only the ratios of variances 2
2
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τ
σ

 and 2

2
2

τ
σ

 and a 

location parameter a =-bx' + dθ'0. 

At threshold α and at fixed scale parameters, a 

modification of θ0 and δ has a translation effect on 

( )'ωπ if θ0' increases by ∆θ0', the representing curve of π 

undergoes a horizontal adjustment of amplitude '0 θ∆
b
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b
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In order to carryout the calculations of π( 'ω ) using a 

Monte-Carlo method. We rewrite π( 'ω ) in the form  

[ ] dz
tua

z

t

az
tua

tua
 (z) 1 

)  (  1

)(
 

  
    )  (  1  )'(

 ,  




 ∞++ℜ +

+
∫ +Φ−















 −Φ+Φ−=
αα

α
ϕωπ

  (29 

where [ [∞++ ++−  ,
1 

)  (  1 ααΦ
ϕ

tuatua  
is the probability density Q, 

deduced from the cumulative distribution function of the 

standard normal distribution by conditioning by the event 

[ [  ,   ∞+ +αtua . 

The Monte-Carlo method then consists in approaching 

by [19, 20]. 
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where the Zi are N realizations of the probability Q. The 

pulling of the Zi proceeds in the following way: 

- Ui : is drawn according to the uniform distribution on 

[0,1], 

- ii UtuatuaV ))  (  1(  )  (  ++ +Φ−++Φ= αα , i.e., that Vi  

follows the uniform distribution on [ )  ( ++ αΦ tua , 1], 

- Zi = Φ-1(V i), i.e., that Zi follows the distribution Q. 

 

 Simulation setting  

 

T=10, T'=20, σ2=1,  N=50, θ0=0,   δ=0, τ=1, Pas=0,05. 

We present in Figure (III), the comparative curves of the  

prediction  in the case of the index of the literature and the 

proposed index defined as a function of the p-value. We 

can see that these curves are very close, but they break 

away when x is rather large, i.e., superior to θ0, which 

conveys well the interest of the consideration of the p-value 

in the index of satisfaction that the only rejection of the 

assumption is all the more informative since 'ω  is larger, 

which proves well that the index that we propose is better.  
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Fig. III: Representation of Forecasting 
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This integral is approximated by Monte-Carlo methods, the 

figure (IV), represents the prediction. 

 

 

 

 Simulation setting  

 

T=10, T'=10, σ2=1, N=50, θ0=0, δ=0, τ=1, Pas=0,05. 

Pas =0.05, sigma1=0.31623, sigma2=0.31623, delta=0, 

tau=1, alpha=0.05,   
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Fig.IV. Prediction in the case of non informative prior. 

 

 

3.4.2 Unknown variance 

If the mean θ  and variance  σ 2
1  are both unknown, 

assume that the prior distribution for θ  and σ 2
1
−   is the 

normal gamma NG ( )υµ ,,, 21 −− sT . 

We know that, the posterior distribution of θ   and σ 2
1
−   is 

still NG  

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
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υµ ,,,
21

sT    with: 
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On the other hand, the predictive density '" ωω  is given 

by:       
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Where f t  is the density of the Student υ degrees of 

freedom, mean  µ   and scale parameter: [ ]12
1

−
+ Ts . 

We explicitly derived prediction: 
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We limit ourselves to present the prediction only explicitly 

because its approximation is mean by the Monte Carlo 

method exactly as 3.4.1. 

 

4. Conclusion 

 

In this paper, we propose Bayesian two-stage designs for 

experimental trials. The main contribution of our work was 

to closely related to two-stage and more in general 

sequential procedures in experimental data for early 

termination due to futility. This is a well debated issue in 

the recent literature, in particular Bayesian stochastic 

curtailment, i.e. early stopping for futility based on 

predictive distributions. The Bayesian predictive approach 

enables stopping the trial early or conversely extending it to 

an adequate size, in a sequential perspective, as illustrated 

in our examples in clinical protocols or in reliability. This 

fits particularly well with the methodology of adaptive 

designs. An extra advantage of our design is that easy to 

compute the predictive probability for different models in 

experimental trials. 
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