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Abstract

We analyze the static TDHFB equations in the TheRermi limit for a gas of bosons in a harmonic tripese equations
naturally generalize the Gross-Pitaevskii equation.

We first build a simple enough method that alloasthe determination of the various density prafilat zero temperature,
we obtain familiar expressions for the chemicaleptill and the condensate radius. The standard a&émrmi profile for
the condensate density is also recovered. Foefiainperatures and above the transition, we danagytical expressions for
the condensate radius, the chemical potential, niin@ber of condensed atoms and the depletion adiduscof the
temperature. We observe that the condensate radidishe column density are surprisingly very slamctions of the
temperature. Furthermore, the non-condensed demdiipough being quite uniform inside the trap,vgsaapidly with the
temperature. These facts imply therefore that trelensed atoms are very strongly attached andiezhilertain robustness
against "decondensation”. Moreover, the tramsitothe non condensed phase seems to be muchomat®lled by the

thermal cloud which rapidly grows from the bordenward the centre of the trap.
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1. Introduction

Bose-Einstein  condensation,
predicted theoretically almost a century ago, wad n
observed until the remarkable series of experimehthe
JILA and the MIT groups in 1995, performed by trengp
magnetically and then cooling atomic gases [1].

Since then, a great effort was devoted by reseeschié
around the world in order to understand and pretfiet
condensate properties. The main tools, beside theté4
Carlo calculations, were the Bogoliubov, the Popthe
Beliaev, the Hartree-Fock-Bogoliubov and the Baogmdiv-
De Gennes approximations [2].

These approximations all adopt simplifying assuomi
about the various quantities involved in the prablsuch
as the order parameté&p , or the condensate density

2 . ~
n. = |CD| , the non-condensed density or thermal cléud

and the anomalous densityn. A major well-known

drawback of these methods is that they cannot kdyea
extended to situations where their main assumpfaihs

We therefore rely in this paper on a dynamical atéynal
approach, which does not only retain the major erigs

although having beenof the preceding models, but seems to go beyont the

regimes of applicability. Our main tool is a vaidaial
principle for the density operator. By adopting tahbie
choices for the trial classes, we derive a setymiachical
and non perturbative equations which couple théouar
atomic densities. This coupling, which is quitefidiflt to
implement in the preceding approximations, is notyo
rather natural and consistent in our approach, liast
behind a great number of interesting results that w
describe. We also discuss the static aspects aggksua
novel image for the condensation.

2. The TDHFB equations and their static solutions

The General TDHFB equations were derived in [3hgsi
the Balian-Vénéroni (BV) variational principle. b more
appropriate notation for the BEC problem, one uges

boson field operatoHJ(F) in the Schrodinger picture[2].
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The gaussian density operator tD(with variational
parameters N, A(t) andS(t) writes:

D(t) = N(t) exp()\ra)exp(%arSa) : (1)

wherea [Jis the vector field (-I—”(ﬁ ,W(F)) ands andt

are symplectic numerical matrices. Introducing if1)the
BV variational action-like leads, beside the comaton of
the partition functionZ=Tr D(t), to what we may call the
TDHFB equations:

.. d 0<H>
in—<a>1——,

dt o<a> @
iﬂgp:‘zp—aﬂ_' -

dt Coop |

in which {H> is the mean-field energy @G> is the
expectation value of the opera®rwith respect td) and

p is the single particle density matrix. Some insérey
properties are discussed in [3,4].

In order to make connection with the BEC phenomenon
we introduce first the Hamiltonian for trapped bas®]:

H = ;w*(ﬁ[— 0 AV (P —u}wf’)

+%}Lw*(P)w*(P)w(P)w(P),

2m
whereVext(rp) is the trapping potentiali is the chemical

potential andj is the coupling constant. The eneiy<H>
is easily computed yielding:
[ L2

n

2m

2
910l 1+ (1 -+

©)

2
OAD - gfm DAV + (Vo ()~ + 207 |0

(4)

-5

+% Qrﬁz +M %+ rﬁD*Z)

where the condensate density., the non-condensed
density N and the anomalous densitn are identified
respectively With|< W >|2, <YP'YPs and<PY >,
The Egs.(2) now take the form

. OE

ind=—"—,

™0

infé= z(m* OE _ m"_'f), (5)
om om

inf= 2(2 +1) oF , 43—? M,

which constitutes a closed self-consistent systdine
coupling between the order parameter, the non-ctsete
density and the anomalous density occurs via the
derivatives ofE which still containn and M. For further
computational details see [3,4].

Beside the conservation of the energy, the equat{diy
exhibit the unitary evolution of the density mat(adready
visible in (2) by means of the conservation of the
"Heisenberg parametdrdefined by the relation

I=(@+)% -4/’ ©)

We recall the reader thal = cothz(r]co/ 2kT) for a

thermal distribution.
The expression (4) for the energy allows us toeagibwn
the Egs.(5) more explicitly. They indeed read

2
in&{—gmA + Ve —H+ 0N +295j¢+grﬁ¢*,
inf= g(rdeJ2 —r?xb*z),
2
inf= 4[—2mA PV —p+ 29njr'ﬁ+ g(2f + 1)+ ®?).

(1)

The consistency of our derivation mentioned in the
introduction is now clear. Indeed, we obtain in Efsa
self-consistent dynamics of the order parameteg th
thermal cloud and the anomalous density. The eguati
governing the evolution ofP has been obtained elsewhere
[2,5,6] as an extension of the Gross-Pitaevskiagiqun, but

to our knowledge, the two last equations in (7eyaing

the evolution of N and M, were never written down
before at finite temperature. It is worth noticitigat this
dynamics is also number conserving since the tiakity

n=nc+ N is preserved during the evolution.

Let us now turn to the analysis of the static sohd. In the
standard Thomas-Fermi (TF) limit, the kinetic terarg
often neglected. This is particularly satisfied toapped
bosons since they are slowed down in order to obtai
condensation. It is important to notice at thiselethat the
neglect of the kinetic energy is a somewhat hazado
hypothesis for the thermal cloud[7]. However, a enor
detailed analysis, carried out in [8,9] shows tifihg out
this approximation does not alter significantly thmin
results depicted along this work except perhaps ttea
transition, where the kinetic terms come out tg/ lanajor
role.

The static equations corresponding to (7) in theliffit
now write

(Ve — 1 + g +2g7)0> + gd” =0,

m ®2 -md? =0,

2 VR + %) + (Vo — 1+ 290 =0

8
It is easily shown that they are naturally gapkesd satisfy
the Hugenholtz-Pines theorem[10]. Indeed, owinghe
second equation in (8), one may verify that at zero

momentum, the relatiopl = g(n+n —|rﬁ) is satisfied
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without adding further
performed[10,11].

In order to solve these equations, we may distsigtivo
rather different situations. The first one is for0. When
all the atoms are condenséd= m = 0, andn, equals the
total density of the gas. The last two equations(8h
become therefore meaningless, and we are left with

simple expression for the condensate density
H _Vext(r)

assumptions, as

n.(r) = (9)

1
For a spherical trapping potentidf,,, () =Em(,02r2

and upon defining the "size" of the fundamentaltes
a, =4Jn/mw and the s-wave scattering length

a= mg/4nn2, we obtain the condensate radRsand
the reduced chemical potentigll, = 2|1/ Nw for a gas of

N bosons as
a 1/5
R. = ao(l5N j ,
a,

2/5
v, = [15N ;"OJ .

When O<T <Tg.,a judicious combination of the
equations (8) leads us to the remarkable expression

Vn, = ﬁ(b +2 3Y(b) +1/Y(b))}

1+ 2VA = —g(Y(b) +1/Y (b)),

viri =L (

Y(b) -1/ Y (b))
In Egs.(11), we have introduced the quantitesnd Y
defined as

(10)

(11)

1 V
b = — — ,
T (]— g (Vex () U)j

Y = %(%(\/ext(r) —Ht gn) _1J

It turns out thatY is a solution of the simple
equation5Y* +6bY* —2Y? - 2bY +1=0. This
solution exists only folb = 1. For the sake of convenience
only, we report here the best fit:

1 b%? +2/3

Y= _ﬁ[b” +5/33 —1]'

One may also work with the numerical values obthine
from the resolution of the quartic equation abowt this
does not alter the results given below.

(12)

(13)

is usually From the very definition (12) df, we see that the condition

of existence of this solution provides an upperrabéor
the radial distance from the centre of the trap. This
limiting value may be understood as the extensibthe
gas. In fact, we will see that it is just the siak the
condensate, and it is given by
-2J1@+J) a
R, :RC[1+1 2 J : (14)
2N
where R; is defined by (10). Furthermore, one may also
compute in the same way the reduced chemical pakent

by [T, 2 VTt
° 2N 5N l+1—2ﬁ(1+J) '
2N

(15)
One can notice the similarities with (10). The Eb%:15)
appear therefore as a finite temperature genetialivaf
(10). The quantityJ which appears in (14-15) is the
integral:

31
=2 j dxx?Y(b(x)) x=r/R,.  (16)
0
We can now go further by computing some other

interesting properties of the condensate sucthasyumber
N. of condensed atoms

NC:N+%(1+\/7(J+K)), (17)
and the numbef\~l of non-condensed atoms
N = —%(1+ JI(3+K)) (18)

In Egs.(17-18)K is an integral defined in the same way as
Jin (16), but withY replaced byr™. In fact, owing to the
form (13) of Y, the properties (as well as the numerical
values) ofJ and K can obviously be deduced from each
other.

Before ending this section, let us return briefiythe T=0
case in order to determine the non-trivial stattuton
with a quantum depletion. We notice that the presio

equations remain unchanged except that no/\ﬁ =11t

is then obvious that, sincdN =10% =10° in typical
situations, the equations (14-15) reduce to (10he T
condensed density is almost the same as the oea giv
(9). But now, the "cloud", even if it is very dingand
largely homogeneous) comparecdtpis non-zero except at
the boundaries where it vanishesactly Thus, in practice,
the approximation of a null quantum depletion atoze
temperature is largely justified.

3. Reaults and discussions

We see at first that the equation f¥r has a doubly
degenerate real solutiof-1 whenb=1. Hence, for=Ry,
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the condensate density vanishes and the non-coediens
density equals the total density
mRﬁ:nG%):iz_l
a
where we recover in particular, the vanishing of #ero
temperature quantum depletion at the boundaries.
The general result (19) deserves several commieings.of
all, sincen(Ry) vanishes, the quantify, which we have at
first glance considered as the spatial extensidhefjas, is
the size of the condensate itself and this in gives all its
significance to a formula like (14).
The expression (14) shows thBj is a slowly varying
function of the temperature sind&¢is generally large and
the integral is a bounded function. F& to vary sensibly

with the temperature,\/j must be of the ordeX, which
means a relatively high transition temperaturesThiturn
provides a column density quite insensible to the
temperature. That means in particular that, upsimgithe
temperature, the condensate does not collagtseaptly.
Secondly, the fact that the thermal cloud doediszsppear
at the boundaries brings up an interesting imagaefvay
the two phases (condensed and non-condensed) niix up
the gas. The condensed atoms appear in this inega a
"iceberg" surrounded by a (homogeneous) sea dfeelx
atoms. The transition to the normal phase is tbhesgaiuch
more due to the invasion of excited atoms fromitbeders

to the centre of the trap, than to the collapseths
condensate itself. On the other hand, the expre$sm) for
the reduced chemical potential shows that it is alslowly
varying function of the temperature.

The previous image of the way the condensate desapp
exhibiting a certain robustness against the variatiof the

(19)

temperature, is nonetheless plagued with a numlfer o

drawbacks. The first one, lying in the borderstef trap, is
the non vanishing of the thermal cloud there. Téwoad is
the quite uniform thermal cloud. Last but not leastthe
relatively high transition temperature that we hanferred
from the above considerations. In fact, we canuatalit to
be of the order of a hundred qiK. We strongly believe
that all these drawbacks are just artifacts of e
approximation. Indeed, we have already performeabee
elaborate calculation going beyond the TF approtiona
that is, taking explicitly into account the kinetterms
present in (7) in their differential form. The résushow
effectively that the thermal cloud does indeed siarat the
boundaries and that the transition temperatureii®sly
lowered (being of the order of a favK) [9]. The thermal
cloud remains however quite uniform inside the .tidpst
importantly, the robustness of the condensate again
variations of the temperature remains unchangeuietbre
confirming the interesting image that has emergechfour
calculations.

4. Concluding remarks

We present in this paper a finite temperature aislyf the
static TDHFB equations (derived in a previous paper
the Thomas-Fermi limit for a gas of bosons in araric
trap. These equations generalize consistently thesss
Pitaevskii equation and are naturally gapless sittey
satisfy the Hugenholtz-Pines theorem.

We first build a simple enough method that allows the
determination of the various density profiles. A¢ra
temperature, we obtain familiar expressions for the
chemical potential and the condensate radius. Tdrelard
Thomas-Fermi profile for the condensate densityaliso
recovered. For finite temperatures and above Hesition,

we derive analytical expressions for the condensatas,
the chemical potential, the number of condensethsiand
the depletion as functions of the temperature. \Wgeore
that the condensate radius and the column denséy a
surprisingly very slow functions of the temperature
Furthermore, the non-condensed density, althoughgbe
quite uniform inside the trap, grows rapidly withet
temperature. These facts imply therefore that tmelensed
atoms are very strongly attached and exhibit aaugert
robustness against "decondensation”. Moreovere th
transition to the normal phase seems to be muche mor
controlled by the thermal cloud which rapidly grofssm

the borders toward the centre of the trap.
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