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Abstract 

We apply the finite temperature Thomas-Fermi (TF) approximation by using the Time dependent Hartree-Fock-Bogoliubov 
equations. The exploration of these equations at finite temperature leads to the fact that all the thermodynamics quantities 
deviate from the standard values in the TF regime   
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1. Introduction 

Our starting point is the Time Dependent Hartree-Fock-
Bogoliubov (TDHFB) equations, which were derived in [1] 
using the Ballian-Vénéroni (BV) variational principle [2]. 
For a Hamiltonian H of the type: 
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and a Gaussian Ansatz for the density operator, they write: 
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where ( ) µ−+∆−= rV
m

sp
H ext

2

2
h

 is the single particle 

Hamiltonian. 

In equation (1.1), m is the atom mass, )(r
r+ψ , )(r

rψ are 

the boson creation and annihilation operators respectively , 
Vext(r) is the external confining potential, µ the chemical 
potential and g is the coupling constant. Furthermore, in 

the Eqs. (1.2), Φ  is the order parameter, 
2Φ=cn  is the 

condensate density, n~  the thermal cloud and m~  is the 

anomalous density, nnn c
~+=  is the total density. The 

volume V of the gas is introduced for dimensional reasons. 
 
One may understand in few words how (1.2) have been 
derived simply by recalling that the BV variational 
principle provides dynamical equations for the variational 
parameters of the density operator. These parameters are 
directly related to the expectation values (with respect to 

the density operator) of the operators )(r
rψ , )()( rr

rr ψψ+  

and )()( rr
rr ψψ , which determine the various densities. For 
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instance, )()( rr
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ψ=Φ ,
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ψψ−ψψ= ++  and 

2
)()()()(~ rrrrm
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ψ−ψψ= . For further computational 

details, see Ref. [1]. 
The quantities n~and m~  are related by the unitarity relation  

( ) ( )22 ~2~21 mVnVI −+= ,              (1.3)                                     
where the Heisenberg parameter I is directly related to the 

temperature by )2/( kTCothI ω= h . For 
instance, I=1 at zero temperature. 
The TDHFB equations possess a number of interesting 
properties such as the conservation of the energy and of the 
total number of particles. They are also characterized by a 
gapless excitation spectrum, which is compatible with the 
Hugenholtz-Pines theorem [3]. Furthermore, they provide a 
self-consistent dynamics of the order parameter, the 
thermal cloud and the anomalous density. They constitute 
in this sense a natural generalization of well known 
approximations such as the Gross-Pitaevskii, the 
Bogoliubov, the Popov, the Beliaev and the Hartree-Fock-
Bogoliubov-De Gennes equations (HFB-BdG). See e.g. [4, 
5, 6 and 7]. 
The HFB-de Gennes equations seem to derive from the 
linearization of the first equation in (1.2) around a static 
solution. Indeed, we easily get the equation 
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where pu and pv are real space function, turns out to be the 

HFB-De Gennes equations 
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The properties of the Bose-Einstein condensation in the TF 
regime at finite temperature were explored by many 
experimental and theoretical groups. A recent experimental 
result shows a deviation of the condensate radius from the 
standard TF approximation [8]. Moreover, in Ref.[9], it was 
clearly demonstrated that the thermal cloud compresses the 
condensate. From these experiments and from the Ref. 
[10], one notes that the validity of the TF approximation 
depends not only on the number of atoms but also on the 
trap properties.  

2. The Thomas-Fermi approximation at finite 
temperature 

In this section, we would like to generalize the TF method 
worked out in Ref [11] to the finite temperature. To this 
end, the kinetic energy operator is replaced by its classical 

counterpart mp 2/2  in the equations (1.2). We simplify 

our model by neglecting the anomalous density.  The 
equations (1.2)-(1.3) take the form: 
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The equation (2.1) can also be written: 
 

( ) ,0=Φ− clHµ                                  (2.3)                    
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 is the ’’classical’’ 

Hamiltonian of the system and ( )1−−= I
V

gµµ . The 

solution of equation (2.1) for a repulsive case is given by   
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 In turn, the number of 

condensed atoms Nc is computed via )( rnrdN cc ∫= r
. 

Further details are given in [11]. 
It is worth noticing that in the case of a repulsive 

interaction and for large values of cN  (that is very low 

temperatures), we can expand ( )rnc  around ( )rξ . The 

equation (2.4) becomes 

( ) ( ) ...
1 2

2
++≈ r

KgN
rn

c
c ξξ                     (2.5)                         

We see that the first order result 
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which is the finite temperature correction to the TF 
condensate density is just a temperature dependent term. 

3. Thermodynamic quantities  

For later convenience let us write the temperature 
dependence of the chemical potential. Integrating equation 
(2.6) over the available space and substituting the number 

conservation NNN c

~+= , where N
~

 is the number of 

non-condensed atoms, we find 
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Here, we have used the ideal gas result ( )31 tNNc −= , 

where 0
cTTt =  is the reduced temperature (0cT  is the 

ideal gas transition temperature). The scaling parameter   
5/2
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Nη , where N is the total number of 

atoms, a  the s-wave scattering length and 0Ha  the 

oscillator length, describes the balance between interaction 
and thermal effects. Due to its relatively weak N 
dependence, η  assumes values from 0.3 to 0.49 [10]. 

Equation (3.1) provides a useful correction of µ  at finite 

temperature, which is expected to be valid in the range 

cTT ≤ .  

Let us  first discuss the problem of the condensate 
fraction. Using the semi-classical picture for the thermal 
cloud[12], one may write  
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were c is an integration constant. It is clear that at 
temperatures at and above cT , the condensed and the 

anomalous densities can be neglected. The single particle 
energies are directly deducted from equation (1.5)  
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Explicit integration of (3.2) provides a corrected expression 
for the condensate fraction 
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A similar calculation yields an approximate expression for 
the total energy of the system  
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Notice that this expression can be obtained directly starting 
from the result (3.1), through the use of general 
thermodynamic properties. 
The equations (3.4)-(3.5) show that the effects of the 
interaction depend linearly on η  and are consequently 

expected to deviate from the predictions Ref. [10] and [12].  

4. Results and discussions 

Let us consider a system of  87Rb atoms trapped by an 
isotropic harmonic potential. We use the following 

parameters 64.7/ 0 =Haa 310−  and a total number of 

atoms 2000=N . Distances are measured in units of 

0/ ω= maHO h  and densities in units of 3−
HOa . 

We begin by studying the chemical potential as a function 
of the scaling parameter for various temperatures.  
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Fig 1:  Chemical potential as function of the scaling parameter 

 
The figure 1 shows that the chemical potential depends 
linearly on the scaling parameter and increases with 
temperature.  
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Fig 2: Condensate fraction as a function of the reduced temperature. The 
circles are the results of Ref.[13] for η = 0.37, obtained without using the 

semi classical approximation. The dotted line is the result of ref [12] for 
the same configuration. The dashed line is our calculation for the same 
configuration. The solid line is the ideal gas result in the large N limit. 
 
Figure 2 shows that our prediction for the condensate 
fraction is much likely close to HFB-De Gennes calculation  
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Fig 3: Total energy of the system as function of the reduced temperature 
for η� =0.37. The dotted line is from Ref.[12]. The dashed line is our 
calculation for the same configuration. The solid line is the ideal gas result 
in the large N limit. 
 
Figure 3 represents the total energy of the system and it is 
predicted to be larger than the one predicted by the non 
interacting gas. It coincides with the result of [12] for  

5.00 ≤cTT . 
 

5. Conclusion 

In this work, we have studied the Thomas-Fermi 
approximation for trapped Bose gases at finite temperature. 
We have extended a semi classical method developed for 
the T=0 case.  
Our calculations allow us first to establish original 
analytical expressions for the condensate density and some 
other thermodynamic quantities such as the chemical 
potential, the condensate fraction and the total energy of the 
system. These expressions are natural extensions of those 
obtained in Refs [11, 12]. 
Moreover, our numerical results show a linear dependence 
of the chemical potential with the scaling parameter and 
with the temperature. The total energy of the system is also 
shown to be larger than what has been predicted by semi 
classical methods.  
Finally, we may conclude that the finite temperature 
extension of the Thomas-Fermi approximation, together 
with the full TDHFB equations can offer a powerful tool 
for the study of trapped self-interacting Bose quantum 
gases. 
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