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Abstract

We apply the finite temperature Thomas-Fermi (Tpraximation by using the Time dependent HartreekF®ogoliubov
equations. The exploration of these equationsrdteftemperature leads to the fact that all thentleelynamics quantities
deviate from the standard values in the TF regime
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1. Introduction where H® = —%A +Vext(r)—,u is the single particle

Our starting point is the Time Dependent HartreekFo  Hamiltonian.

using the Ballign-Vénéroni (BV) variational prinip[2]. the boson creation and annihilation operators @ty
For a HamiltoniarH of the type: Vexdr) is the external confining potential, the chemical

H = jw+(f) —ﬁA+V ) - [w() potential andg is the coupling constant. Furthermore, in
F 2m et (1.1) the Egs. (1.2)® is the order parameten, =|<D|2 is the
O e T condensate densityn the thermal cloud andn is the
+EI¢' (MW (NW(r)w(r) anomalous densityNn=n. +N is the total density. The
and a Ga[Jssian Ansatz for the density operatoy, white: volumeV of the gas is introduced for dimensional reasons.
ihd = (H . gne +zgﬁ)q) + gmd*, One may understand in few words how (1.2) have been
derived simply by recalling that the BV variational

principle provides dynamical equations for the atoinal

ini=al 4P +29n+i(2\/ﬁ+1) r—ﬁ+g(2\/ﬁ+l)q32’ parameters of the density operator. These parasater
Y, V directly related to the expectation values (witbpect to
=g (rﬁ* ®2 rTﬂJ*Z) the density operator) of the operatg@), Y™ (F)Y(F)
and(r)Y(r), which determine the various densities. For

(1.2)
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instance®(F) :<¢(r)>’ our model by neglecting the anomalous density. The
_ equations (1.2)-(1.3) take the form:
() = (6" (W) = (W O) () and 0? _
2 Ve () +gn +27) [0 = b, 1)
m(F) =<l]J(F)lIJ(F)> —|l|J(F)| . For further computational 2m
details, see Ref. [1]. _ Al -1
The quantitiesn and m are related by the unitarity relation n= T (2.2)
| = (1+2vi)? - (2v|m)°, (1.3)
where the Heisenberg parametés directly related to the  1he equation (2.1) can also be written:
temperature by JI' = Coth (hw/2KT). For (ﬁ ~H, )CD =0, 2.3)

instance]=1 at zero temperature.

The TDHFB equations possess a number of interesting
properties such as the conservation of the enerdyéthe
total number of particles. They are also charanteriby a

gapless excitation spectrum, which is compatiblth e Hamiltonian of the system anfl = ﬂ_g(ﬁ _1)_ The
Hugenholtz-Pines theorem [3]. Furthermore, thewioi® a \Y
self-consistent dynamics of the order parametee th solution of equation (2.1) for a repulsive casgiven by
thermal cloud and the anomalous density. They @atest 2

in this sense a natural generalization of well know n(r) = Ag[ 1+_5(r) —1] , (2.4)
approximations such as the Gross-Pitaevskii, the Ag

Bogoliubov, the Popov, the Beliaev and the Hartfeek-

2
whereH =2£+Vext(r)+ gn, is the “classical”
m

Bogoliubov-De Gennes equations (HFB-BdG). Seeld,g. where 5

5,6 and 7]. _[ ma 2 — (7

The HFB-de Gennes equations seem to derive from theA_(2 2713) mNc ’ E(r)_ (“ _Vest (r))/ gand

linearization of the first equation in (1.2) arouadstatic TE ~

solution. Indeed, we easily get the equation E:J' drdp 5(,L1—H ) In tun. the number of
indd = (H P+ 29n)6CD + g(rTl+ cD2)6<D* 14 a °(2m) . ’

which, upon setting &® = Zp(upe_ispt _Vpeispt condensed atoms; is computed viaN, = [dr n,(r) .

_ Further details are given in [11].
where upand V,are real space function, turns out to be the |1 s \worth noticing that in the case of a repusiv

HFB-De Gennes equations interaction and for large values dX, (that is very low
—_ £y _ o
Eplp = (H +29n)up g(nc * m)vp (1.5) temperatures), we can expamg(r) around f(r). The
_ o _ - @ _
EpVp = (H + 29n)\/p g(nC + m)up equation (2.4) becomes
The properties of the Bose-Einstein condensaticthérT F n = &)+ E(r)+... (2.5)
regime at finite temperature were explored by many ¢ Kch2
experimental and theoretical groups. A recent erpsrtal We see that the first order result
result shows a deviation of the condensate radam the \/—
standard TF approximation [8]. Moreover, in Ref.[[®as n = H =Veu _ | -1 @
clearly demonstrated that the thermal cloud conga®she ¢ g v

condensate. From these experiments and from the Ref
[10], one notes that the validity of the TF approation
depends not only on the number of atoms but alsthen
trap properties.

which is the finite temperature correction to thé& T
condensate density is just a temperature depeiei@mt

3. Thermodynamic quantities

2. The Thomas-Fermi approximation at finite

temperature For later convenience let us write the temperature

dependence of the chemical potential. Integratiopgagon

In this section, we would like to generalize the mEthod (2.6) over the available space and~substltut|ngmhmber

worked out in Ref [11] to the finite temperatureo This conservationN = N_ + N, where N is the number of
end, the kinetic energy operator is replaced bylassical non-condensed atoms, we find

counterpart p2 /2m in the equations (1.2). We simplify



17

« Nature & Technology » Review. Issue n° 04/Janu@@11

U 0.8t°

Here, we have used the ideal gas red\jt = N(l—ts),

= -]+ (3.1)

where t =T/TcO is the reduced temperaturd_{ is the
ideal gas transition temperature). The scaling rpatar

/7=157(

atoms, a the s-wave scattering length and,, the

oscillator length, describes the balance betwetarantion
and thermal effects. Due to its relatively weak
dependence/] assumes values from 0.3 to 0.49 [10].
Equation (3.1) provides a useful correction gf at finite
temperature, which is expected to be valid in taege
T<T,.

Letus first discuss the problem of the condensate

fraction. Using the semi-classical picture for termal
cloud[12], one may write

2/5
a
NllG—J , whereN is the total number of

aHO

82

e(s_U)/kT '
were ¢ is an integration constant. It is clear that at
temperatures at and abovk , the condensed and the

anomalous densities can be neglected. The singteclpa
energies are directly deducted from equation (1.5)

p2
N+Vext(r)+zgn(r)'

Explicit integration of (3.2) provides a correcidpression
for the condensate fraction

NC

N = cojods (3.2)
0

E =

. (3.3)

0.8t3

(3.4)
A similar calculation yields an approximate expi@sgor
the total energy of the system

E 5+16t3
: Sl
NKT

=1-t7 - 1372 (L2 +

080° n
3/5
b-v)
(3.5)
Notice that this expression can be obtained diresttirting
from the result (3.1), through the use of general
thermodynamic properties.

The equations (3.4)-(3.5) show that the effectsthud
interaction depend linearly oW} and are consequently

expected to deviate from the predictions Ref. @ [12].

=270t +

_t3)2/5 +
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4. Resultsand discussions

Let us consider a system of’Rb atoms trapped by an
isotropic harmonic potential. We use the following
parametersa/ a,, = 764107 and a total number of
atoms N = 2000 . Distances are measured in units of

Ao =+/i/Mw, and densities in units ofa .

We begin by studying the chemical potential asraction
of the scaling parameter for various temperatures.

12 T T T T

8

u/KT

—t=0,8|
— t=0,6|
—t=0,4
—1t=0,2
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Fig 1: Chemical potential as function of the suglparameter

The figure 1 shows that the chemical potential ddpe
linearly on the scaling parameter and increasedh wit
temperature.
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Fig 2: Condensate fraction as a function of theiced temperature. The
circles are the results of Ref.[13] fé] = 0.37, obtained without using the

semi classical approximation. The dotted line is tbsult of ref [12] for
the same configuration. The dashed line is ourutation for the same
configuration. The solid line is the ideal gas tesuthe largeN limit.

Figure 2 shows that our prediction for the condnsa
fraction is much likely close to HFB-De Gennes aldtion

151t0 18
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E/NK,T

AN

Fig 3: Total energy of the system as function & teduced temperature
for 7 =0.37. The dotted line is from Ref.[12]. The dashieé is our
calculation for the same configuration. The salié lis the ideal gas result
in the largeN limit.

Figure 3 represents the total energy of the systadit is
predicted to be larger than the one predicted leyrbn
interacting gas. It coincides with the result of]Ifor

T/T2<05.

5. Conclusion

In this work, we have studied the Thomas-Fermi
approximation for trapped Bose gases at finite tmauoire.
We have extended a semi classical method develfed
the T=0 case.

Our calculations allow us first to establish orain
analytical expressions for the condensate densiysame

other thermodynamic quantities such as the chemical

potential, the condensate fraction and the totafggnof the
system. These expressions are natural extensiotisosé
obtained in Refs [11, 12].

Moreover, our numerical results show a linear ddpene
of the chemical potential with the scaling parameted
with the temperature. The total energy of the systealso
shown to be larger than what has been predictedehyi
classical methods.

Finally, we may conclude that the finite temperatur
extension of the Thomas-Fermi approximation, togeth
with the full TDHFB equations can offer a powerfabl
for the study of trapped self-interacting Bose duan
gases.

Reference

[1] M. Benarous, Ann. of Phys. 320 226 (2005).

[2] R. Balian and M. Vénéroni, Ann. of Phys. 189 2 (1988); M.
Benarous and H. Flocard, Ann. of Phys. 2843 (@A999).

[3] N. M. Hugenholtz and D. Pines, Phys. Rev. 188 4 (1959).

[4] E.P. Gross, Nuovo Cimento 20 (1961) 454; .Risaé,
JETP 13 (1961) 451.

[5] N. Bogoliubov, J. Phys. USSR 11 (1947), 231LA. Fetter and J. D.
Walecka, "Quantum Theory of Many-Particle SystenmdtGraw-
Hill, NY, 1971; L. Pitaevskii and S. Stringari, 6Be-Einstein
Condensation”, International Series of Monogragmms Physics,
Oxford Science Publications, Clarendon Press, @x2003.

Sov. Phys.

[6] V. N. Popov, Sov. Phys. JETP 20 1185 (1968)rctional Integrals
and Collective Excitations"”, Cambridge Univ. Pre€ambridge,
1987; D. A. W. Hutchinson and E. Zaremba, Phys..R&7 1280
(1998); D. A. W. Hutchinson E. Zaremba and A. GmiffPhys. Rev.
Lett. 78 1842 (1997).

[7] S.T.Beliaev, Sov. Phys. JETP 7 289 (1958).

[8] M. A. Caracanhas, J.A. Seman, E.R.F. Ramos,LE.BHenn, K.M.F
Magalhas, K. Helmerson and V.S. Bagnato. J. Phy® Bl45304
(2009).

[9] M.Zawada, R. Abdoul, J. Chwedenczuk, R Gartndar§zczepkowski,
L. Tracewski, M. Witkowski and W. Gawlik, J. PhyB41 241001
(2008).

[10] F. Gerbier, J. H. Thywissen, S. Richard, M.gHart, P. Bouyer and
A. Aspect, Phys. Rev. Lett. 92, 030405, (2004).

[11] P. Schuck, X. Vinas, Phys. Rev. A61, 4360020

[12] S. Giorgini, L. P. Pitaeveskii and S. Strinigdr Low Temp. Phys.
109 309 (1997).

[13] D.A.W. Hutchinson, R.J. Dodd, K. Burnett, SMorgan, M. Rusch,
E. Zaremba, N.P. Proukakis, M. Edwards and C.WtkCla Phys. B
33, 3825 (2000).



