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Abstract 

In this work, we will study the non-linear behavior of a plate in cylindrical bending using an exponential function with gradient of 
material properties (Commonly called E-FG). The plates are subjected to uniform loading and geometric nonlinearity is introduced into 
relationship the stress-strain using the expressions nonlinear deformations of Von Karman's. The material properties of the plate, except the 
Poisson coefficient, are assumed to vary in the direction of thickness z in the form of an exponential law distribution. The solution is 
obtained by using the Prince of Hamilton. Numerical results by an exponential function with gradient of properties are given in the form of 
graphs non-dimensional; and determine the effect of the material properties on the deflection and the normal stress across the thickness.   
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1. Introduction 

The composite material consists of the assembly of two 
or more materials of different nature, which makes it 
possible to increase the required performance. However, 
the discontinuity of the material properties through the 
interface of the composite material constituents causes 
stress concentrations under mechanical and thermal loads. 
To eliminate singular stresses in an ultra-warm 
environment, the concept of materials with gradient 
properties (FGM) was introduced in 1984 by a group of 
scientists in Japan [1, 2]. 

Functionally graded materials (FGMs) are under the 
microscope of non-homogeneous composite materials, 
their mechanical properties vary gradually and 
continuously from one surface to another. The composition 
changes from a ceramic surface to a metal surface 
following to a function of the volume fraction of the two 
materials between the two surfaces.  

FGMs plates are generally used in thin structures and 
therefore, it is interesting to study and understand the non-
linear behavior of plates with gradient materials under 
uniform loading. Several linear studies of the flexural 
FGM plates in a thermal environment are presented [3–8]. 
However, the investigations in nonlinear analysis of the 

FGM plates under thermal or mechanical loading are 
limited in number. For example, Praveen and Reddy [9] 
have analyzed the non-linear response of ceramic-metal 
gradient material plates using the finite element method 
taking into account transverse shear deformations, Polar 
inertia and large moderate rotations in the sense of Von 
Karman. Reddy [10] presented the solutions of rectangular 
plates in FGM using the third order theory of plate shear 
deformations. The large deformations of the FGM plates 
under uniform loading were also studied by GhannadPour 
and Alinia using the Von-Karman theory [11]. Through the 
thickness, the distribution of the stresses of the aluminum 
and alumina plates is linear in contrast in the plates in 
FGM the behavior is nonlinear and is a function of the 
variation of the properties in the direction of the thickness. 
A similar method was used by Sun and Chin [12, 13], 
Navazi et al.[14] Concerning the non-linear cylindrical 
flexion analysis of plates based on classical theory (CPT). 

The objective of our research is to determine the 
displacements and the stresses of the plates E-FG1 in 
cylindrical bending under uniform loading. The 
equilibrium equations are obtained on the basis of the 
——— 
1 Exponential function with gradient of material properties (Commonly 
called E-FG) 
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classical theory of plates. Using non-linear deformations of 
Von Karman and the gradual variation of material 
properties, the non-linear equilibrium equations are 
obtained and are thus reduced to a linear differential 
equation. This equation is solved by the boundary 
conditions of a simply supported plate and we will study 
the effect of several parameters such as the index of the 
volume fraction, the type of loading and the dimensions of 
the plate. 

2. Theory and Formulation  

2.1. Properties material of the E-FGM plate  

In this study, we consider a rectangular elastic plate    
E-FGM with uniform thickness h and a length l=2a. The 
plate is made of a mixture of ceramic-metal; and its 
composition is assumed to be gradual varies from the top 
to the bottom surface. In fact, the top surface (z = h/2) of 
the plate is ceramic-rich whereas the bottom surface 
(z = −h/2) is metal-rich. Consequently, the modulus of 
elasticity is a function of z, measured from the medium 
plane of the plate. There are several models analytical and 
mathematics to select the proper function of material 
properties of the FGM. These functions are supposed to be 
simple and continuous, and may have concave and convex 
curvatures [15]. In this study, an exponential function to 
describe the material properties of the FGMs is chosen. 
The relation between E and z of the FGM ceramic-metal 
plate is given by the equation below, expressed by Sallai et 
al [16]: 

 

E(z)=Ae
B(z+h/2)          (1) 

 
with  
 

2EA =  and  
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where E(z) indicates the Young's modulus, E1 and E2 
expresses respectively the Young's modulus of the upper 
surface ( 2/hz += ) and lower ( 2/hz −= ). 

2.2. Nonlinear equations of E-FGM plates in 
cylindrical bending 

The fundamental equations of a large deformation 
analysis of an FGM plate subjected to uniform loading are 
briefly presented in this section. The use of classical plate 
theory (CPT) assumes that Kirchhoff's hypotheses are 

united. Kirchhoff's hypotheses assume that the 
displacements are of the form: 

 

���, �, �� = �	��, �� − � 
��
��       (3) 

 
(x,y,z)=0          (4) 
 
w(x,y,z) = w0(x,y)           (5) 
 
where (u,v,w) are respectively the displacements in the 
directions (x,y,z). Also, (u0,v0,w0) are respectively the 
displacements of the medium plane in the same directions. 

The nonlinear deformation-displacement relations of 
Von Karman are as follows:  

 

,
2

1
2
0

22
00

x

w
z

x

w

x

u
x ∂

∂−








∂
∂+

∂
∂=ε          (6) 

 
,0== zy εε          (7) 

 

,0 

 2 0
2

0000

==
∂∂

∂−








∂
∂

∂
∂+

∂
∂+

∂
∂=

yzxz

xy yx

w
z

y

w

x

w

x

v

y

u

γγ

γ
     (8) 

 
The law of constraint-deformation behavior is 

expressed in the form: 
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Using the materials properties given by eq. (1), the 

stiffness coefficients Qij 
can be expressed by:  
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Using the Hamilton Principle, the governing equations 

in the description Euler - Lagrange are:  
 

,0, =xxN        (13) 
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0,, =++ xxxxx wNqQ       (14) 

 
0, =− xxx QM        (15) 

 
where q is the transverse loading. The normal force, the 
shear force and the moment results are given by: 
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From the eq. 13 we obtain: 

 

.0 constNN xx ==  (17) 

 
Therefore, Eq. 14 and 15 become 
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By substituting Eq. 6, 7 and 8 in Eq. 9 and replace the 

result in Eq. 16, the resulting forces as a function of the 
components of the displacements can be presented as 
follows: 
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11A , 11B  and 11D  are called the membrane stiffness, the 

bending coupling stiffness and the bending stiffness, 
respectively and are defined as follows: 
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By substituting Eq. (20) in Eq. (21) we obtain 

 

xxxx wD
A

B
N

A

B
M ,11

11

2
110

11

11  







−+=  (22) 

 
By substituting Eq. (22) in Eq. (18), we obtain 
 

Wxxx - k²w,xx = q0
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3. The general solution  

In this study, we assume a plate E-FG submitted to a 
uniform transverse loading q  in its upper surface. It is 

intended herein to determine the analytical solution of a 
plate E-FG in non-linear bending. 

3.1. Nonlinear analysis 

Eq. (24) is a fourth order differential equation. The 
general solution: 
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The C1 and C2 constants can be determined using the 

boundary conditions at the extremities of the plate. 
Suppose that the origin of the coordinate system is situated 
in the middle of the plate, the boundary conditions are: 
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Since Nx is an unknown constant along the x-axis, the 

displacement in plan u  can be achieved by integrating Eq. 
(13) depending on the length of the plate, using the general 
solution shown in Eq. (26). The boundary conditions can 
be expressed as: 
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By substituting Eq. (26) in Eq. (30), (31) and (32)

evaluate the integral of Eq. (32): 
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These three equations contain three unknown 

C1, C2,
0
xN  and a numerical method are used to obtain 

solutions. 

3.2. Linear analysis 

Consider the theory of small deformations, the 
infinitesimal deformations are applicable and the nonlinear 
term of the deformations of Von Karman is neglected. By 
neglecting the nonlinear terms of the equilibrium equations
i.e. the second term of Eq. (24), the following solution is
obtained for a linear analysis: 
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4. Numerical application and discussion

We assume that the Young's modulus of the upper 
surface of the plate E-FGM, E2, is 70 GPa, and that of 
lower surface E1 varies with their ratio (E
the Poisson's coefficient is constant and equal to 0.3 for the 
two constituents. The dimensions of the plate are
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application and discussion 

We assume that the Young's modulus of the upper 
FGM, E2, is 70 GPa, and that of 

E1/E2). Note that 
the Poisson's coefficient is constant and equal to 0.3 for the 

ns of the plate are h=5 mm 

and a = 0.5 m. The results obtained from the analysis are 
presented in non-dimensional terms as follows:

• Length   x =

• coordinate thickness  z =

• deflection  w

• axial stress   ��

where qui Q11m is the coefficient of stiffness of the 
metal plate, 

• load parameter  qn 

 
Figure 1 shows the variation of the Young's modulus of 

the plate E-FGM as a function of the non
thickness of the plate for E1/E

 
 

Fig. 1: The variation of the Young’s module of an E
different ratio of 

 
Figure 2 shows the variation of the maximum 

deflection of the plate E-FG with, for example, 
GPa and E2=70 GPa depending on the load 
shows that for maximum deflection higher than 
nonlinear solution is necessary. The increase in the 
intensity of the load generates smaller deflection in 
nonlinear analysis than those found in linear analysis. This 
type of behaviour is already covered in the literature on 
anti symmetric compounds [18].
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. The results obtained from the analysis are 
dimensional terms as follows: 
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1 shows the variation of the Young's modulus of 
s a function of the non-dimensional 

E2 variable. 

Fig. 1: The variation of the Young’s module of an E-FG plate for 
different ratio of E1/E2. 

shows the variation of the maximum 
FG with, for example, E1=380 

depending on the load parameter ��. It 
shows that for maximum deflection higher than 0.25 h the 

linear solution is necessary. The increase in the 
generates smaller deflection in 

nonlinear analysis than those found in linear analysis. This 
is already covered in the literature on 

compounds [18]. 

dimensional thickness z/h 
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Fig. 2: Variation of the non-dimensional center deflection wmax of the     
E-FG plate versus qn. 

Figure 3 and 4 illustrates the variation of the non-
dimensional deflection as a function of the non-
dimensional deflection for different ratio E1/E2 in linear 
and non-linear analysis respectively. The E-FG plate is 
subjected to load q = 1 KN/m². The linear solution 
overestimates the deflection of the plate E-FG. 

 

 

Fig. 4: Non-dimensional deflections due to transverse load q = 1 KN/m²
 

versus non-dimensional length for different E1/E2 in non-linear analysis. 

 
Figure 5 illustrates the non-dimensional variation of the 

maximum deflection of the E-FG plate with different 
values of E1/E2 subjected to uniform transverse loading. 

 

Fig. 5: Variation of the non-dimensional center deflection wmax of the     
E-FG plate versus qn for different E1/E2 

 
The result shows that the homogeneous plate (E1/E2=1) 

has a larger deflection. It also shows that the plate has a 
different behaviour under a positive and negative 
transverse loading. Under negative loading, at the 
beginning of loading, nonlinear analysis shows large 
deflection. However, under positive loading, we note an 
important effect of the ratio E1/E2.  

Figure 6 and 7 show the distribution of non 
dimensional stress �� as a function of the thickness of the 
plate E-FG subject to uniform loading q = 1 KN/m² for 
different E1/E2 in linear and nonlinear analysis, 
respectively. Under uniform loading, compressive stresses 
appear at the lower fiber and tensile stress at the upper 
fiber. In the linear case, it can be seen that for a 
homogeneous plate for E1/E2=1, the value of the tensile 
and compression stresses are equal. However, for the 
nonlinear case, this observation is not verified. The stress 
for a homogeneous plate varies linearly across the 
thickness for linear and nonlinear analysis. The study of 
these figures points out that when the ratio E1/E2=1 
increases, the intensity of the tensile and compression 
stresses is not equal. 
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Fig. 7: Through the thickness distribution of non-dimensional axial 
stress ��� of the E-FG plate subjected to q = 1 KN/m² for different E1/E2=1 

in non-linear analysis. 
 

 
 

Fig. 8: Non-dimensional deflections of E-FG plates versus non-
dimensional deflections of homogeneous plate for various material 

parameters in non-linear analysis (q = 1 KN/m²). 
 

5. Conclusion 

The nonlinear analysis of the E-FG plate in cylindrical 
bending under uniform loading is studied. The 
fundamental equations for an E-FG thin plate are obtained 
using the Von-Karman theory of large deformations. The 
material properties of E-FG plates are assumed to vary 
across the thickness of the plate. 

For the problem in cylindrical bending, we have find 
that the Navier equations under the theory of large 
deformations can be expressed in linear equations of the 
deflection using non-linear boundary conditions. This 

linearity of the differential equations simplifies the 
analysis of the large deformations. The stresses and 
deflection are calculated for plates with a ceramic-metal 
mixture. The numerical results show that the nonlinear 
effects of the plate responses are significant. Otherwise, 
the results indicate that the nonlinear effect increases the 
intensity of transverse deflection. 
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