تأثير المشاركة في سلاسل القيمة العالمية على مستوى الإنتاجية في الاقتصادات المتقدمة

ZERROUT RIDHA^{1,**},.

¹ University LOUNICI ALI, BIDA 2.(ALGERIA), redhaig@gmail.com.

Received: 31/03/2023 ;

Accepted : 30/06/2023;

Published: 31/12/2023;

Abstract:

The main goal of this research is to determine the direction and the strength of the impact of global value chains participation(GVCP) on the productivity level. This econometric relation between the two variables has been studied through the application on the OECD members, using Panel data models with annual observations during the period 2000-2019. After the study, we concluded that the relationship between changes in the level of productivity and the degree of GVCP is positive during all the studied period for all OECD economies. However, after dividing the economies into four subgroups and the study period into the pre- and post-crisis periods we resulted that before the international financial crisis the relation between the productivity level and the GVCP was in a negative direction when we doing the application on all the Euro area, whereas the relation was in a positive direction in the other partial groups but with a low level of estimated parameters significance. After the international financial crisis we to are as positive in the group of all economies and the other partial groups, and this gave us a result that a high level of GVC participation contribute positively in the amelioration of the productivity level during this period, and this with more than 63% of determination degree.

Keywords: Productivity of the production factors; Global value chains participation; Developed economies Classification Jel Codes : DF

ملخص:

يهدف هذا البحث إلى تحديد اتجاه وقوة تأثير درجة المشاركة في سلاسل القيمة العالمية على مستوى الإنتاجية، وقد تم دراسة العلاقة القياسية بين المتغيرين بالتطبيق على الاقتصادات الأعضاء في منظمة التعاون الاقتصادي والتنمية، وهذا بالاعتماد على نماذج البيانات المقطعية الزمنية (نماذج بانل) بمشاهدات سنوية خلال الفترة 2000– 2015. وبعد الدراسة توصلنا إلى أن العلاقة التي تربط بين التغيرات في مستوى الإنتاجية ودرجة المشاركة في سلاسل القيمة العالية هي طردية على طول الفترة المدروسة بالنسبة لجميع اقتصادات منظمة التعاون الاقتصادي والتنمية. إلا أنه وبعد تقسيم البلدان إلى أربع مجموعات جزئية وفترة الدراسة إلى فترتي ما قبل الأزمة وما بعدها، وحدنا أنه خلال فترة ما قبل اقتصادات منظمة التعاون الاقتصادي والتنمية. إلا أنه وبعد تقسيم البلدان إلى أربع مجموعات جزئية وفترة الدراسة إلى فترتي ما قبل الأزمة وما بعدها، وحدنا أنه خلال فترة ما قبل الأزمة المالية العالمية لسنة 2008 ظهرت العلاقة ذات اتجاه عكسي بين المتغيرين عند التطبيق على الاقتصادات ككل كمجموعة واحدة إضافة إلى المجموعة الجزئية المكونة من الازمة المالية العالمية لسنة 2008 ظهرت العلاقة ذات اتجاه عكسي بين المتغيرين عند التطبيق على وفترة الدراسة إلى فترتي ما قبل الأزمة ولما بعرفي إلى معنوعة الجزئية المكونة من الازمة المالية العالمية لسنة 2008 ظهرت العلاقة ذات اتجاه عكسي بين المتغيرين عند التطبيق على الاقتصادات ككل كمجموعة واحدة إلى الجموعة الجزئية المكونة من الاقتصادات الأوروبية غير المنظمة إلى منطقة الأورو، في حين جاءت هذه العلاقة ذات اتجاه طردي في باقي مجموعات الم تصادات الجزئية ولكن بمستويات متدنية من معنوية المعلمات المقدرة. أما خلال فترة ما بعد الأزمة المالية العالية فقد وجدنا أن العلاقة التي تربط المتيمين كانت طردية بالنسبة لجموعة الاقتصادات ككل معنوية المومات الخزيق، معنوية المعلمات المقدرة. أما خلال فترة ما بعد الأزمة المالية العالية فقد وجدنا أن العلاقة التي تربط المتيرين كانت طردية بالسبة لجموع الاقتصادات ككل وباقي الحري حيث أعطانا هذا نتيجة مفادها أنه كلما ارتفع معدل مشاركة الاقتصادات المقدمة في سلاسل القيمة العالمية ساهم ذلك بشكل إيجابي في تسادات الإنتاجية بما خلال هذه الفترة، وهذا بدرجة تحديد فقت 33%.

الكلمات المفتاحية: إنتاجية عناصر الإنتاج، المشاركة في سلاسل القيمة العالمية، الاقتصادات المتقدمة.

تصنيف DF:JEL

**Corresponding author,ZERROUT RIDHA

Introduction :

The world's economies have become integrated and very closely related to each other. Thanks to the progress of transportation and communication technologies, many multinational companies have taken transfer production operations abroad. The use of foreign resources kept elements in their international strategies, and this is in parallel with raising foreign direct investments and international trade among them. (Jones et al., 2019, p: 02)

Hence, production companies are part of a vehicle production network that collects commodity inputs and services produced by other local and foreign production companies. The commercial flows of any company or country are the added value of many different countries and suppliers at the value chain level. (CRICUOLO, Timmis, 2017, P61) Thus, with the formation of global supply chains in recent years, the largest part of international trade is not represented in the final commodities, but rather is the intermediate commodities (semi -manufacturer) that cross the borders several times before they become final and midwife For consumption, (Nogueray, 2012, P01), where international integration in production and trade in intermediaries has become an increasingly important phenomenon during the past two decades. (Stehr, 2013, p 01)

However, global value chains were formed and branched out by the pursuit of production companies to search for the best site for their production operations in order to benefit from the productive benefits provided by various countries such as the workforce, the legislative environment, tax levels, and proximity to suppliers or clients. (Banque de France, 2017, p 03). Therefore, within a chain of a specific global value, each product purchases inputs and adds a specific production value, which falls within the cost of the next stage of production. At each stage, the commodities cross international borders, and the added value of the commercial flow is equal to The added value paid for production factors in the exported country. (Kooopman, 2012, p: 02) Productive companies can deal with foreign partners in the value chain in two ways, the source and the estuary. Through the source, companies can import intermediate inputs from the foreign partner in the value chain that they use to produce and export their own goods, which is called underdeveloped participation in global value chains. As for the estuary, companies can export intermediate commodities for foreign partners in the value chain, who in turn use them to produce their exports. This is called advanced participation in global value chains. (Assche, Gangnes, 2019, pp: 35-36.

Thus, companies or countries can export their production directly or indirectly, as indirect exports are intermediate products that are used in production operations in other countries before they are shipped to their final destination. (Vandenbussche et al, 2017, p: 02) Thus, trade in intermediate inputs accounts for nearly two-thirds of world trade, which is a direct indication of the distribution of the production chain between borders. (Johnson, Noguera, 2009, p: 02)

Global value chains have changed the world economy, as they have revolutionized the development options available to poor countries, so they are now able to integrate into value chains instead of investing a long time in order to build their own chains. (Elms, Low, 2013, p: 13) There are many developmental effects that can be realized from participation, or non-participation, in global value chains, and this is for countries within value chains, or even outside them, where the effects of participation are determined in Global value chains with the relevant production line and the relative position in the value chain that companies can enter. For example, participation in value chains related to widely consumed commodities achieves different developmental effects than those achieved by participating in value chains related to agricultural products or primary resources. (ICTSD, 2013, pp: 03-04) Thus, participation in global value chains carries with it many positive

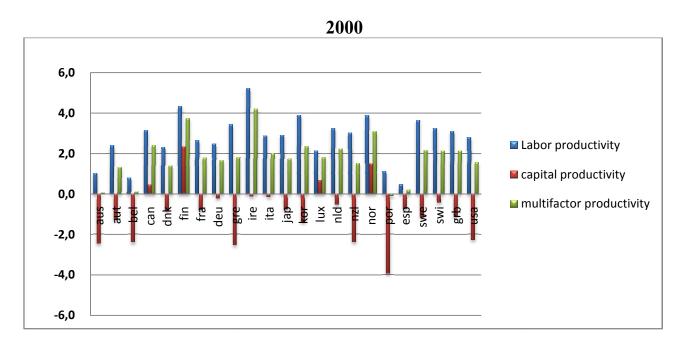
effects on the local economies of countries, as it contributes to raising the number and types of job positions offered, achieving indirect positive effects on sectors other than the concerned sector. In the value chain, Achieving non-economic and environmental gains from manufacturing activities, and in general, contributes to raising the degree of diversity of the economy and its flexibility. (Unido, 2015, p: 13)

Therefore, in this study, we will try to know the impact of participation in global value chains on the rate of productivity, and this is applied to the economies of the Organization for Economic Cooperation and Development, where the problem of our study is crystallized in the following question: _____ What is the impact of participation in global value chains on the level of productivity in OECD economies? How different is the direction and strength of the relationship between them before and after the 2008 global financial crisis?

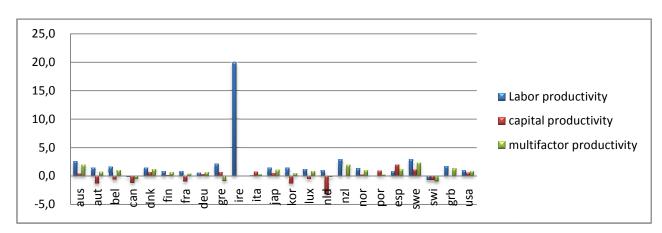
In this study, we proceed from presenting one hypothesis to test its validity or not, and its formulation was as follows:

_ Participation in global value chains contributes positively to improved productivity rates in advanced economies

Hence, our study focuses on estimating the standard relationship between the evolution in the level of productivity as a dependent variable and the participation rate in global value chains as an independent variable, where we address in the next section the study and analysis of global value chain trends and participation rates on the one hand, as well as the evolution of productivity levels on the other hand, and this is for economies belonging to the Organization for Economic Cooperation and Development. As for the third section, we will learn about the most important studies that have previously dealt with the relationship between participation in global value chains and the level of productivity and the most important findings, through which we will present the model adopted for this study. In the fourth section, we will measure and estimate the relationship between changes in productivity levels and changes in participation rates in global value chains in advanced economies, during the period 2000-2019, while the fifth section will be devoted to discussing the results of the standard study, on the basis of which we will test the validity of the hypothesis put forward for study.

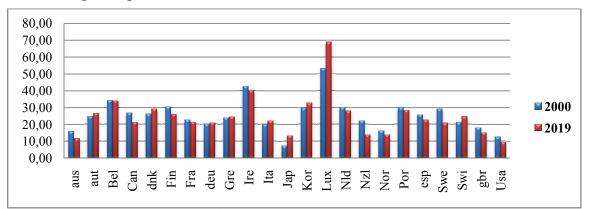

1- Trends in productivity levels and participation in the global value chains of advanced economies

Participation in global value chains has positive effects on firms' productivity, mainly due to the benefits of specialization and optimal use of factors of production. (Amador, Cabral, 2015, p: 10)By specializing in core products, producing them more efficiently, and moving low-efficiency production processes abroad, they can achieve many gains in their productivity levels. (Grossman, Rossi-Hansberg, 2008, p-p: 1978-1997) On the other hand, participating in a supply chain and engaging with a network of partners upstream or downstream can increase the flow of information for the company and its development potential, and helps them to enter new business processes and advanced technologies, which ultimately leads to their growth. (Del Prete et al, 2016, p: 02).

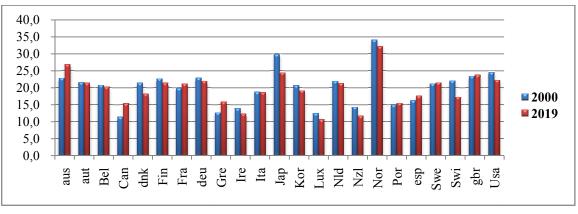

The period before the global financial crisis witnessed variations in the performance of factor productivity rates at the level of OECD economies (Figure 1)), where unit labor productivity during the year 2000 recorded a growth rate of more than 2% in most economies, reaching more than 5.2% in Ireland and more than 4.3% in Finland.Productivity of multiple factors had almost the same performance trend but at rates lower than labor

productivity, while capital productivity with the exception of Canada, Finland, Luxembourg, Norway, and other economies recorded declines in productivity during the same year. The global financial crisis of 2008 and the subsequent sovereign debt crises in some advanced economies had severe effects on the productivity of the elements of production, as labor productivity rates declined in 2019, in the economies of the Organization for Economic Cooperation and Development, to growth rates that did not exceed 2% in most of them, except for Ireland, but reached negative growth rates in some of them, such as Canada, Portugal, and Switzerland, which is almost the same trend for multi-factor productivity, as for capital productivity, it achieved some In 2019, economies improved slightly in their productivity, but others recorded negative growth, such as Austria and the Netherlands.

Figure n°1: Factor productivity rates in OECD economies in 2000 and 2019 (annual growth rate



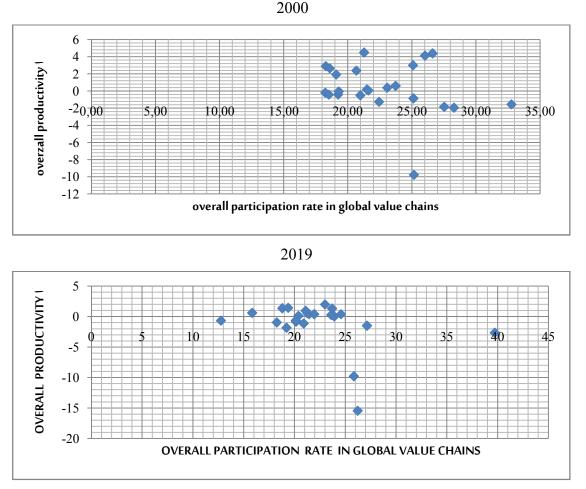
Source: OECD Value Added Trade Database from https://stats.oecd.org/Index.aspx?DataSetCode=TIVA_2000_C1


These fluctuations in productivity were accompanied by corresponding fluctuations in participation levels in GVCs, with fourteen OECD economies falling behind participation in GVCs between 2000 and 2019 (Figure 2), with the largest declines recorded in the New Zealand and Swedish economies by nearly 9%. Other economies saw improvements in their lagging participation in GVCs, with peaks of around 15% and 6% in Luxembourg and Japan, respectively. Thus, the advanced participation rate of fifteen OECD economies decreased between 2000 and 2019, with the largest recorded in the economies of Japan and Switzerland by about 5%, and in the rest of the economies, they achieved growth in their advanced participation in global value chains, the largest reaching 4% in Australia and Canada.

Figuren^o 2: Backward and advanced participation in the global value chains of OECD economies between 2000 and 2019

Backward participation in value chains

Advanced participation in value chains



Source: OECD Value Added Trade Database from <u>https://stats.oecd.org/Index.aspx?DataSetCode=TIVA_2000_C1</u>

Thus, these contrasting changes in the productivity of production inputs and the ratio of backward and advanced participation in GVCs enable us to read the prevalence of the relationship between them on a macro basis at the level of OECD economies (Figure 3)), where changes in overall productivity levels were associated with similarly occurring changes in aggregate participation rates in GVCs between 2000 and 2019 in twelve OECD economies, as in The economies of Australia, France, England, Canada, ... Etc. In contrast, trends have emerged between overall productivity levels and aggregate participation rates in global value chains in the rest of the OECD economies, led by Japan, Korea, Germany, the United States, ... etc., which necessitates relying directly on the

standard study of the relationship between the two variables in order to determine the actual direction of it.

Figure n°3: Prevalence relationship between overallproductivity and overall participation rate in GVCHAINS of OECD economies during 2000 and 2019

Source: Prepared by the researcher based on the data of the previous two figures

2. Previous studies and study model

The relationship between participation in global value chains and the level of productivity has received a lot of attention in modern economic thought, as many researchers have studied this relationship and know its direction according to the different levels of progress of economies, the growth of productive sectors, , as well as the shift in economic cycles. This interest in learning about the impact of participation in global value chains on the productivity of productive elements has been driven by the rapid change in the composition of global supply chains, and the multiple possibilities and opportunities they provide for integration into the global economy and improving the country's position in the international trading and financial system, especially for emerging economies.

Chiara CRISCUOLO and Jonathan TIMMIS (2018), titled 'Global Value Chain Centralization and Productivity: Are Centralized Poles Important to Corporate Performance', examine how changes in GVC centers affect corporate productivity. Through the benchmark study, the researchers found that changes in a location within global value chains can play a role in the development of economic institutions, but these results are heterogeneous among institutions and between

economies. The shift towards a more central position in global value chains is accompanied by accelerated productivity growth in small enterprises, non-frontier enterprises, and enterprises in small economies and in the post-2004 EU Regulatory States, while these linkages weaken as the size of the enterprise increases and the proximity it becomes closer to borders. (Criscuolo,Timmis, 2018)

In another study by Xiwen FENG, Mingshang XIN, and Xinghua CUI (2020) titled 'The Impact of Global Value Chain Inclusion on the Total Energy Productivity Coefficient of Chinese Industrial Sectors', the researchers examined the nonlinear relationship between the total energy productivity coefficient of Chinese industry and the degree of participation in China's global value chains. The results of the study found that participation in global value chains, after dividing them into superficial participation and deep participation, affects the first on the total energy productivity factor and then this effect declines later, in addition to this, the results showed that during the beginning of participation in global value chains, the impact of technological development dominates the impact of energy consumption, producing growth in the total energy productivity factor, however, due to the decline in technological returns, China has been concentrated in global value chains from During advanced economies, the impact of technology has gradually decreased relative to the impact of energy consumption, which discourages the rise in the overall energy productivity factor. (Feng et al, 2020).

Hang T. BANH, Philippe WINGENDER andCheikh Anta GUEYE (2020) presented a study entitled: 'Global Value Chains and Productivity: Micro-Level Results from Estonia', in which researchers conducted the standard study of the impact of participation in GVCs on productivity in Estonia using micro-level data during the period 2000-2016. The researchers found that higher participation in GVCs raises productivity at the sectoral and institutional levels, and that frontier firms, large firms, and exporters benefit more from participation in GVCs compared to non-frontier firms, small firms, and non-exporting firms. The researchers further found that downstream industries' participation in GVCs has an inverse relationship with productivity, as frontier firms and large corporations benefit more from downstream industries' participation in GVCs. (Banh et al., 2020)

Based on the aforementioned studies, we will try in this research to study the direction of this relationship and thus find out the impact of the change in the degree of participation in global value chains on the level of productivity, and this is applied to the economies of the Organization for Economic Cooperation and Development, namely: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, South Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, England and the United States of America. We rely on the OECD Trade in value-added (TVA) database to obtain statistics related to the calculation of the two variables, while the study period covers the period from 2000 to 2019, so the database does not provide statistics for participation in global value chains after 2015, and thus addresses the direction of the relationship between the two variables during the period before and after the global financial crisis of 2008 as well

Thus, the proposed model for this study is as follows:

PROD represents productivity level,

GVCP represents participation in global value chains,

i represents economy and T represents the year.

And we calculated **PROD** according to the following function:

 $PROD_{i,t} = f(L,k,M) \qquad \dots \qquad (2)$

Whereas:

L: represents the annual change in unit productivity measured by the number of total hours worked;

K: represents the annual change in the productivity of a capital unit measured by six basic components: **ICT** equipment, telecommunications equipment, machinery, and other equipment, non-residential building blocks, transportation equipment, software, intangible technological assets, plus three aggregates: total ICT, total production of agriculture, mineral products, and machinery;

M: represents the change in multifactor productivity and expresses that part of the increase in GDP cannot be explained by the rise in inputs from the components of labor and capital

As for GVCP, it is calculated as an average of both the advanced and backward participation of the economy in the global value chains, where the advanced participation in the global value chains of an economy is value-added included in foreign exports as a share of these total foreign exports, while the backward participation in the global value chains of an economy is a foreign value added as a share of its total exports.

In estimating the relationship between the dependent variable (PROD) and the independent variable (GVCP), we rely on cross-sectional temporal data models (Panel models)) by estimating the three known models: the aggregate model, the fixed effects model, and the random effects model, and then testing which one is best to express the relationship between the two variables, using the tenth version of the statistical program EVIEWS 10.

3. Estimate the relationship between participation in global value chains and productivity in OECD economies

Our study revolves around highlighting the role of high participation in global value chains in raising the level of productivity of the economy, and we applied the relationship estimation model to twenty-three advanced economies, which are the economies of the OECD member countries, and the statistical specifications of the two variables were as follows:

Table 1: Statistical characteristics of the dependent variable (change in productivity level
PROD) and the independent variable (participation in GVCP)

variables				
	GVCP	PROD		
specifications				
Mean	22.43834	-0.698001		
Median	21.83000	-0.425662		
Maximum	39.72000	32.65654		
Minimum	12.76000	-17.46196		
Std. Dev.	4.350091	4.852249		
Skewness	1.043905	2.052432		
Kurtosis	5.333007	18.25054		
Jarque-Bera	150.2954	3824.574		
Probability	0.000000	0.000000		

Sum	8257.310	-256.8644
Sum Sq. Dev.	6944.848	8640.766
Observations	368	368
Cross sections	23	23

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

The statistical specifications of the two combined variables show that the number of views reached 368 views, expressing sixteen annual views for each of the twenty-three segments. The highest value of the Dependent Variable (PROD) was 32.65654 in the Norwegian economy in 2009 and the lowest value was -17.46196 in the Finnish economy in the same year. As for the independent variable (GVCP), it recorded its highest value in the Luxembourg economy at 39.72 in 2019, while its lowest value was recorded in the Norwegian economy in the same year with 12.76.

The study of the rest of the series of the two variables showed that the two series are stable from the level, where the results of the various rest tests were as shown in the following table:

Table 2: Results of dormancy tests for the dependent variable (change in productivity level PROD) and the independent variable (participation in GVCP)

test score	At the level			
ust type	PROD	GVCP		
Levin, Lin & Chu t*	-9.83155 (0.0000)	-8.31456(0.0000)		
Breitung t-stat	-5.09105(0.0000)	-4.90578(0.0000)		
Im, Pesaran and Shin W- stat	-5.84100(0.0000)	-4.08157(0.0000)		
ADF - Fisher Chi-square	112.518 (0.0000)	85.1376 (0.0004)		
PP - Fisher Chi-square	140.174 (0.0000)	95.6608(0.0000)		

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

Through the application of the PEDRONI test to detect simultaneous integration relationships, the estimated statistics showed that there are no synchronous integration relationships within the group members, while simultaneous integration relationships are achieved among the group members, which is shown in the following table:

Table 3: Results of the	Pedroni test fo	or simultaneous	integration	relationships
Table 5. Results of the	i curoni test it	Ji simunaneous	integration	relationships

		Statistics	Weighted statistics			
	Panel v-Statistic	-3.583550 (0.9998)	-5.530401(1.0000)			
Inside	Panel rho-Statistic	1.939722 (0.9738)	-0.619852 (0.2677)			
individuels	Panel PP-Statistic	-0.700917 (0.2417)	-8.404242 (0.0000)			
	Panel ADF-Statistic	-3.077121 (0.0010)	-8.316847(0.0000)			
Between	Group rho-Statistic	(0.939	94)1.550128			
individuels	Group PP-Statistic	(0.0000) -9.072144				
maividueis	Group ADF-Statistic	c (0.0000) -6.662002				

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

After studying the dormancy of the two variables and revealing the absence of simultaneous integration relationships, we can estimate the three models of Panel studies: the synthesis model, the fixed effects model, and the random effects model, and the results of the estimate are shown in the following table:

	Randomeffects	Fixedeffects	Synthesis
	model	model	model
hard	4.554730	-3.126903	10.37549
	(0.0533)	(0.0011)	(0.0000)
Independent Variable	-0.234096	0.108248	-0.493507
	(0.0212)	(0.0106)	(0.0000)
Coefficient of determination	0.014119	0.595168	0.195748
Fisher'sstatistic	5.241442	21.98853	89.08134
	(0.022624)	(0.00000)	(0.00000)

Table (4): Results of estimation of the three models of the study

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

Through the table, we note that the results of estimating the aggregate model and the random effects model showed the correlation of the dependent variable (change in the level of productivity) with the independent variable (participation in global value chains) with an inverse relationship with statistical significance for the parameters and the model, but with a low degree of identification, especially for the random model, while the results of estimating the fixed effects model showed that the two variables are related to each other with a positive statistically significant relationship for the parameters and the model with a degree of determination exceeding 59%.

To choose the most appropriate model for the study, we conduct the FISHER test first to compare the combinatorial model and the fixed effects model, and the test result is shown in the following table:

Table 5: Results of Fisher's test for the trade-off between the aggregate model and the fixed
effects model

Test type	Test value	Moral Value
Fisher Statistic	11.995066	0.0000
Statistical chi-squared	209.522523	0.0000

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

The test results showed that the value of significance is greater than 0.05 and a value of 11.99 for Fisher's statistic and 209.52 for the chi-squared statistic, which is greater than tabular values, which confirms the acceptance of the alternative hypothesis versus the rejection of the null hypothesis, in the sense that the fixed effects model is the appropriate model for estimating the relationship between the change in the level of productivity and participation in global value chains.

After showing that the fixed effects model is more suitable than the synthesis model to express the relationship, we make a second stage to compare the fixed effects model and the random effects model by conducting the Haussmann test, the results of which are shown in the following table:

Table (6): Results of the Haussmann test for the trade-off between the fixed effects model and the random effects model

Test Type	Test value	Moral value
Statistics of Kay squared	8.767352	0.0031

Source: Prepared by the researcher based on the outputs of the statistical program Eviews 10.

The test results showed that the value of the significance is greater than 0.05 and the value of 8.76 for Kaitr's statistic is greater than the tabular value, which confirms the acceptance of the alternative hypothesis in exchange for rejecting the null hypothesis, meaning that there is a correlation between the effects of countries and explanatory variables, so the fixed effects model is the appropriate model for estimating the relationship between the change in the level of productivity and participation in the global value chains.

Since we have concluded that the fixed effects model is better than the aggregate model and the random effects model, the model of the standard relationship between the change in productivity as a dependent variable and participation in global value chains as an independent variable can be written as follows:

PROD = -3.126903 + 0.108248 GVCP

$R^2 = 0.59$ F-statistic = 21.98853 Durbin-Watson stat = 1.721201

Thus, it can be said that whenever the participation rate in global value chains changes by one unit, the level of productivity changes in a positive direction by 0.10 units, and the value of the coefficient of determination showed that participation in global value chains explains 59% of the changes in the level of productivity in OECD economies. To elaborate more on the time direction of this relationship, we will divide the study period into two periods, where the first extends from the year 2000 to the year 2008, while the second covers the years from 2009. to 2019, this is to identify the impact of the 2008 global financial crisis on fluctuations in the correlation between productivity and the degree of participation in global value chains.

In addition, to identify the structural direction of the standard relationship, we will divide the studied economies into four groups, where the first group consists of the United States of America and Canada, the second group consists of Australia, New Zealand, Japan, and South Korea, the third group consists of European countries that are not organizing the euro area, namely: England, Denmark, Norway, Sweden, and Switzerland, while the fourth group consists of the rest of the countries, which are organizing the euro area. The results of the estimate for each group by period are shown in the following table:

	All eco	nomies	Gro	oup 1	GRO	OUP 2	GRO	OUP 3	GRO	UP 4
	2000-	2009-	2000-	2009-	2000-	2009-	2000-	2009-	2000-	2009-
	2008	2019	2008	2019	2008	2019	2008	2019	2008	2019
Fix	-0.0657	-12.564	-2.1994	-21.308	-0.4876	-7.8179	9.7130	-17.515	-1.7099	-17.248
	(0.9649)	(0.0000)	(0.7402)	(0.0442)	(0.8677)	(0.1199)	(0.1248)	(0.1163)	(0.3652)	(0.0000)
Independent	-0.0049	0.4955	0.1252	1.1742	0.0732	0.3662	-0.3528	0.9607	0.0465	0.6076
variable	(0.9411)	(0.0000)	(0.7384)	(0.0507)	(0.5751)	(0.0978)	(0.2368)	(0.0815)	(0.5606)	(0.0001)
Coefficient of determination Nation	0.6895	0.6301	0.0327	0.4029	0.5872	0.3563	0.4923	0.3037	0.6096	0.5225
Fisher'sstatistics	-0.0657	-12.564	-2.1994	-21.308	-0.4876	-7.8179	9.7130	-17.515	-1.7099	-17.248
	(0.9649)	(0.0000)	(0.7402)	(0.0442)	(0.8677)	(0.1199)	(0.1248)	(0.1163)	(0.3652)	(0.0000)

Table 7: Results of estimating the relationship between productivity change and participation in GVCs during the periods 2000-2008 and 2009-2019 by group

Source: Prepared by the researcher based on the outputs of the statistical program Views 10.

The results of the estimate shown in Table 7 show that the trend of the relationship between the change in the level of productivity and the degree of participation in GVCs varies between the periods before and after the global financial crisis and among groups of economies. During the precrisis period, we found that the direction of the relationship between the two variables was inverse when applied to all economies in addition to the third group, while we found that the trend was direct in the groups of the first, second and fourth economies, but the significance of the parameters of the constant and the independent variable was not achieved in all groups, and despite that, Fisher's statistic indicated the total significance of the estimated models except for the model of the first group, and the determination force was average, reaching a maximum value of 68.95%. In the group of economies as a whole, it decreased in the subgroups, reaching 3.27% as the lowest value in the first group. During the post-global financial crisis period, the results of the estimate showed that the trend of the relationship between the change in the level of productivity and the degree of participation in global value chains was in a direct direction for the group of economies as a whole and another subgroup and the estimated parameters were statistically significant at the level of 5% for the group of economies as a whole in addition to the fourth group and at 10% for the first group and the second and third groups about the independent variable parameter. The total estimated models in the group of economies as a whole and the second and fourth groups at the level of 5% and in the first and third groups at the level of 10%, while the strength of determination remained at the average level for all groups, as it did not exceed 63.01% as its highest value in the group of economies as a whole.

4. Findings and recommendations

The great changes and continuous fluctuations in the division of production processes between the various economies of the world have contributed to the increasing position of global supply chains in historical analysis and forward-looking studies of the trends and prospects of the global economy, which has made many researchers and decision-makers in various countries attach great importance to ways and mechanisms to improve the participation of their economies in global value chains and improve their positions in the international division of labor by extension. Our attempt to assess the direction and strength of the relationship between productivity and participation in global

value chains at the OECD economies is related. The benchmark study between the two variables has enabled us to conclude that the high level of participation of advanced economies in GVCs directly improves their productivity over the period 2000-2019. However, the period of the global financial crisis of 2008 and before had a clear impact on the productivity performance in OECD economies, as we found that the direction of the relationship between them and participation in global value chains was inverse when applied to economies as a whole in addition to the European economies that are not organized for the euro area in Pre-crisis period. After the gradual recovery of advanced economies starting in 2009, the relationship between the degree of participation in global value chains and the level of productivity turned into a direct trend in all studied economies of different geographical and regional affiliations, especially the economies of the euro area, and at a stronger level of morale compared to the pre-crisis period.

These results indicate that the hypothesis put forward in this study is not absolutely correct, especially when taking into account the regional and economic distribution of countries as well as changes related to the global and regional economic environment.

Our findings have enabled us to emphasize the need to work to raise the degree of integration into global supply chains, especially in intermediate products, to improve the level of participation in global value chains, because of its clear impact on raising the productivity of various production factors and increasing their profitability quantitatively and qualitatively. In this context, developing economies in general, and Algeria in particular, have great opportunities to integrate into global value chains and raise their advanced participation in them, especially with the large and successive shocks that are hitting advanced economies, in addition to that they do not have deep influential relations with global and regional economic changes, which necessarily contributes to raising the level of productivity and the degree of diversification of their exports structurally and geographically.

Bibliography

- **1.** Ari Van Assche, Byron Gangnes, (2019), Global value chains and the fragmentation of trade policy coalitions. TRANSNATIONAL CORPORATIONS, Volume 26, Number 1.
- **2.** Banque de France, with the essential support of Gwenaëlle FEGAR and Guillaume COUSIN: (2017), Globalization and Global Value Chains in External Sector Statistics: Measurement and Challenges. Paper for discussion: François Mouriaux, Thirtieth Meeting of the IMF Committee on Balance of Payments Statistics, Paris, France.
- **3.** Chiara Criscuolo, Jonathan Timmis, (2018), GVC centrality and productivity: Are hubs key to firm performance? OECD Productivity Working Papers, 2018-14, OECD Publishing, Paris.
- **4.** Chiara Criscuolo, Jonathan Timmis, (2017), The Relationship between Global Value Chains and Productivity, International productivity monitor, Number 32.
- **5.** Davide Del Prete, GiorgiaGiovannetti, Enrico Marvasi, (2016), Global Value Chains Participation and Productivity Gains for North African Firms. Centro studilucad'agliano, development studies working papers, n. 407.
- **6.** Deborah K. Elms, Patrick Low, (2014), Global value chains in a changing world: Richard Baldwin: Global supply chains: why they emerged, why they matter, and where they are going. Fung Global Institute (FGI), Nanyang Technological University (NTU) and World Trade Organization (WTO).
- 7. Grossman, G. M. and E. Rossi-Hansberg, (2008), Trading Tasks: A Simple Theory of Offshoring, American Economic Review, Vol. 95, No.05.
- **8.** Guillermo Nogueray, (2012), Trade Costs and Gravity for Gross and Value Added Trade. Job Market Paper.
- **9.** Hang T. Banh, Philippe Wingender, Cheikh Anta Gueye, (2020), Global Value Chains and Productivity: Micro Evidence from Estonia. IMF Working Paper, European Department, International Monetary Fund.
- **10.** HylkeVandenbussche, William Connell, Wouter Simons, (2017), Global Value Chains, Trade Shocks And Jobs: An Application to Brexit.Centre for economic studies, discussion paper series, DPS17.13.
- **11.** International Centre for Trade and Sustainable Development (ICTSD), World Economic Forum, (2013), Global Value Chains: Development Challenges and Policy Options, Proposals and Analysis. TheE15Initiative Strengthening the Global Trade System.
- 12. João Amador, Sónia Cabral, (2015), A Bird's Eye View on the Impacts of Global Value Chains. Researchgate, https://www.researchgate.net/publication/275960517.
- **13.** Lin Jones, MeryemDemirkaya, and Erika Bethmann, (2019), Global Value Chain Analysis: Concepts and Approaches. United States International Trade Commission, Journal of International Commerce and Economics.
- **14.** Robert C. Johnson, Guillermo Noguera, (2009), Accounting for Intermediates: Production Sharing and Trade in Value Added. Dartmouth College, UC Berkeley.
- **15.** Robert Koopman, Zhi Wang, Shang-Jin Wei, (2012), tracing value-added and double counting in gross exports. NBER(NATIONAL BUREAU OF ECONOMIC RESEARCH) Working Paper No.18579, <u>http://www.nber.org/papers/w18579</u>.
- **16.** Robert Stehrer, (2013), Accounting relations in bilateral value added trade. World Input-output Database, Working Paper Number: 14.
- **17.** United Nations Industrial Development Organization (UNIDO), (2015), Global Value Chains and Development: UNIDO's Support towards Inclusive and Sustainable Industrial Development.
- **18.** Xiwen FENG, Mingshang XIN, Xinghua CUI, (2020), Impact of Global Value Chain Embedding on Total-Factor Energy Productivity of Chinese Industrial Sectors. Hindawi, Journal of Renewable Energy, Volume 2020, Article ID 6239640, <u>https://doi.org/10.1155/2020/6239640</u>

7. List of Appendices

$\hfill\square$ Statistical specifications of the two variables

	PROD_?	GVCP_?
Mean	-0.698001	22.43834
Median	-0.425662	21.83000
Maximum	32.65654	39.72000
Minimum	-17.46196	12.76000
Std. Dev.	4.852249	4.350091
Skewness	2.052432	1.043905
Kurtosis	18.25054	5.333007
Jarque-Bera	3824.574	150.2954
Probability	0.000000	0.000000
Sum	-256 8644	8257 310
Sum Sq. Dev.	8640.766	6944.848
Observations	368	368
Cross sections	23	23

□ Dependent variable dormancy:

Series: PROD_AUS, PROD_AU PROD_ESP, PROD_FIN,	PROD_FRA, F	ROD_DEU	, PROD_GRO	С,
PROD_IRE, PROD_ITA, F PROD_NLD, PROD_NZL,				
PROD_SWI, PROD_GBR,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Date: 12/26/20 Time: 21:06				
Sample: 2000 2019				
Exogenous variables: Individua	l effects, individ	dual linear ti	rends	
Automatic selection of maximum	n lags			
	1	D too t		
Automatic lag length selection b				
Automatic lag length selection b Newey-West automatic bandwid			ernel	
			2505.000	
			Cross-	Obs
Newey-West automatic bandwid	dth selection a	Prob.**	Cross-	Obs
Newey-West automatic bandwie Method	dth selection a	Prob.**	Cross-	Obs 340
Newey-West automatic bandwi Method Null: Unit root (assumes commo	dth selection a Statistic on unit root pro	Prob.**	Cross- sections	
Newey-West automatic bandwid Method Null: Unit root (assumes commo Levin, Lin & Chu t* Breitung t-stat	Statistic on unit root pro -9.83155 -5.09105	Prob.** cess) 0.0000 0.0000	Cross- sections 23	340
Newey-West automatic bandwin Method Null: Unit root (assumes commo Levin, Lin & Chu t* Breitung t-stat Null: Unit root (assumes individ	Statistic on unit root pro -9.83155 -5.09105 ual unit root pro	Prob.** cess) 0.0000 0.0000 0.0000	Cross- sections 23 23	340 317
Newey-West automatic bandwid Method Null: Unit root (assumes commo Levin, Lin & Chu t* Breitung t-stat	Statistic on unit root pro -9.83155 -5.09105 ual unit root pro	Prob.** cess) 0.0000 0.0000 0.0000 0.0000	Cross- sections 23	340

□ Independent variable dormancy:

Pool unit root toot: Summon				
Pool unit root test: Summary	T OVOD DE	0100 0		b He
Series: GVCP_AUS, GVCP_A				
GVCP_FIN, GVCP_FRA,				
GVCP_ITA, GVCP_JAP,				
GVCP_NZL, GVCP_NOR	GVCP_POR,	GVCP_ESF	P, GVCP_SW	E,
GVCP_SWI, GVCP_GBR	GVCP_USA			
Date: 12/13/20 Time: 08:35				
Sample: 2000 2019				
Exogenous variables: Individua	al effects, individ	dual linear ti	rends	
Automatic selection of maximu				
Automatic selection of maximu Automatic lag length selection		0 to 2		
Automatic lag length selection	based on SIC:		emel	
Automatic lag length selection	based on SIC:		ernel	
	based on SIC:			
Automatic lag length selection	based on SIC:		Cross-	Obs
Automatic lag length selection Newey-West automatic bandw	based on SIC: dth selection a Statistic	Prob.**	Cross-	Obs
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm	based on SIC: dth selection a Statistic	Prob.**	Cross-	
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm Levin, Lin & Chu t*	based on SIC: ofth selection a Statistic on unit root pro	Prob.**	Cross- sections	Obs 339 316
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm Levin, Lin & Chu t*	Statistic -8.31456	Prob.** prob.** 0.0000	Cross- sections 23	339
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm	Statistic on unit root pro -8.31456 -4.90578	Prob.** pcess) 0.0000 0.0000	Cross- sections 23	339
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm Levin, Lin & Chu t* Breitung t-stat	Statistic on unit root pro -8,31456 -4,90578	Prob.** pcess) 0.0000 0.0000	Cross- sections 23	339
Automatic lag length selection Newey-West automatic bandw Method Null: Unit root (assumes comm Levin, Lin & Chu t* Breitung t-stat Null: Unit root (assumes individ	Statistic on unit root pro -8,31456 -4,90578	Prob.** (Cess) 0.0000 0.0000 0.0000 0.0000 0.0000	Cross- sections 23 23	339 316

-square distribution. All other tests assume asymptotic normality.

□ Pedroni test for concurrent integration:

L

Pedroni Residual Cointe				
Series: PROD_? GVCP_				
Date: 12/26/20 Time: 2	1:07			
Sample: 2000 2015	120			
Included observations: 2				
Cross-sections included				
Null Hypothesis: No coin				
Trend assumption: Deter		and trend		
User-specified lag length		and the second second	12.112.1.11.11.11.11.11.11.11.11.11.11.1	
Newey-West automatic I	bandwidth selection	on and Bartle	ett kernel	
Alternative hypothesis: c	common AR coefs	(within-dim	ension)	
Alternative hypothesis: c	common AR coefs	. (within-dim		
Alternative hypothesis: c	statistic	strength the	ension) Weighted Statistic	Prob.
		Prob.	Weighted	Prob. 1.0000
Panel v-Statistic	Statistic	Prob. 0.9998	Weighted Statistic	1.0000
Panel v-Statistic Panel rho-Statistic	<u>Statistic</u> -3.583550 1.939722	Prob. 0.9998 0.9738	Weighted Statistic -5.530401	1.0000
Alternative hypothesis: c Panel v-Statistic Panel rho-Statistic Panel PP-Statistic Panel ADF-Statistic	<u>Statistic</u> -3.583550 1.939722	Prob. 0.9998 0.9738 0.2417	Weighted <u>Statistic</u> -5.530401 -0.619852 -8.404242	1.0000
Panel v-Statistic Panel rho-Statistic Panel PP-Statistic Panel ADF-Statistic	<u>Statistic</u> -3.583550 1.939722 -0.700917 -3.077121	Prob. 0.9998 0.9738 0.2417 0.0010	Weighted <u>Statistic</u> -5.530401 -0.619852 -8.404242 -8.316847	1.0000 0.2677 0.0000
Panel v-Statistic Panel rho-Statistic Panel PP-Statistic Panel ADF-Statistic	<u>Statistic</u> -3.583550 1.939722 -0.700917 -3.077121	Prob. 0.9998 0.9738 0.2417 0.0010	Weighted <u>Statistic</u> -5.530401 -0.619852 -8.404242 -8.316847	1.0000 0.2677 0.0000
Panel v-Statistic Panel rho-Statistic Panel PP-Statistic Panel ADF-Statistic Alternative hypothesis: ir	<u>Statistic</u> -3.583550 1.939722 -0.700917 -3.077121 ndividual AR coefs	Prob. 0.9998 0.9738 0.2417 0.0010 s. (between-	Weighted <u>Statistic</u> -5.530401 -0.619852 -8.404242 -8.316847	1.0000 0.2677 0.0000
Panel v-Statistic Panel rho-Statistic Panel PP-Statistic	<u>Statistic</u> -3.583550 1.939722 -0.700917 -3.077121 ndividual AR coefs <u>Statistic</u>	Prob. 0.9998 0.9738 0.2417 0.0010 s. (between- Prob.	Weighted <u>Statistic</u> -5.530401 -0.619852 -8.404242 -8.316847	1.0000 0.2677 0.0000

		50.51 L		т. · ·
Dependent Variable: PF				
Method: Pooled Least S				
Date: 12/26/20 Time: 2	21:09			
Sample: 2000 2019				
Included observations: 2	20			
Cross-sections included	: 23			
Total pool (balanced) ob	servations: 460			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	10.37549	1.195037	8.682143	0.0000
GVCP_?	-0.493507	0.052288	-9.438291	0.0000
R-squared	0.195748	Mean depende	nt var	-0.698001
Adjusted R-squared	0.193551	S.D. dependen		4.852249
S.E. of regression	4.357442	Akaike info crit	erion	5.787067
Sum squared resid	6949.352	Schwarz criteri	on	5.808307
Log likelihood	-1062.820	Hannan-Quinn	criter.	5.795506
F-statistic	89.08134	Durbin-Watson	stat	0.721714
Prob(F-statistic)	0.000000			

$\hfill\square$ The aggregate model of the relationship between the two variables:

$\hfill\square$ Model of the fixed effects of the relationship between the two variables:

Dependent Variable: PR0 Method: Pooled EGLS (C Date: 12/26/20 Time: 21 Sample: 2000 2019 Included observations: 20 Cross-sections included: Total pool (balanced) obs Linear estimation after or	Cross-section we 1:10 0 23 servations: 460			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.126903	0.946755	-3.302757	0.0011
GVCP_?	0.108248	0.042148	2.568256	0.0106
Fixed Effects (Cross)				
AUSC	0.202907			
AUTC	0.338697			
BELC	-1.605851			
CANC	1.055622			
DNKC	-0.208570			
ESPC	-1.745934			
FIN-C	-0.401471			
FRAC	1.039653			
DEUC	0.616826			
GRCC	-0.245949			
IRE-C	-5.309192			
ITAC	0.726630			
JAPC	2.098630			
KOR-C	-9.321328			
LUXC	-4.809308			
NLDC	1.508019			
NZLC	0.629000			
NOR-C	13.66962			
POR-C	-0.723491			
SWEC	-0.114577			
SWIC	0.052924			
GBRC	1.800143			
USAC	0.747002			
	Effects Spe	ecification		
Cross-section fixed (dum	my variables)			
	Weighted	Statistics		
R-squared	0.595168	Mean depende	nt var	-1.792357
Adjusted R-squared	0.568101	S.D. dependen		5.044066
S.E. of regression	3.373665	Sum squared n		3915.275
F-statistic	21.98853	Durbin-Watson		1.721201
Prob(F-statistic)	0.000000			
	Unweighted	d Statistics		
R-squared	0.544702	Mean depende	nt var	-0.698001
Sum squared resid	3934.127	Durbin-Watson		1.130217

$\hfill\square$ Model of random effects of the relationship between the two variables:

Dependent Variable PRO Method: Pooled EGL8 (Ca Date: 12/26/20 Time: 21: Sample: 2000 2019 Included observations: 20 Cross sections included: 2 Total pool (balanced) obs Swamy and Arora estimat	oss-section ra 11 Sanotions: 460			
Variable	Coefficient	Std. Error	t-Statutic	Prob
6	4.554730	2.349567	1.938540	0.0533
GVCP_7	0.234096	0.101183	-2.313585	0.0212
Flandom Effects (Cross)				
AUSC	-0.577707			
AUT-C	0.714184			
BEL-G	-0.054147			
CAN	0.439703			
DNK-G	0.280548			
ESP-C	-2.253200			
FIN-C	0 479368			
FRA-O	0.476494			
DEU-G	0.205093			
GRC-C	-1.075469			
H102-40	-3.486272			
ITA-C	-0.042160			
JAP-C	0.943525			
KOR-C				
	-7.0039998			
LUX-C	-0.307285			
NLD-C	1.960046			
NZL-G	0.051444			
NOR-C	10.13119			
POR-C	0.774702			
SWE-C	0.166492			
SWI-C	-0.241611			
OBB-C	0.912780			
USA-C	0.943755			
	Effects Sp	ecification		
	20		55-D.	Rho
Cross-section random Mosyncratic random			2 774751 3 381109	0.4024
	Weighted	Studtoficm		
R-squared	0.014119	Mean depende	nt war	-0.203409
Adjusted R-squared	0.011425	S.D. dependent		3.438485
S.E. of regression	3.416798	Sum squared n		4272 870
F-statistic	5 241442	Diattin Watson		1.104026
Prob(F-statistic)	0.022624		0.002000	125 (1997-11)
	Unweighter	5 Statutica		
Required	0.141602	Mean depende	nt var	-0.699001
Sum squared resid	7416 700	Durbin-Watson		0.636393

□ Fisher's test for the trade-off between the synthesis model and the effects model

Firmware:

Pool: PROD Test cross-section fixed	s Tests effects			
Effects Test		Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-squar	re	11.995066 209.522523	(22,344) 22	0.0000
Cross-section fixed effect Dependent Variable: PR Method: Panel Least Sq Date: 12/26/20 Time: 2 Sample: 2000 2019	ROD_?			
Included observations: 2 Cross-sections included Total pool (balanced) ob	23			
Included observations: 2 Cross-sections included	23	Std. Error	t-Statistic	Prob.
Included observations: 2 Cross-sections included Total pool (balanced) ob	23 servations: 460	Std. Error 1.195037	t-Statistic 8.682143	Prob.
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable	: 23 oservations: 460 Coefficient			
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C	23 servations: 460 Coefficient 10.37549	1.195037	8.682143 -9.438291	0.0000
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? R-squared	23 servations: 460 Coefficient 10.37549 -0.493507	1.195037 0.052288	8.682143 -9.438291 nt var	0.0000
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? R-squared Adjusted R-squared	23 servations: 460 Coefficient 10.37549 -0.493507 0.195748	1.195037 0.052288 Mean depende	8.682143 -9.438291 nt var t var	0.0000 0.0000 -0.698001 4.852249
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? R-squared Adjusted R-squared S.E. of regression	: 23 oservations: 460 Coefficient 10.37549 -0.493507 0.195748 0.193551	1.195037 0.052288 Mean depende S.D. dependen	8.682143 -9.438291 Int var t var erion	0.0000
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_?	: 23 oservations: 460 Coefficient 10.37549 -0.493507 0.195748 0.193551 4.357442	1.195037 0.052288 Mean depende S.D. dependen Akaike info crit	8.682143 -9.438291 Int var t var erion on	0.0000 0.0000 -0.698001 4.852249 5.787067
Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? R-squared Adjusted R-squared S.E. of regression Sum squared resid	23 oservations: 460 Coefficient 10.37549 -0.493507 0.195748 0.193551 4.357442 6949.352	1.195037 0.052288 Mean depender S.D. dependen Akaike info crit Schwarz criteri	8.682143 -9.438291 ent var t var erion on criter.	0.0000 0.0000 -0.698001 4.852249 5.787067 5.808307

_

□ Haussmann test for the trade-off between the fixed effects model and the random effects model

Pool: PROD	ects - Hausman T	Fest		
Test cross-section rande	om effects			
Test Summary		Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random		8.767352	1	0.003
Cross-section random e	ffects test compa	arisons:		
Variable	Fixed	Random	Var(Diff.)	Prob.
GVCP_?	0.056288	-0.234096	0.009618	0.0031
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included	1:12 20 : 23			
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2	1:12 20 : 23	Std. Error	t-Statistic	Prob.
	1:12 20 : 23 oservations: 460	Std. Error 3.166715	t-Statistic	Prob.
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ot Variable	1:12 20 : 23 oservations: 460 Coefficient			0.5362
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C	1:12 20 : 23 servations: 460 Coefficient -1.961000	3.166715 0.140911	-0.619254	0.5362
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_?	1:12 20 : 23 servations: 460 Coefficient -1.961000 0.056288 Effects Spe	3.166715 0.140911	-0.619254	0.5362
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? Cross-section fixed (dur R-squared	1:12 20 : 23 servations: 460 Coefficient -1.961000 0.056288 Effects Spe	3.166715 0.140911 ecification Mean depende	-0.619254 0.399455	0.5362 0.6899
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? Cross-section fixed (dur R-squared	1:12 20 : 23 oservations: 460 Coefficient -1.961000 0.056288 Effects Spenny variables)	3.166715 0.140911 ecification	-0.619254 0.399455	0.5362 0.6898 -0.698001
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? Cross-section fixed (dur R-squared Adjusted R-squared	1:12 20 : 23 oservations: 460 Coefficient -1.961000 0.056288 Effects Spe nmy variables) 0.544882	3.166715 0.140911 ecification Mean depende	-0.619254 0.399455 ent var it var	0.5362 0.6896 -0.69800 4.852248
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ot Variable C GVCP_? Cross-section fixed (dur R-squared Adjusted R-squared S.E. of regression Sum squared resid	1:12 20 : 23 oservations: 460 Coefficient -1.961000 0.056288 Effects Spe nmy variables) 0.544882 0.514452 3.381109 3932.572	3.166715 0.140911 ecification Mean depender S.D. depender Akaike info criter Schwarz criter	-0.619254 0.399455 ent var tt var terion ion	0.5362 0.6898 -0.698001 4.852248 5.337278 5.592153
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ob Variable C GVCP_? Cross-section fixed (dur R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	1:12 20 22 23 25 25 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	3.166715 0.140911 ecification Mean depender S.D. depender Akaike info criter Schwarz criter Hannan-Quinr	-0.619254 0.399455 ent var it var terion ion o criter.	0.5365 0.6890 4.852245 5.337277 5.592155 5.43853
Date: 12/26/20 Time: 2 Sample: 2000 2019 Included observations: 2 Cross-sections included Total pool (balanced) ot Variable C GVCP_? Cross-section fixed (dur R-squared Adjusted R-squared S.E. of regression	1:12 20 : 23 oservations: 460 Coefficient -1.961000 0.056288 Effects Spe nmy variables) 0.544882 0.514452 3.381109 3932.572	3.166715 0.140911 ecification Mean depender S.D. depender Akaike info criter Schwarz criter	-0.619254 0.399455 ent var it var terion ion o criter.	0.536 0.6890 -0.69800 4.85224 5.33727 5.59215

_

□ The relationship between the two variables for the group of economies as a whole during the periods 2000-2008 and 2009-2019

Dependent Yanabiy 19100_1 Mehadi Podell EGLS (Cossilection weights) Data (2011)221_These (2012) Sample: 2000-2010 Included observations: 13 Doos-sections include: 23 Toda positipatience) observations: 200 Linkor estimation after rive-step weighting matrix Vanable Daufficient Std Drov inStatutic Prob.					Dependent Vanistie PRI Methol: Fouel EDL31 Date: D111/21 Time: 01 Sample: 2000 2008 Instanded observations: 9 Cares. sections: instander Total pool Satance0 obs Linear retrutation after of	nois-section we (1) 2) erratums: 207			7.
Standale	Conflorert	Stol Error	1.5oktic	Prob.	Yaşable	Cofficient	Ski Groz	1 Statule	Prot.
C GI(P, 1 Faed Effect: (Dowe) AUS-C AUS-C REL-C CAN-C CAN-C CAN-C CAN-C CAN-C CAN-C CAN-C FIN-C FIN-C FIN-C FIN-C FIN-C DIC-C NC-C NC-C NC-C NC-C NC-C NC-C NC-C	12.56403 0.46652 1.254739 -0.226700 2.466739 2.526500 2.536509 2.536509 2.536509 2.536509 2.536509 2.536509 2.536509 2.536509 2.536509 1.506509 1.5364031 0.269630 0.259630 0.259630 0.259630 0.259630 0.259650 0.259630 0.259650 0.259710 0.259650 0.259650 0.259650 0.25971000000000000000000000000000000000000	2.5868/ 0.19683	4.0000	5 000 5 000	C 01/(P, J) Find Directs (Danni) MS-C 40,5-C 86,8-C 004-C 004-C 004-C 004-C 004-C 004-C 004-C 004-C 004-C 10	0.005/4/ 0.06403 0.06403 0.00421 0.005714 0.002714 0.00214 0.00213 0.00013 0.00013 0.000051 0.000050 0.000051 0.0000500000000	1.494021	40.0400 40.074638	0.840
	El Pecta Sper	dicate			-	Effects fige	splication		
Cross-sector field (date	riy vatažšel)				Cross-postor hed cluro	ny variables)			
	Weighter 5	tabeles			1	Weghted?	Standars		
Koquand Adjudet Roquaret S.E. of regrammi Fotaletic Prole(Fotaleske)	5.508018 3.434348	Muur depende S.O. dependen Solt aspained i Custon Illution	t wai word	-2.250300 5.066704 7675.065 2.005659	R opared Adjustat R sparet S.E. of regression F-statistic Prob/F-statistic	0.050522 2.010736	Moon depends S.D. departitier Such states Dation Mateor	tiver. tues	1.301776 4.540559 1553.940 1.623409
	Orweighted	Skalense				Denighted	Sutation		
Risquared Sim squared test		Near Jepesce Durble-Histore		4368070	H-squared Sum equalsed mod		Mean depende Darbin-Histore		-0.176292
and a second		Cochieren and and and and and and and and and an	111	-	Jacob Contractory of the local division of t		-		

□ The relationship between the two variables for the first group during the periods 2000-2008 and 2009-2019

Dependent Variable: PR Method: Pooled EGLS (Date: 01/11/21 Time: D Sample: 2009 2019 Included observations: 1 Cross-sections included: Total pool (balanced) ob Linear estimation after o	Cross-section w 8:37 1 2 servations:22				Dependent Variable: PRO Method: Pooled EGLS (C Date: 01/11/21 Time: 08 Sample: 2000 2008 Included observations: 9 Cross-sections included: Total pool (balanced) obs Linear estimation after on	ross-section w 136 2 ervations: 18			
Variable Coefficient Std. Error t-Statistic Prob.					Variable	Coefficient	Std Error	I-Statistic	Prob.
C	-21.30839	9.380854	-2 27 1476	0.0442	c	-2 199439	6.511326	-0.337787	0.7402
GVCP1 ?	1,174268	0.535409	2 193216	0.0507	GVCP1 ?	0.125250	0.368173	0.340193	0.738
Fixed Effects (Cross)		(Fixed Effects (Cross)			******	
CAN1-C	-0.437164				CAN1-C	-0.176117			
USA1C	0.437164	1			USA1C	0.176117			
	Effects Sp	ecfication				Effects Sp	ecification		
Cross-section fixed (dur	imy variables)				Cross-section fixed (dum	my variables)			
	Weighted	Statistics				Weighted	Statistics		
R-squared	0.402937	Mean depende	nt vær	-0.635165	R-squared	0.032780	Mean depende	rnt var	-0.014540
Adjusted R-squared	0.294380	S.D. dependen	t var	1.837811	Adjusted R-squared	-0.096183	S.D. depender	t var	1,23231
S.E. of regression	1.585703	Sum squared r		27.65899	S.E. of regression	1.289514	Sum squared r		24.9427
F-statistic		Durbin-Watson	sa	1.959905	F-statistic		Durbin-Watson	stat	1.34696
Prob(F-statistic)	0.058629				Prob(F-statistic)	0.778824			
[Unweighter	d Statistics			Unweighted Statistics				
R-squared	0.386335	Mean depende	nt var	-0.750316	R-squared	0.024784	Mean depende	nt var	0.01344
Sum squared resid	27,70903	Durbin-Watson	sat	1.665053	Sum squared resid	25.05064	Durbin-Watson	stat	1,21466

□ The relationship between the two variables for the second group during the periods 2000-2008 and 2009-2019

Dependent Variable: PRI Method: Pooled EGLS (C Date: 01/11/21 Time: 0 Sample: 2009 2019 Included observations: 11 Cross-sections included: Total pool (balanced) obs Linear estimation after or	Cross-section w (41) 4 servations: 44				Dependent Variable: PRC Method: Pooled EGLS (C Date: 01/11/21 Time: 06 Sample: 2000 2008 Included observations: 9 Cross-sections included Total pool (balanced) obs Linear estimation after on	ross-section w (40) 4 ervations: 36			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob
C GVCP2_7 Fixed Effects (Cross) AUS2-C	-7.817927 0.366274 0.706027	4.839923 0.212229	-1.615300 1.725847	0.1199 0.0978	C GVCP2_7 Fixed Effects (Cross) AUS2-C	-0.487668 0.073289 -0.422001	2.903524 0.129346	-0.167957 0.566614	0.8677 0.5751
JPN2C KOR2C NZL2C	1.407329 -0.837828 -1.275528				JPN2C KOR2C NZ12C	-0.312634 1.653048 -0.918413			
	Effects Sp	ecfication				Effects Sp	ecification		
Cross-section fixed (dum	my variables)				Cross-section fixed (dum	my variables)			
	Weighted	Statistics				Weighted	Statistics		
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.356312 0.244367 1.413311 3.182905 0.032146	Mean depende S.D. depender Sum squared n Durbin-Watson	t var esid	D.438831 1.595723 45.94129 1.938554	R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.587260 0.534003 1.676054 11.02695 0.000011	Mean depende S.D. dependen Sum squared r Durbin-Watson	ıt var resid	1.922030 2.665179 87.08360 1.623526
	Unweighter	i Statistics			Unweighted Statistics				
R-squared Sum squared resid	0.290697 46.01515	Mean depende Durbin-Watsor		0.525012 2.307413	R-squared Sum squared resid	0.348807 91.83659	Mean depende Durbin-Watson		1,15423 0,69491

□ The relationship between the two variables for the third group during the periods 2000-2008 and 2009-2019

Dependent Variable: PROD3_? Nethod: Pooled EGLS (Cross-section weights) Date: 01/11/21 Time: 08:44 Sample: 2009 2019 Included observations: 11 Cross-sections included: 5 Total pool (balanced) observations: 55 Linear estimation after one-step weighting matrix					Dependent Variable: PRC Methot: Pooled EGLS (C Date: 01/11/21 Time: 08 Sample: 2000 2008 Included observations: 9 Cross-sections included i Total pool (balanced) obs Linear estimation after on	ross-section w 43 5 ervations: 45				
Variable	Variable Coefficient Std. Error t-Statistic Prob.					Coefficient	Std. Error	t-Statistic	Prob.	
С	-17.51524	10.82083	-1.618859	0,1163	с	9.713040	6.191630	1.568737	0.1248	
GVOP3 ?	0.960746	0.532416	1.804504	0.0815	GVCP3 ?	-0.352873	0.293683	-1.201541	0.2368	
Fixed Effects (Cross)					Fixed Effects (Cross)					
DNK3-C	-5.667993				DNK3C	-2453312				
GBR3C	-2.059580				GBR3C	-1.090379				
NOR3-C	15.81228				NOR3-C	8.357079				
SWE3-C	4.322411				SWE3-C	-2 173013				
SWI3C	-3.762294				SWI3-C	-2.640375				
	Effects Spe	edication			Effects Specification					
Cross-section fixed (dum	my variables)				Cross-section fixed (dum	ny variables)				
	Weighted	Statistics			Weighted Statistics					
R-squared	0.303775	Mean depende	nt.var	0.339502	R-squared	0.492345	Mean depende	et var	0.667368	
Adjusted R-squared	0.183736	S.D. dependen	t var	5,799806	Adjusted R-squared		S.D. depender		5.520793	
S.E. of regression	5,219211	Sum squared n	esid	789.9647	S.E. of regression	4,203658	Sum squared r	esid	689,158	
F-statistic	2.530639	Durbin-Watson	istat	1.934222	F-statistic	7.564751	Durbin-Watson	stat	1.09317	
Prob(F-statistic)	0.051049				Prob(F-statistic)	0.000048			2.57553112	
	Unweighted	Statistics			Unweighted Statistics					
R-squared		Mean depende		1.996607	R-squared		Mean depende		2 29083	
Sum squared resid	796.2907	Durbin-Watson	stat	0.939130	Sum squared resid	1108 933	Durbin-Watson	stat	0.589240	

□ The relationship between the two variables for the fourth group during the periods 2000-2008 and 2009-2019:

Dependent Variable: PROD4_? Method: Pooled EGLS (Cross-section weights) Date: 01/11/21 Time: 08.46 Sample: 2009 2019 Included observations: 11 Cross-sections included: 12 Total pool (balanced) observations: 132 Linear estimation after one-step weighting matrix					Dependent Variable: PROD4_? Method: Pooled EGLS (Cross-section weights) Date: 01/11/21 Time: 08:45 Sample: 2000 2008 Included observations: 9 Cross-sections included: 12 Total pool (balanced) observations: 108 Linear estimation after one-step weighting matrix				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-17 24872	3.629024	-4.752991	0.0000	С	-1.709921	1.879469	-0.909789	0.365
GVCP4_?	0.607676	0.148944	4.079906	0.0001	GVCP4_?	0.046511	0.079645	0.583977	0.560
Fixed Effects (Cross)	12/10/28				Fixed Effects (Cross)	10.000000			
AUT-C	1.729626				AUT-C	0.810609			
BELC	-0.901750				BEL-C	-1.642806			
ESPC	-0.301382				ESPC	0.176651			
FINC	-0.624670				FIN-C	1.306942			
FRAC	4.089652				FRAC	1.323574			
DEUC	4.083887				DEU-C	0.456595			
GRCC	-0.124468				GRCC	2.169176			
IRE-C	-5.717100				IRE-C	-4,331180			
ITA-C	4.469312				ITAC	0.579367			
LUXC	-11.57389				LUXC	-2.439252			
NLDC	2.550310				NLDC	2.334136			
POR-C	2.320477				POR-C	-0.743813			
Effects Specification					Effects Specification				
Cross-section fixed (dum	my variables)				Cross-section fixed (dum	my variables)			
Weighted Statistics				Weighted Statistics					
R-squared				-2.591068	R-squared		Mean depende		-1.296190
Adjusted R-squared		S.D. dependent var 3.986276			Adjusted R-squared		S.D. dependent var		3.130317
S.E. of regression		Sum squared r		744.9320	S.E. of regression	2.062682	Sum squared i		404,192
F-statistic		Durbin-Watson	stat	1.882319	F-statistic		Durbin-Watsor	n stat	1.75182
Prob(F-statistic)	0.000000				Prob(F-statistic)	0.000000			
	Unweighted	Statistics			Unweighted Statistics				
R-squared	0 4 18882	Mean depende	et var	-2.463954	R-squared	0.443520	Mean depende	ent var	-0.61282
Sum squared resid				Sum squared resid		Durbin-Watson stat 1.91630			