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ABSTRACT  

Mechanical buckling of functionally graded (FGM) sandwich plates is analyzed in this 

research using new higher-order shear deformation plate theory which captures the shear 

deformation influences needless of any shear correction factor. New functionally graded 

sandwich structure based on variable exponential function is presented in this analysis. 

Material properties of functionally graded face layers are assumed to vary continuously 

through-the-thickness according to an exponential function in terms of the volume fractions of 

the constituents (E-FGM), while the core layer is made of ceramic. Equilibrium and stability 

equations of E-FGM sandwich plate with simply supported boundary conditions are derived 

using the generalized higher-order shear deformation plate theory and the Hamilton’s 

variational principle, and solved by using the Navier’s solutions. Several numerical results 

indicate the influence of the plate aspect ratio, the relative thickness, the gradient index and 

the sandwich scheme on the critical buckling load of FGM sandwich plates are investigated. 

Keywords: Mechanical buckling, E-FGM sandwich plate, higher-order shear deformation 

theory, simply supported boundary conditions. 
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1. INTRODUCTION 

Developing new biomaterials for medical applications is one of the most challenging tasks in 

materials science today. When we look at biomaterials, we typically observe design principles 

that are not normally applied in traditional materials processing. A distinctive feature of 

biomaterials is the formation of layered structures. Furthermore, the complex functions of 

various tissues involve continuous changes from one structure or composition to another. For 

example, the exquisite design of bones, ranging from a dense, rigid external structure (cortical 

bone) to a porous internal structure (cancellous bone), suggests that functional grading 

through biological adaptation has been exploited. This structure optimizes the material's 

response to external loads. Therefore, the optimized structure of artificial implants should 

have similar gradients.  

The design of Functionally graded materials (FGMs) has the potential to mimic the biological 

functions of these heterogeneous tissues and advance our understanding of how biomaterials 

integrate in vivo [1,2]. Consequently, properties are also spatially gradually varied to meet 

specific non-homogeneous service needs without abrupt macro-interfaces. FGM is an 

emerging material for orthopaedic prostheses because functional gradients can be tailored to 

reproduce the local properties of the original bone, which helps minimize stress shielding 

effects while reducing shear between the implant and surrounding bone tissue stress, two key 

prerequisites for achieving orthopaedic repair. Transplants have a longer lifespan. 

Functionally Graded Materials (FGM) are a novel class of composite materials. Whereas 

traditional composites are homogeneous in composition, FGMs possess a gradual spatial 

compositional variation of the composite material in terms of volume fraction and 

microstructure [1]. These new materials were proposed to reduce the local stress 

concentrations induced by abrupt transitions in material properties across the interface 

between discrete materials [3]. Typically, FGMs are made of a ceramic and a metal for the 

purpose of thermal protection against large temperature gradients. The ceramic material has 

excellent characteristics in heat resistance due to its low thermal conductivity. On the other 

hand, the ductile metal constituent prevents fracture due to its greater toughness. FG 

structures can be seen in nature. For example, the bone, human skin and the bamboo tree are 

all different forms of FGM. With the developments in manufacturing methods, (FGMs are 

taken into account in the sandwich structure industries. In general, the sudden change in the 

material properties of sandwich structure from one layer to another can result in stress 

concentrations which often lead to delamination. To overcome this problem, The FG 

sandwich structure is proposed because of the gradual variation of material properties at the 

interfaces between the face layers and the core.  

Several researchers used power-law FG sandwich plates [4]. Daikh and Zenkour [5] proposed 

another FG sandwich plates based on sigmoid function. In this paper, we present an analytical 

analysis on buckling of new FG sandwich plates based on variable exponential function 

E-FGM. The equilibrium and stability equations are obtained based on new higher-order shear 

deformation plate theory (HSDT).  
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2. FGM SANDWICH PLATES 

Consider a rectangular E-FGM sandwich plate composed of three layers as. The vertical 

positions of the bottom, the two interfaces, and the top are denoted by , ,  and 

, respectively.  

The volume fraction of the sandwich plate can be expressed as [6]: 

  

  

  

Where k denotes volume fraction index. By using the rule of mixture, the effective material 

properties P 
(n)

 of layer n (n=1, 2, 3) can be expressed as: 

For Power-law FG sandwich plate: 

          (1) 

For exponential FG sandwich plate: 

            (2) 

 

3. MATHEMATICAL FORMULATIONS 

Based on the HSDT, the displacement components may be expressed as follows : 

 ,    ,      (3) 

Where  and  denote the displacements and rotations of transverse normals 

on the plane , respectively. The displacement field of Third-order shear deformation  

plate theory of Reddy [7] is obtained by setting , while the sinusoidal shear 

deformation plate theory of Touratier [8] is obtained by setting . The 

displacement field of the classical thin plate theory CPT is obtained by setting , 

whereas the displacement of the first-order shear deformation plate theory FSDT is obtained 

by setting . the proposed HSDT is given as: 

         (4) 
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Fig. 1. Variation of volume fraction through the E-FGM sandwich plate thickness. 

 

By using Hamilton's principle, the governing equations of motion of plate subjected to an 

uniform in-plane compressive loads  and  can be derived as: 

 ,                              (5) 

           (6) 

     ,             (7) 

 kw and ks are coefficients of Winkler and Pasternak foundation. Here N, M, P and R are total 

in-plane force resultants, total moment resultants, additional stress couples and the transverse 

shear stress resultants respectively. The following approximate solution is seen to satisfy both 

the differential equation and the boundary conditions 

        (8) 

                   (9) 

                  (10) 

where ,   and , , ,  and   are arbitrary parameters. 

Finally we obtains 

              (11) 

where  denotes the columns and [L] is the stiffness matrix. 
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4. RESULTS 

Consider a simply supported rectangular E-FGM sandwich plate made of a mixture of metal 

and ceramic subjected to in-plane load in two directions 

. The combination of materials consists of Titanium 

alloy and Zirconia (Ti-Al6-4V/ZrO2). Young’s modulus for Titanium alloy are , 

and for Zirconia are . Poisson’s ratio is chosen as constant  . We note 

that several kinds of sandwich plates are used: 

The (1–0–1) FGM sandwich plate:  ,   

The (1–1–1) FGM sandwich plate:  ,  . 

The (1–2–1) FGM sandwich plate:  ,  . 

The (2–1–2) FGM sandwich plate:  ,  . 

The (2–2–1) FGM sandwich plate:  ,  . 

The (2–1–1) FGM sandwich plate: . 

For convenience, the following non-dimensionalizations are used in presenting the numerical 

results in tabular form: 

,    ,    ,     

Table 1. Nondimensional critical buckling load of P-FGM sandwich plates. 

Theory 1 0 1 1 1 1 1 2 1 2 1 2 2 2 1 2 1 1 

       
Present 2.58391 3.23253 3.75317 2.92032 3.47479 3.09713 

TSDT [7] 2.58357 3.23237 3.75328 2.92003 3.47472 3.09697 

SSDT [7] 2.58423 3.23270 3.75314 2.92060 3.47490 3.09731 

FSDT [7] 2.57118 3.21946 3.74182 2.90690 3.46286 3.08510 

CPT [7] 2.66624 3.34075 3.89203 3.01366 3.59831 3.20195 

 

Table 2. Nondimensional critical buckling load of e-fgm sandwich plate resting on elastic 

foundations. 

Kw, Ks a/h k 1 0 1 1 1 1 1 2 1 2 1 2 2 2 1 2 1 1 

 0, 0 5 0 8.01053 8.01053 8.01053 8.01053 8.01053 8.01053 

0,5 3.65596 4.43065 5.02370 4.06557 4.70828 4.26937 
1 2.62225 3.42662 4.12891 3.02674 3.74973 3.25509 
2 1.99244 2.70730 3.44526 2.32765 3.04479 2.55819 
5 1.66251 2.22285 2.93298 1.90551 2.55272 2.12555 

20 0 9.67638 9.67638 9.67638 9.67638 9.67638 9.67638 
0,5 4.11897 5.00562 5.73281 4.57533 5.35301 4.83267 
1 2.90481 3.79145 4.62595 3.33562 4.18149 3.61311 
2 2.19434 2.94813 3.80316 2.52788 3.34470 2.80094 
5 1.85871 2.39425 3.19993 2.05502 2.77488 2.31264 

0, 100 5 0 17.16803 17.16803 17.16803 17.16803 17.16803 17.16803 
0,5 12.81347 13.58816 14.18121 13.22308 13.86579 13.42687 
1 11.77976 12.58413 13.28642 12.18425 12.90724 12.41260 
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2 11.14995 11.86481 12.60277 11.48516 12.20230 11.71570 
5 10.82002 11.38036 12.09049 11.06302 11.71023 11.28306 

20 0 18.83389 18.83389 18.83389 18.83389 18.83389 18.83389 

0,5 13.27648 14.16313 14.89031 13.73284 14.51052 13.99018 
1 12.06232 12.94896 13.78346 12.49313 13.33900 12.77062 
2 11.35185 12.10564 12.96067 11.68539 12.50221 11.95844 
5 11.01622 11.55176 12.35744 11.21253 11.93239 11.47015 

100, 0 5 0 8.47445 8.47445 8.47445 8.47445 8.47445 8.47445 
0,5 4.11989 4.89458 5.48763 4.52949 5.17220 4.73329 
1 3.08618 3.89054 4.59284 3.49066 4.21366 3.71901 
2 2.45636 3.17123 3.90918 2.79158 3.50871 3.02211 

5 2.12643 2.68678 3.39691 2.36943 3.01665 2.58947 

20 0 10.14030 10.14030 10.14030 10.14030 10.14030 10.14030 
0,5 4.58289 5.46955 6.19673 5.03926 5.81693 5.29660 
1 3.36873 4.25538 5.08987 3.79954 4.64541 4.07703 
2 2.65827 3.41206 4.26708 2.99181 3.80862 3.26486 
5 2.32264 2.85818 3.66386 2.51894 3.23881 2.77657 

100, 100 5 0 17.63196 17.63196 17.63196 17.63196 17.63196 17.63196 
0,5 13.27740 14.05209 14.64514 13.68700 14.32971 13.89080 
1 12.24368 13.04805 13.75035 12.64817 13.37117 12.87652 
2 11.613878 12.32874 13.06669 11.94909 12.66622 12.1796 
5 11.28394 11.84428 12.55442 11.52694 12.17416 11.74698 

20 0 19.29781 19.29781 19.29781 19.29781 19.29781 19.29781 
0,5 13.74040 14.62706 15.35424 14.19677 14.97444 14.45411 
1 12.52624 13.41289 14.24738 12.95705 13.80292 13.23454 
2 11.81578 12.56957 13.42459 12.14932 12.96613 12.42237 
5 11.48015 12.01569 12.82137 11.67645 12.39632 11.93408 
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Fig. 2. Nondimensional critical buckling load 

of square E-FGM sandwich plate versus the 

inhomogeneity parameter (a/h=5, a/b=1). 

 

Fig. 3. Nondimensional critical buckling load 

of square E-FGM sandwich plate versus the 

side-to-thickness ratio (a/b=1, k=2). 
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Fig. 4. Nondimensional critical buckling load of 

square E-FGM sandwich plate versus the aspect 

ratio (a/h=5, k=2). 

 

Fig. 5. Nondimensional critical buckling load 

of E-FGM sandwich plate (1-1-1) on elastic 

foundation versus the inhomogeneity 

parameter (a/h=5, a/b=1). 

 

The table 1 illustrates the impact of the sandwich schemes on power-law functionally graded 

sandwich plate (P-FGM) is presented by using different plates theories. It is clear that the 

present theory is in a good agreement with those generated by Zenkour (2005), and 

particularly the third-order shear deformation theory.  

The effect of inhomogeneity parameter, side-to-thickness and elastic foundations parameters 

on the nondimensional critical buckling load of exponential functionally graded plate using 

different sandwich schemes are presented in table 2. Figure 1 shows the effect of inhomeneity 

parameter k on the nondimensional critical bukling load. It can be seen that with the increase 

of the parameter k, nondimensional critical buckling load decreases. The case of k=0, mean 

that all the schemes of sandwiches have the same composition (céramique), this can explain 

the same results in this case. 

In Fig. 2, the variations in nondimensional critical buckling load of FGM sandwich plates for 

different sandwichs schemes versus the side-to-thickness ratio a/h. It can be observed that 

with the increase of the side-to-thickness ratio, nondimensional critical buckling load 

decreases gradually wherever the sandwich scheme is Figure 3 presents the nondimensional 

critical buckling load versus the aspect ratio b/h. From this figure, we can see that the critical 

bucling load increases with the increasing of the aspect ratio a/b. The effect of the parameter k 

and the elastic foundation on the nondimensional critical buckling load is shown in the figure 

5. 
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4. CONCLUSION 

In this paper, nondimensional critical buckling load of exponential functionally graded 

sandwich plates have been analyzed. Different types of E-FGM sandwich plates are presented. 

Material properties of E-FGM layers are assumed to vary continuously through-the-thickness 

according to an exponential function in terms of the volume fractions of the constituents. The 

equilibrium and stability equations of E-FGM sandwich plates have been derived based on the 

higher-order shear deformation theory. As a result, the characteristics of nondimensional 

buckling load for E-FGM sandwich plates are significantly influenced by volume fraction 

distributions, and the geometric parameters. The inhomogeneity parameter k has considerable 

effect on the nondimensional critical buckling load of E-FGM sandwich plate. The 

nondimensional critical buckling load of FGM sandwich plates is high in thin and long plates.  
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