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Abstract-Compressed sensing (CS) is a new signal 
processing technique, it allows the signal to be sampled 
at a rate much lower than the Shannon-Nyquist 
rate,and allows to sample and compress in one step 
using the sparsity of signal that can represent a signal 
with fewer number of samples. The signal can be sparse 
in the original domain or a different domain like the 
discrete cosine transform DCT, the discrete Fourier 
Transform DFT, Wavelet transform DWT…etc.the 
reconstruction of the CS allows recover the original 
signal with less compression measures. CS has already 
become a key concept in various fields applied 
mathematics,computer science,and electrical 
engineering and it has applied to various fields 
including radar imaging, the signal extraction…etc.  

In this paper, we present the theoretical bases of CS that 
divides into two parts first part is the acquisition model 
or the part of encryption,the second part is the various 
methods of reconstruction of the CS or the part of 
decryption.In addition, we give application of CS in 
cryptography and some others applications that use the 
CS technique. 

Keywords-Compressive Sensing CS / sparsity / signal 

sparse /recovery algorithm / minimization𝒍𝟏. 

Résumé-L’acquisition comprimée(AC) est une 
nouvelle technique de traitement du signal, il permet 
d’échantillonner le signal à un taux très inférieur au 
taux de Shannon-Nyquist, et permet d’échantillonner et 
compresser dans une seule étape en utilisant la 
parcimonie de signal qui permet de représenter un 
signal avec moins de nombre d'échantillons. Le signal 
peut être parcimonie dans le domaine original ou un 
domaine différent comme la Transformée en cosinus 
discrète DCT, la Transformée en Fourier discrète DFT, 
Transformée en ondelettes DWT…etc. la reconstruction 
de l’AC permet du récupérer le signal original avec 
moins de mesures de compression. AC est déjà devenu 
un concept clé dans divers domaines des 

mathématiques appliquées,l'informatique,et le génie 
électrique et il est appliqué à divers domaines, y 
compris l'imagerie par radar, l'extraction de 
signal…etc.  

Dans cet article nous présentons les bases théoriques de 
l’AC qui divise en deux parties première partie c’est le 
modèle d’acquisition ou la partie du chiffrement, et le 
deuxième partie c’est les différentes méthodes de 
reconstruction de l’AC ou la partie du déchiffrement, et 
nous donnons l’application du l’AC dans la 
cryptographie et quelques d’autres applications qui 
utilisent la technique de l’AC. 

Mots clés- Acquisition comprimée AC / Parcimonie 

/signalépars / Algorithme de récupération / la 

minimisation 𝒍𝟏. 

1. INTRODUCTION 

The digital acquisition systems relies on the 
Shannon-Nyquist theorem that says to avoid any 
loss of information in a signal, the sampling 
frequency must be greater than or equal twice 
the maximum frequency of the signal 
original.However, for some applications, such as 
radar and broadband communications the 
application of this theorem results in sampling 
rates that are almost beyond the limit of the 
physical capabilities of analog-to-digital 
converters[1]. Moreover, for transmission or 
storage it must use compression thus eliminate 
most of the coefficients (show in figure 1) to save 
energy, the bandwidth of the transmission 
medium and the storage memory. 
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Figure 1:classical method of sampling and signal 
compression in the digital camera 

The recently technique compressive sensing CS 
(or compressive sampling) introduced by 
Donoho et Candés et al [2]–[4] is a new signal 
processing technique, it allows to sample the 
signal at a rate much lower than the Shannon-
Nyquist rate, and allows to sample and 
compression of signal in one step. 
 

 

Figure 2: Compressive sensing 

CS has already become a key concept in various 
fields such as radar imaging, signal extraction, 
laser scanning, medical imaging, surface 
metrology...etc [5].  
CS relies on two principles sparsity and 
incoherence. 
A signal is sparse if it contains only a few non-
zero elements or approximately sparse if it 
contains only a few voluminous elements and if 
the other elements are almost null[6].Suppose 
that x a signal vector of𝑹𝑵𝒙𝟏, this vector is sparse 
if it has K non-zero elements with K << N.In most 
of the cases,the measurement signal may have a 
sparse representation in a particular domain𝝍 
like the discrete cosine transform DCT, the 
discrete Fourier Transform DFT, Wavelet 
transform DWT… etc (for example a Dirac spike 
in the space domain extends into the frequency 
domain).The minimum number of samples to 
reconstruct a signal depends on its parsimony 
and not its bandwidth [6]. 
If the vector x is not sparse then it can have a 
sparse representation such as equation (1): 

𝒙 = 𝝍 ∗ 𝜶   (1) 

 

With 𝝍 a matrix 𝑹𝑵𝒙𝑵and 𝜶a vector has only K 
non-zero elements. 

Incoherence expresses the idea that objects with 
sparse representation in domain  𝝍must 
dispersed in the field in which they acquired,it 

indicates that, unlike the signal of interest the 
sampling/sensing waveforms have an extremely 
dense representation in𝝍 [7]. 

2. ACQUISITION MODEL 

The acquisition model shown in figure 3 [8] : 

 

Figure 3: acquisition model 

The acquisition model can written 
mathematically by the equation (2): 
 

Y=∅ *x= ∅ *ψ*α= A* α       (2) 
 

Where x is signal original𝑹𝑵𝒙𝟏, ∅ matrix 𝑹𝑴𝒙𝑵 (K 
<M <N) and called measurement matrix, Y is a 
𝑹𝑴𝒙𝟏measurement vector, A is the holographic 
dictionary and𝑨 = ∅ ∗ 𝝍. 

In the equation (2), we assume that the 
measurements are accurate. However,in any real 
application,the measured data will invariably 
corrupted by at least a small amount of noise, 
since detection devices do not have infinite 
precision.It is therefore imperative to develop 
stable recovery algorithms of CS where small 
disturbances in the data should only cause small 
disturbances in the reconstruction[9].Taking into 
account the presence of additive noise during the 
acquisition phase, the equation (2) becomes 
equation (3): 

Y= A* α+ε    (3) 

Where 𝜺 ∈ R
M

is a vector representing the noise.In 
most of the cases,it considered as a Gaussian white 

noisewith a zero average and a variance 

𝝈𝟐 , 𝑵(𝟎, 𝝈𝟐 )[10]. 
 

The compressed sensing theory indicates that the 
sparse signal 𝜶 may recover by taking𝑀 ≥

𝑂(𝐾 log (
𝑁

𝐾
))[6]. 

For M << N then there exists an infinity of vectors 
α satisfying the equations (2) and (3),therefore 
the measurement matrix ∅ (or in general A) must 
satisfy a certain conditions. 
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2.1. Mutual coherence 

The coherenceμ of the measurement matrix ∅ 
and the representation base ψ is: 

𝝁(∅, 𝝍) = √𝑵𝒎𝒂𝒙𝟏≤𝒌,𝒋≤𝑵| < ∅𝒌𝝍𝒋 > |(4) 

The coherencemeasures the greatest correlation 
between any two elements ∅ and ψ.It follows 

from linear algebra that𝝁(∅, 𝝍) ∈ [𝟏, √𝑵].CS 
mainly concerns low coherence pairs [7]. 

2.2. Condition of uniqueness 

To ensure that two separate signals 
𝜶𝟏and𝜶𝟐generate two different measurement 
vectors 𝒀𝟏 = 𝑨𝜶𝟏and𝒀𝟐 = 𝑨𝜶𝟐(𝒀𝟏 ≠
𝒀𝟐).Established the following equation (5): 

𝑲 <
𝟏

𝟐
 Spark (A)  (5) 

Where Spark (A) of a matrix A is equal to the 
smallest number of columns of A that are linearly 
dependent.Since the value of Spark (A) varies 
between two and (M + 1), so M>2K.This theorem 
guarantee the uniqueness of the representation 
of a sparse vector,therefore for each 
measurement vector Y, there is at most one 
sparse signal α such asY = Aα[1]. 

2.3. Restricted isometry property RIP 

A matrix A satisfied the RIP of order K if there is 
constant 𝜹𝒌 ∈ ]𝟎, 𝟏[called restricted isometry 
constant (RIC),verifying the equation (6) [11]: 

(1- 𝜹𝒌)|| 𝜶||𝟐
𝟐 ≤ || 𝑨𝜶||𝟐

𝟐 ≤ (1+𝜹𝒌)|| 𝜶||𝟐
𝟐
(6) 

  

Where || 𝒙||𝟐 = √∑ 𝒙𝒊
𝟐𝑵

𝒊=𝟏 called norm 𝒍𝟐.TheRIP 

check if the measurement matrix A is close to an 
isometry (if it preserves the distance between 
two measurement vectors).In other words.If the 
measurement matrix satisfies the RIP then the 
distance between two measurement vectors 
𝒀𝟏 = 𝑨𝜶𝟏and𝒀𝟐 = 𝑨𝜶𝟐is proportional to the 
distance between 𝜶𝟏and𝜶𝟐, the RIP is an 
important property that guarantee the 
reconstruction of the signal.However, it is 
difficult to verify whether a matrix satisfies the 
RIP or not[12]. 

2.4. Choose the measurement matrix 

The studies have shown that when measurement 
matrices are built randomly (like Random 
Gaussian Matrix) these conditions can be met 
with a high probability[13]. Recently, 
deterministic matrices have proposed to 
facilitate implementation. They have specially 
designed to have low coherence [14][15][16]. 

3. RECONSTRUCTIONMODEL 

The original signal reconstructed from the Y 
measurement vector, the measurement matrix ∅ 
and domain ψ during a phase called the 
reconstruction phase.It work in two steps(figure 
4 [8]): 

- The first step is to find the vector �̂� 
corresponding to the solution of the 
equation 2 (or equation 3 in the case of 
noise). 

- Once �̂� obtained, the final step 
reconstructs the signal�̂� = 𝝍 ∗ �̂�. 

 

Figure 4:Reconstruction model 

Since M<N there are an infinity of vectors α 
satisfying the equation 2 (or equation 3 in the 
case of noise), But taking into account the 
hypothesis that α is sparse in the domainψ.the 
problem is to solve the minimization  𝒍𝟎(the 
equation7): 

𝒎𝒊𝒏
�̂̂�

||�̂�||
𝟎
such as 𝑨�̂� = 𝒀   (7) 

In the case of noise, the equation (7) become 
equation (8): 

𝒎𝒊𝒏
�̂̂�

||�̂�||
𝟎
such as ||𝒀 − 𝑨�̂�||

𝟐
≤ 𝒃  (8) 

Where ||𝒙||
𝟎

= {i : x i≠0}called norm 𝒍𝟎,and b 

represents the noise power expected in 
observations[1]. 

Solving this equation requires an exhaustive 
search for the sparsest solution �̂� and is very 
complex to implement [11].Several methods have 
proposed in the literature to work around this 
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problem.They can categorized into three groups 
[17] : 

- Greedypursuit, for example matching 
pursuit (MP) its extension called 
Orthogonal Matching Pursuit (OMP).They 
are iterative methods and generally easy 
to implement.At each iteration,they select 
one or more columns of the matrix A 
according to its correlation with the 
measurement vector Y.Then, they 
measure an approximation of the signal 
and update the residual that will be used 
in the next iteration[18][19][20]. 

- Convex relaxation, for example basis 
pursuit (BP).They consist of finding 
convex minimizations that are 
approaching the equation (7) (or 
equation 8 in the case of noise)[21]. 

- Bayesian inference for example sparse 
Bayesian learning. 

3.1. Matching pursuit (MP) 

When the measurement matrix A is an 
orthogonal base, it is possible to reconstruct an 
approximation of the signal by selecting one by 
one the columns of A having a maximum 
correlation with the residual [1].MP is the 
simplest version of greedy algorithms. 
The MP start by initializing the residual r with 
the Y measurement vector.It also initialize the 
approximation of the signal �̂� by a null vector, 
like in the equation (9)[22]: 

𝒓𝟎 ← 𝒀       �̂� ← 𝟎   (9) 

At each iteration k, MP select a column of the 
matrix A having a maximum correlation with the 
residual: 

𝜹𝒌 = 𝒂𝒓𝒈 𝒎𝒂𝒙 |〈𝒓𝒌−𝟏, 𝒂𝒊〉|      (10) 

Where 𝜹𝒌the index of the selected column,𝒓𝒌−𝟏is 
the residual of the previous iteration, 
𝒂𝒊∈{𝟏,𝑵}represents the columns of matrix A. 

Then, the MP calculates a new approximation of 
the signal and update the residual: 

𝜶�̂� = 𝜶𝒌−�̂� + 〈𝒓𝒌−𝟏, 𝒂𝜹𝒌
〉𝒂𝜹𝒌

  (11) 

𝒓𝒌 = 𝒓𝒌−𝟏 − 〈𝒓𝒌−𝟏, 𝒂𝜹𝒌
〉𝒂𝜹𝒌

  (12) 

Where 𝜶𝒌−�̂�represents the approximation of the 
signal obtained during the previous 
iteration,𝒂𝜹𝒌

is the column of matrix A selected. 

Iteration stops when a certain condition met.In 
the literature, several stopping conditions have 
proposed [23]: 

- Stop after a finite number of iterations. 
- Stop when the amplitude of the residual 

is lower than a predefined threshold. 

The disadvantage of this method is that the 
measurement matrix A is not always 
orthogonal.In this case, a column of matrix A can 
selected several times during the selection 
phase.MP converges exponentially [22]. 

3.2. Basis Pursuit (BP) 

To get around the complexity of the minimization 
 𝒍𝟎methods based on convex relaxation,like norm 
 𝒍𝟏known asBasis Pursuit (BP) introduced by 
Chen, Donoho and Saunders,relax the problem by 
replacing the norm  𝒍𝟎 with norm  𝒍𝟏if matrix 
Asatisfies the RIPand use convex solvers to solve 
the equation (13): 

𝒎𝒊𝒏
�̂̂�

||�̂�||
𝟏
such as 𝑨�̂� = 𝒀         (13) 

In the case of noise, equation (13) become 
equation (14): 

𝒎𝒊𝒏
�̂̂�

||�̂�||
𝟏
such as ||𝒀 − 𝑨�̂�||

𝟐
≤ 𝒃 (14) 

Where ||𝒙||
𝟏

= ∑ |𝒙|𝑵
𝒊=𝟏 called norm 𝒍𝟏.Interest of 

norm 𝒍𝟏resides in the fact that unlike norm 𝒍𝟎it is 
convex.The equations 13 and 14 reduced to a 
simple linear programming problem.Many 
minimizations are then considered[21]. 

Figure 5 illustrates this fact.In all three cases,we 
have the same set of solutions represented by a 
straight line and the solution of the minimization 
represented by a red dot.Figure 5a shows the 
minimization of the norm 𝒍𝟎, norm 𝒍𝟏in Figure 5b 
reconstructed a good solution, while 
minimization 𝑙2in Figure 5c gives a rough 
solution [21]. 
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Figure 5: Reconstruction according to different 
norm 

3.3. Greedypursuit VS Convex relaxation 

According to the literature, greedy algorithms are 
easy to implement and potentially fast compared 
to those based on convex relaxation [24][25]. 
However, convex relaxation require fewer 
samples to reconstruct the original signal 
compared to greedy algorithms [26]. 

3.4. Basis pursuit denoising (BPDN) 

In the literature, the method using the equation 
13 called basis pursuit with inequality 
constraints (BPIC).Another variant of this 
method called basis pursuit denoising 
(BPDN)consists of reformulate the problem of 
the equation (15) [27]: 

𝒎𝒊𝒏
�̂̂�

𝟏

𝟐
||𝒀 − 𝑨�̂�||

𝟐

𝟐
+ 𝝀||�̂�||

𝟏
  (15) 

Where 𝝀 > 𝟎the balancing parameter. 

4. Application of the compressed sensing 

4.1. Compressed sensing in cryptography 

One of the important application of CS is 
cryptography. CS resolves the measurement 
matrix as a secret key and the compressive 
measures as an encrypted message.Which makes 
the CS a technique of simultaneous acquisition, 
compression and encryption of signals [8].And by 
taking M>2K guarantee the perfect security of 
data [28]. 

4.1.1 Image encryption 

Encryption images with CS is one of the most big 
research that use the new technique CS, many 
algorithms was developed in last few years such  
as [29]–[32]. Since the measurement matrix is 
the key of the encryption, the objective of the 
research was how to develop this matrix to give 
the same result as the Gaussian matrix since the 

result of Gaussian matrix is the best result but 
this matrix have a large of size and very difficult 
to change between two points. The study of 
encryption image by CS show that one of the best 
methods to generate this matrix isthe chaotic 
systems since you need only the initial 
parameters of the chaotic systems as key to send 
it. The major of algorithms works with the 
following steps: by transform the plain image to 
DCT image or DWT image that change the matrix 
of the plain image to sparse matrix with most of 
their elements are nulls, then use the chaotic 
systems to generate the measurement matrix. 
The last step is applied the CS between the 
sparse matrix and the measurement matrix to 
have the cipher image. For more complexity of 
encryption, the most of the algorithms used 
scrambling method such as the bloc Arnold to 
make very hard to decrypt the image without the 
right key. To recover plain image from the cipher 
image they used one of the reconstruction 
algorithm described in section 3 like 
minimization 𝒍𝟎, minimization  𝒍𝟏…etc.This image 
encryption are used in various domain such as: 

- Data hiding: this method was proposed in 
[33]–[35], The integration rate has a big 
boost compared to the method of 
masking separable data existing in the 
encrypted image[36]. 

- image authentication: this method was 
employed in [37], [38], encrypt a finger 
image using CS when capturing image, 
while finger image can only be restored 
on the authentication server. 

4.1.2 Cloud security 

The cloud computing have guaranteed 
confidentiality based on CS [39], [40], Different 
domain technologies have been synthesized to 
find the perspective of security, efficiency and 
complexity aspects. The outsourcing of the 
sparse reconstruction service to several clouds in 
parallel has been described in [41],while each 
cloud has only few information of measurement 
and asymmetrical support set, the security of the 
plain image is guaranteed. 

4.1.3 Security in 5G system 

Security in 5G system based on CS has been 
proposed in [42], [43],it’s show that the sparse 



     Communication Science & technology N°23 July 2020                                                           COST 

 

41 

 

signal that is the principle of CS can be the source 
of the requirements 5G system and avoid the 
sampling with the Nyquist method, and that 
cause the reduce of the complexity and increased 
reliability. 

4.1.4 A simple encryption image with CS 

We used DCT domain to transform matrix to 
sparse matrix, and logistic map as chaotic system 
to generate measurement matrix and their 
equation is: 

𝒔𝒏+𝟏 = 𝝁 (𝟏 − 𝒔𝒏)              (16) 

Where 𝑠0 is initial condition, μ the coefficient of 
parameter and n the number of iterations. We 
took𝑠0=0.1, μ=3.9999. The compression ratio 
with the equation: 

𝐶𝑅 =
𝑇1 x 𝑇2

𝑒1 x 𝑒2
        (17) 

Where 𝑇1 , 𝑇2 the size of the plain image and 
𝑒1 , 𝑒2 the size of the encryption image, in this 
examples CR≈0.5. 

 

Figure 6: simulations and results of a simple 
encryption with CS, a(1-4) plain image, b(1-4) cipher 

image, c(1-4) decrypted image 

We calculated the PSNR (Peak Signal to Noise 
Ratio) and SSIM (Structural Similarity Index 
Measurement) with the following equations: 

𝑃𝑆𝑁𝑅 = 10 log
255∗255

(1/𝑀∗𝑁) ∑ ∑ (𝑋(𝑖,𝑗)−𝑌(𝑖,𝑗))
2𝑁

𝑗=1
𝑀
𝑖=1

     

(18) 

Where M, N the size of the image and X (i, j) and Y 
(i, j) are the pixel. 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (19) 

where 𝐶1 = (𝑘1 × 𝐿) 2 ,  𝐶2 = (𝑘2 × 𝐿) 2 , 𝑘1= 0.01 
,𝑘2 = 0.02, L = 255 , and 𝜇𝑥  , 𝜇𝑦  , 𝜎𝑥 , 𝜎𝑦  , 𝜎𝑥𝑦 

represent the mean, variances and covariances of 
the plain image and decrypted image, 
respectively. 

Table 1: PSNRs (dB) and SSIMs for different images 

Image(pixels) PSNR(dB) SSIM 

Lena(256x256) 24.8045 0.5691 

Cameraman(256x256) 24.2178 0.5312 

Man(512x512) 24.3192    0.5166 

4.2. Others Applications of CS 

4.2.1 Compressive imaging 

-Single-pixel camera: One of the first and very 
famous architectures illustrating the 
compressive imagery proposed by Duarte et al 
[44]. 
-Radar Imaging Systems: The different types of 
radar imaging techniques for which CS has used 
are synthetic aperture radar (SAR) inverse 
synthetic aperture radar (ISAR), the wall imaging 
radar (TWR), ground-penetrating radar imaging 
(GPR) [45]–[48]. 

4.2.2 Video processing 

Among the video processing techniques based on 
CS: distributed compressed video detection, the 
sampling of video images is done independently 
while the reconstruction is done jointly. 
Detection adaptive video using block-based CS 
reconstruction and CS streaming for high-speed 
periodic videos based on coded projections of 
dynamic events…etc [49][50]. 

5. CONCLUSION 

CS has revolutionized many areas like camera, 
radar information security, communications 
networks, biomedical ... etc, one of the most of 
areas is the cryptography, and by using the 
measurement matrix as key, the secure of data 
can be guaranteed. In this paper, we have 
detailed the basic theory principle ofCS with 
some reconstruction algorithms and some 
applications in different fields specifically in the 
domain of cryptography, and the major of 
research is how to develop the measurement 
matrix like with chaotic systems. In addition, for 
more clearly, we gave a simple example of 
encryption image by CS using logistic map for 
generate the measurement matrix. The CS will be 
the key of revolution network like 5G and cloud 
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scenario…etc, because this technique is better 
that the existing technique. 
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