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Abstract 

This paper deals with elastic 2D problems characterized by the presence of 
zones with different materials and anisotropic inclusions using the 
boundary element method. The anisotropy can be either assumed over the 
whole domain, or defined only over some particular inclusions, which is the 
most usual case. Fundamental solutions for anisotropic domains, although 
well-known, lead to more complex formulations and may introduce 
difficulties when the analysis requires more complex material models as for 
instance plastic behavior, finite deformations, etc. The alternative 
formulation proposed in this work can be applied to anisotropic bodies 
using the classical fundamental solutions for 2D elastic isotropic domains 
plus correction given by an initial stress field. The domain region with 
anisotropic properties or only with different isotropic elastic parameters 
has to be discretized into cells to allow the required corrections, while the 
complementary part of the body requires only boundary discretization. The 
initial stress tensor to be applied to the anisotropic region is defined as the 
isotropic material elastic stress tensor correction by introducing a local 
penalty matrix. This matrix is obtained by the difference between the elastic 
parameters between the reference values and the anisotropic material. This 
technique is particularly appropriate for anisotropic inclusion analysis, in 
which the domain discretization is required only over a small region, 
therefore increasing very little the number of degrees of freedom of the final 
algebraic system. The numerical results obtained by using the proposed 
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formulation have demonstrated to be very accurate in comparison with 
either analytical solutions or the other numerical values. 
 
Keywords: Key words: Boundary element method, anisotropic 
inclusions, multi-region. 
 
 

1. INTRODUCTION 
 
In the analysis of problems involving non-homogeneous areas, 
various numerical techniques can be employed. In this sense, the 
technique of sub-regions is to consider each sub-domain 
individually and properly connected to the other through 
equations of equilibrium and compatibility of displacement 
imposed on the interface. 
[1] Shows several practical analyses of structures foundations, 
where non-homogeneous regions are treated by the method of sub 
regions, even when different types of physical non-linearity are 
associated with each material. 
The work of [2, 3], developed from [4] already indicated the ease 
with which the method could analyze areas compounds. Several 
numerical algorithms for the study of combinations of sub-regions, 
in order to expedite the solution of the system of algebraic 
equations of the BEM, have been proposed. One these algorithms, 
developed by [5], based on the elimination of blocks of zeros of the 
main matrix, significantly decreases the time resolution of the 
system. 
[6] Proposes an alternative formulation in the analysis of problems 
of the non-homogeneous, treating the field as continuous, without 
the need to divide it into sub-regions, only modifying the integrals 
in order to take into account the differences between the elastic 
constants of each sub-region. 
In the work of [7], the linear formulation of the BEM for bi-
dimensional elasticity is used for the study of stiff areas. The 
consideration of the hardening is addressed in two ways, the first 
of the classical technique of sub-region or coupling BEM / FEM and 
the second also by the same coupling, but condensing variables 
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contour to the axis of the stiffener. The latter provided good results 
in eliminating disturbances hardening fine. 
Although the study of problems of non-homogeneous areas, [8] 
presents another procedure for mounting the system of algebraic 
equations, very similar to that used in the finite element method, 
as construction of a stiffness matrix K for each region, considering 
factors such as streams or surface forces due to temperature / unit 
displacement. This method is more efficient than the method of 
sub-regions in the implementation in parallel computing and also 
can be used in the method of coupling boundary element with 
finite element method. 
The analysis of anisotropic solid plans, having anisotropy general 
through BEM began with the work of [9] that, using functions of 
complex variables and formalism elastic anisotropic. [10], 
proposed a two-dimensional fundamental solution has been 
widely used in many different applications BEM anisotropy in 
general. 
[11] Presented a formulation for the BEM, for analysis of 
anisotropic media plans, where the integral equations are 
discretized in the complex plane, there by differentiating it from 
formulations usual. The unknowns of the problem are assumed to 
be linear functions of a complex variable in each element 
boundary, and the integrations are performed accurately for 
arbitrary contours without the need for numerical integrations, 
thus constituting the advantage of the method proposed. 
[12] Proposed a fundamental solution deduced from the 
fundamental solution of isotropic Kelvin, avoiding, this way, for 
three-dimensional problems, the numerical integration to 
determine the Green's function. The technique is to express the 
constants anisotropic as a mean value of the constants a more 
isotropic residue, which in turn is transformed into a term of the 
equation field  text and can be treated, for example, the dual 
reciprocity method. 
For infinite transversely isotropic media, [13] obtained a 
fundamental solution using three potential functions 
displacements. This solution was used by [14], in study of solids 
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subject to gravity and also by [15] in the analysis of transversely 
isotropic piezoelectric solids. 
In the study of composite materials, we highlight the work of [16], 
which employs the fundamental solution in the study of 
orthotropic laminated anisotropic. The anisotropy, therefore, is 
obtained by forming the orthotropic layers in different directions 
with each other.  
The presence of initial fields of deformation or stress applied to the 
area of the body is important in problems where domain variables 
are of importance in the mechanical problem, such as in thermo-
elasticity, shrinkage and creep. 
In materials that exhibit nonlinear behavior (plasticity, damage, 
viscous effects), the problem is solved incrementally using initial 
strain or stress. 
In this paper we present the integral representations for problems 
of initial fields in the area. Subsequently, we present the 
approaches of the variables in the field, the use of internal nodes of 
the cell and the BEM algebraic equation with initial stress field. 
The main objective of this work is the development of a program 
computational method using the boundary element in the solution 
of linear elastic problems flat (plate) consisting of areas no 
homogeneous, determining the displacements / forces on the 
boundary surface and tensions in the body. 
The non-homogeneity in this work is restricted to problems where 
the domain is composed of several sub-regions, whose elastic 
properties of the material do not vary within each sub-region. 
The classic technique of sub-regions, proposed by compliance the 
displacements and surface forces at the nodes of the interface 
allows only the study of isotropic materials. However, the 
formulation proposed in this paper also enables the analysis of 
problems with sub-regions isotropic and anisotropic. Guaranteed 
quality of results to the problems described above extends the 
formulation in the analysis of anisotropic solid media. The integral 
representations of initial fields in the area are used in the 
formulation of the problem. Therefore, it is necessary the 
discretization of the domain cells. 
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2.  INTEGRAL REPRESENTATIONS OF INITIAL FIELDS 
 
The components of the strain tensor at a point "s" are: 

𝜖𝑖𝑗(𝑠) = 𝜖𝑖𝑗
𝑒 (𝑠) + 𝜖𝑖𝑗

0 (𝑠)                  (1) 

Where 𝜖𝑖𝑗
𝑒 (𝑠) is the elastic strain tensor and 𝜖𝑖𝑗

0 (𝑠) the initial strain 

tensor. 
 Equivalently, the components of the stress tensor are: 

𝜎𝑖𝑗(𝑠) = 𝜎𝑖𝑗
𝑒 (𝑠) − 𝜎𝑖𝑗

0(𝑠)                (2) 

The tensors with initial fields preserve the elastic constitutive 
relation, 

𝜎𝑖𝑗
0(𝑠) = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙

0                        (3) 

Where Cijkl is a fourth order tensor that characterizes the material, 
varying from point to point within the body when it is not 
homogeneous. 
The constitutive relation can now be represented in terms of 
increased initial fields as follows: 

𝜎𝑖𝑗 =
2𝐺𝜈

(1 − 2𝜈)
𝛿𝑖𝑗[𝜀𝑘𝑘(𝑠) − 𝜖𝑙𝑙

0 (𝑠)] + 2𝐺[𝜀𝑖𝑗(𝑠) − 𝜖𝑖𝑗
0 (𝑠)]      (4) 

Where G is the shear modulus and  is the Poisson's ratio. 
Similarly, the Navier's equation and surface forces also have terms 
referring to the initial deflection, as follows: 

𝜎𝑖𝑗(𝑠) =
2𝐺𝜈

(1 − 2𝜈)
𝑢𝑙,𝑙(𝑠)𝛿𝑖𝑗

+ 𝐺[𝑢𝑖,𝑗(𝑠)

+ 𝑢𝑗,𝑖(𝑠)]−
2𝐺𝜈

(1 − 2𝜈)
𝜀𝑘𝑘
0 (𝑠)𝛿𝑖𝑗 − 2𝐺𝜖𝑖𝑗

0 (𝑠)
⏟                    

𝜎𝑖𝑗
0

    (5) 

𝑝𝑗(𝑆) =
2𝐺𝜈

(1 − 2𝜈)
𝑢𝑗,𝑗(𝑆)𝑖 + 𝐺[𝑢𝑗,𝑖

(𝑆)𝜂𝑗 + 𝑢𝑖,𝜂(𝑆)]

−
2𝐺𝜈

(1 − 2𝜈)
𝜀𝑚𝑚
0 (𝑆)𝜂𝑖 − 2𝐺𝜖𝑖𝑗

0 (𝑆)𝜂𝑗    (6) 

now using the tensors εij and σij related to the equations (1) and (2) 
for the real problem in the reciprocity theorem of Betti and using 
the fundamental solution to Kelvin, arrives at the identity 
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Somigliana relating the boundary displacements uj(Q) with the 
boundary tractions Pj(Q) plus the terms of initial tension, 

𝑐𝑖𝑗(𝑠)𝑢𝑗(𝑠) = ∫ 𝑃𝑗(𝑄)𝑢𝑖𝑗
∗ (𝑠, 𝑄)𝑑Γ

Γ

−∫ 𝑃𝑖𝑗
∗ (𝑠, 𝑄)𝑢𝑗(𝑄)𝑑Γ 

Γ

+∫ 𝑏𝑗(𝑞)𝑢𝑖𝑗
∗ (𝑠, 𝑞)𝑑Ω

Ω

 

+∫ 𝜎𝑗𝑘
0 (𝑞)𝜀𝑖𝑘

∗ (𝑠, 𝑞)𝑑Ω

Ω

                        (7) 

Where cij(s) is generally a function of the geometry variation at the 
boundary point s. Providing that s is a smooth boundary point, that 
is, the outward normal vector to the boundary is continuous at s, 
then it can be shown that Cij(s)=1/2δij [17]. P*ij (s, Q) and u*ij(s,Q) 
represent the traction and displacement fundamental solutions at 
a boundary point Q due to a unit load placed at location s.  
 

3. APPROXIMATION FUNCTIONS OF VARIABLES IN THE 
DOMAIN 

 
As has been discussed, the consideration of initial fields introduces 
the integral domain in addressing the problem. The simplest way 
to calculate such integrals is turning them into summations over 
domain discretization units, or cells. 
In this section, triangular cells are used and all the stress equations 
are written for points belonging to the area. That is, all nodes of the 
cells do not coincide with their vertices (or nodes geometry) as 
they are pulled into the domain of the cell, passing a field belonging 
to the body. 
The domain Ω is discretized into Nc cells, and the stress 
components are approximated by functions polynomial of the 
form: 

𝑚𝜎𝑖𝑗
0(𝑠) = 𝜙𝑘(𝑠)

𝑚𝜎𝑖𝑗
0𝑘                     (15) 

Where     m - represents the cell Ωm.  
                k - represents the nodes of the cell.  
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                mσ0kij  - represents the variable component ij of the nodal 
tensor of initial tractions of the cell m to node k 
In this work, the polynomial k(s) are adopted linear. 
For the integrals over the cells, the numerical integration in two 
dimensions can be avoided if a semi-analytical procedure is 
adopted, or is, the first integral in the variable radius is calculated 
analytically and then the variable angle is evaluated numerically. 
Two domain integrals should be calculated in the formulation 
proposed in this paper. The first kernel *ijk from the equation of 
displacement (7) has weak singularity (1/r) and the second kernel 
E*ijkl from the traction equation (11) presents a strong singularity 
(1/r2).  
 

4. EXAMPLES 
 
This section presents some examples of application of the 
proposed formulation and compares results with those obtained 
with the finite element method with analytical solutions (when 
available) and / or other results in the literature. 
The computer program developed based on the formulation 
proposed in this work was employed analytical integrations over 
the boundary element and numerical integrations over the 
elements in the field. In all the examples presented, we adopted 
yet, the value of dist = 0.40, dimensionless distance, as shown in 
Figure 1. 
4-1 Thick wall tube 
 
This example is the analysis of a thick piece tubular, formed by two 
concentric tubes properly engaged. The first tube has a thickness 
and inner radius equal to 2. The outer tube has the same thickness 
as the interior and its elasticity module is twice of the first tube. 
The first analysis consists in examining the convergence of the 
solution, comparing the results in radial displacements and 
stresses with the analytical solution of the problem available in the 
literature. The geometry, material properties and boundary 
conditions imposed are shown in Figure 2. It is important to note 
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that results presented below refer to the State plane stress. 3 
discretizations were considered, of which the first with 6 linear 
elements on the inner tube of the quarter under review, 14 linear 
elements on the outside, 4 linear elements in each line of 
symmetry and 67 cells to discretize the continuous medium 
penalized.  
The second mesh is the refinement of the first model using 12 
linear elements on the inner surface of the quarter tube, 28 linear 
elements on the outside, 8 linear elements in each line of 
symmetry and 268 cells to discretize the continuous medium 
penalized. 
The final discretization consists of 20 linear elements on its inner 
surface 40 linear elements on the outside, 16 linear elements each 
line of symmetry and 692 cells to discretize the continuous 
medium penalized. 
The following radial displacement for the 5 points above was 
found and is shown in Figures 3 to 7: 
The average error quadratic obtained considering all the radial 
displacement of the nodes in the first contour discretization was 
2.73%, decreasing to 0.72% in the second discretization and 
closing at 0.49% last discretization. 
4-2 Beam 
The loading, geometry, and boundary conditions of the problem 
are seen in the figure 8. 2 discretizations were adopted, the first of 
which consists of 70 elements in the contour and 120 cells 
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                                                                                              Figure 2: Thick 
wall tube. Geometry and loading 
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Figure 3-4: Radial displacement of point 1 and 2 respectively in 3 
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Figure 5-6: Radial displacement of point 3 and 4 respectively in 3 
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Figure 9: vertical displacements along the                            Figure 10: 

vertical displacements only in the central   

                underside of the beam.                                                                 
beam. 

in the domain, in the second discretization, 140 were adopted on 
the boundary elements and 480 cells in the domain.  
The results in vertical displacement at the nodes on the underside 
of the beam are presented in the figures below, comparing the two 
discretizations adopted with the results obtained by the FEM 
based on the same discretization of the domain. 
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In Figures 9 and 10 are presented the vertical displacements that 
occur along the underside of the beam. 

5. CONCLUSION  
 

The aim of this paper is to present an alternative formulation to 
solve problems of the sub region or anisotropic inclusion, through 
BEM modifying the elastic parameters with initial stress field. In 
particular, developed a computer program based on the 
formulation, which was subjected to a series of examples and their 
results were compared to those obtained by other techniques. 
Because of the difficulty of getting the 21 constants needed to 
characterize a material with complete anisotropy, were analyzed, 
at most, orthotropic material properties. 
The accuracy of the results demonstrates the feasibility of using 
this formulation to the analysis of problems where one party or the 
domain for complete, is presented with anisotropic properties. The 
use of cells with discontinuity in the variables of initial stress 
demand a large area of computer memory for the assembly and 
resolution of the algebraic system. Thus, the formulation is more 
suitable for problems with inclusions that require discretization in 
regions smaller. 
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