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Résumé   
 
Le présent travail concerne l'analyse de l'instabilité par flambage élastique des plaques stratifiées 

munies d'une singularité géométrique. Le flambage des plaques stratifiées en matériaux composite 
est un phénomène très complexe, pour l'analyse du flambage des plaques minces stratifiées, nous 
avons employé un élément de quatre nœuds 32 degré de liberté, la formulation a été basée sur la 
théorie de Kirchhoff étendue au plaque stratifiées en adoptant l'approche mono couche équivalente. 

 Nous présentons en suite la formulation du problème d'instabilité  en utilisant le principe de la 
variation seconde de l'énergie potentielle pour la construction des matrices de rigidité. Une série 
d'exemples a été testé au flambage des plaque mince isotropes et stratifiées, les résultats obtenus et 
comparés a ceux disponible dans la littérature, ont montré la rapidité de convergence et la bonne 
performance de l'élément. Une étude paramétrique a été entreprise pour mettre en évidence l'effet de 
certains paramètres sur le comportement de flambage des plaques minces munies d'ouvertures carré 
isotrope et stratifiées ont montre que la charge critique de flambage augmente avec l'augmentation de 
l'ouverture pour certaines condition aux limites. 

Mots clés : Stratifié, Composite, Flambage, Instabilité, Plaque, Singularité géométrique, 
Elément fini 
 

Abstract  
In this paper, we present an analysis of a buckling behaviour of rectangular and square laminated 

plates with central cutouts. The laminates have in general an anisotropic behaviour, significant 
transverse shearing strains and a coupling between extention and bending strains. We used a four 
nodes shell finite element with 32 degrees of freedom. The element is based upon the Kirchhoff 
theory extended to the laminated structure with adoption of the equivalent mono-layer approach.  

A parametric study was undertaken to show the effect of certain parameters on the buckling 
behaviour of thin laminated plates containing square cental cutouts. The results show that the critical 
buckling load increases with the increase of the cutout dimension for certain boundrey conditions 

Keys words :  Buckling, Laminated, orthotropic, finite element  
 
 
 

   ملخص       
الانبعاج الصـــفائح ذات المــــواد المـرآـــبة و  .يتمثل هذا العــمل في تحـــــليل عدم الاستــقرار مرونة انبعاج الصــــفائح المــصففة ذات التشويه الهنــدسي

 درجة متـــحررة، 32ـدام عنـصر متكون من أربــــع عقــــد و لتحمـــيل الانبعاج الصفـائح الرقـــيقة المصــففة قمنـا باستخــ .هي ظــــاهرة معقــدة جــــــدا
ثم قمنـــا بتقديم مشـــاآل صياغة .  و الــــتي تتمثل في أحـــادي الطــبق المكــافئة لطبقــات الصـــفائح المصــففة)آرشوف (العــلاقة المعـــتمدة عـــــلى نظرية

  .دأ تغـــــــير الثـــــــاني للطـــاقة الكــــامنة في بنـــــاء صلابة المـــصفوفاتعـــــدم الاســتقرار باستعمــــالنا مبـــ

و النتـــائج المتحـــصل عليهــــا ) مرآبة( المتـــــجانسة غــــيرقمنـــا بتجـــــارب عـــدة عينـــات لظــــاهرة الانبعاج الصفــــــائح الرقيـــــقة المتـــــجانسة و 
ثــــم ثقــــب الصفـــــحة و الـــمرآبة  .ارنة مــــع النتــــائج المرجعـــــية المـــــتوفرة أثبتـــت تقــــارب النـــــــتائج و نجـــــاعة العنــــصر المستــــخدممقـــــ

ســـاحة ثقــــب مـــــربع الشكــــــل و ذلك مــــــع بعــــض الـــــشروط عــــدة مرات وبينت النتــــائج أن الحـــــمولة الحدية لانبعاج تـــــزداد مــــع زيـــــادة م
 .الحـــدية
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he purpose of the mechanical analysis of the structures 
is to determine stresses, deformation or displacements 

which will be compared with acceptable values, based on 
the properties of materials. And this is according to service 
needs or simply for esthetics reasons.  The analysis of the 
structures to instability behavior is less frequent in spite of 
the importance of the phenomenon underlined by the 
rupture in service of many monumental structures. The 
finite element method allowed advance up to the point of 
sophistication in the analysis of the structures of complex 
geometries and under the action of any type of loads, which 
was not the case with the analytical methods. Thin 
laminated structures made of composite materials are 
widely used nowdays. These structures are used in vast 
fields, particularly in aeronautics, automotive industry, 
shipbuilding and civil construction as alternative to 
traditional materials such as steel and concrete. Indeed, 
This large utilisation is due to advantages of composite 
materials such as light weight, corrosion resistance and 
ability to vary their properties over wide range of values. 
Although composite materials have existed for many years, 
there is still much about them that needs to be understood 
before they will be accepted as building materials in civil 
engineering structures.  When thin structures are subjected 
to loading of mechanical or thermal nature, their cross 
sections undergo compressive stresses as well as tensile 
stresses.  The compressive stresses can have increasingly 
large values so that buckling takes place.  These thin 
structures become unstable for loads or relatively weak 
variations in temperature, and buckle in the elastic region.  
Consequently, buckling presents a very great consideration 
when designing this type of structures. In laminated 
structures, the existance of cutouts is very frequent. They 
are commonly used as access ports for mechanical and 
electrical systems, or simply to reduce weight. That is the 
reason to study the behaviour of this type of structures. 

Very main efforts are provided through these last 
decades with an aim of studying the bending or the 
buckling behavior of thin plates and shells.  For this end, 
various means were used, namely the analytical methods 
undertaken by S. Timoshenko and W. Kriger [1] [7] and 
numerical methods, especially the finite element method 
which was the subject of many investigations to develop 
increasingly effective and reliable elements. P. G. Bergan et 
al. [2] described a quadrilateral finite element for thin and 
moderately thick plates.  Their formulation was not based 
on the traditional variation principle but is rather based on a 
free formulation which satisfies the mathematical 
convergence requirements. The transverse displacement is 
expanded in a set of fundamental rigid-body and constant 
curvature mode plus a set of higher order modes. By using 
this formulation, the authors avoided the many difficulties 
encountered with the elements based on Resister theory. 
Very good results have been obtained for the thin and thick 
plates of various geometries. 

Reinhard and al [6] described a quadrilateral finite 
element of a lower order for the inflection of the thin and 
thick plates, by using bilinear approximations for 
displacement and rotations out of plan.   

The authors used eight modes of deformations in order 
to improve the results.  Although the element is of a lower 
order, the obtained results obtained are excellent. 

Calvin D. Austin [5] undertook a comparative study on 
the buckling of the laminated thin plates in FRP. The author 
carried out the calculation of the critical loads buckling of a 
number of laminated plates for a number of parameters by 
the means of commercial software ANSYS and confront 
the results obtained to those obtained analytically [7]. The 
objective of the work was to test the performance of the 
software in the analysis of the buckling of the laminated 
thin plates.  The author noted that the ± 45 degrees 
orientation of the layers was optimal for the cases of the 
simply supported plates but it was not the case for the other 
boundary conditions. 

F. Auricchio, proposed a new finite element for the 
analysis of laminated composite plates. The element is 
based on first-order shear deformation theory and is 
obtained through a mixed-enhanced approach. To improve 
the in-plane deformation, the author adopted the variational 
formulation that includes as variables the transverse shear , 
and the enhanced incompatible modes. 

In this work which is a contribution to the analysis of the 
laminated thin plates, an approach of quadrilateral finite 
element for bending and mechanical or thermal buckling is 
established. The proposed element is a combination of a 
membrane Isoperimetric quadrilateral element and a 
rectangular Hermit plate element of first order, transformed 
to be adapted to the case of general inflection of thin plates. 

The formulation is based on the minimal potential 
energy principle adopting Kirchhoff-Love theory.  Almost 
elements adopt the Reissner theory, especially during the 
analysis of the composite material structures owing to the 
fact that the effect of shearing is of great importance in 
these cases.  However in the present study, transverse 
shearing was neglected.  That is justified by the fact of 
supposing that the Kirchhoff theory is checked for all the 
layers which are rather thin, identical and having transverse 
rigidity modulus of the same order of magnitude and 
obviously this assumption is supposed to be checked for the 
whole plate [9].  

More, especially during the analysis of buckling, the 
inflection is supposed to be weak.  Indeed the comparison 
between the results and those obtained analytically or using 
other type of element taking in account transverse shearing, 
showed the efficiency of this approach. 

 
1. FINITE ELEMENT FORMULATION 

 
The proposed element is a combination of an 

isoperimetric membrane quadrilateral element and of a first 
order Hermit rectangular plate element of high degree of 
accuracy.  The element has 4 nodes of 8 degrees of freedom 
each.   

The Cartesian and intrinsic co-ordinates are shown on 
the figure 1. The components of the mid -plane 
displacements are noted u and v and  w. 

T 
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1.1. Kinematics relations 

The kinematics relations strains displacements are given 
by [4] 
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1.2. Behavior Law 
The forces and the moments resultants are related to  

mid-surface strains and to the curvatures by  [4] : 
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Denoting by σi the in plane stresses, then : 
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Extensional, coupling and bending stiffness of the laminate 
are defined by : 
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With ijQ  are the stiffness coefficients for principal 
material directions. 

The strain potential energy of the element is given by 
[4]: 
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As the element is a combination of an isoperimetric 
membrane element and a high precision plate element of 
Hermit type, the interpolation functions of the co-ordinates 
and displacements through the element are given by: 

- the real co-ordinates are connected to the co-ordinates of 
the reference element  by: 

x(ξ,η) = ∑ Ni (ξ,η).xi , y(ξ,η) = ∑ Ni (ξ,η).yi   (i = 1,2,3,4)     (10)  

In the same way, the in plane displacements are given by: 

u(ξ,η) = ∑ Ni (ξ,η).ui , v(ξ,η) = ∑ Ni (ξ,η).vi   (i = 1,2,3,4)     (11) 

Where: 

          )ηη)(1ξξ(1
4
1),(N iii ++=ηξ                    (12) 

Displacements out of plane of the element of reference is 
expressed as the products of one dimensional first order 
Hermit interpolation polynomials [4] 
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Then, after transformation, the interpolation functions of 
the real element are written : 
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The displacements state leads to a 32 degrees of freedom 
element with 8 degrees of freedom by node and the 
resulting displacement vector is: 
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By subsisting the polynomials of interpolation in the 
equation of energy, we obtain: 
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in which: 

{ q}is the resulting displacement  vector of the element 
which is a 32x1 vector; [Sε], [Sk ] are 3x32matrices of  
which relate the linear membrane strain and curvature of 
the element to vector {q} respectively; 

[ G ] is a 2x32matrix  which relates the vector [ W / W, W / 
y]to the displacement vector {q}; 

|J | is determinant of the Jacobean matrix. 

1.4. Buckling Analysis  
In almost buckling problems of plates, the determination 

in advance of the distribution of the stresses through the 
plate is not necessary.  However in the general case,  when 
the stresses are not uniformly distributed through the plate, 
in particular when the plate contains cutouts or undergoes a 
non uniform variation of temperature, it will be necessary 
to determine the distribution of the membrane efforts as 
first stage in this analysis. 

With: 
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By setting  the second variation of the strain energy to 
zero, the standard eigenvalue problem is obtained : 

[KG]{X}+ λ[Kσ] {X} =0               (24) 

Where [Kg] is the global geometry matrix which is the 
assembly of the element geometry matrix [Kg
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2. NUMERICAL RESULTS AND DISCUTION 
 
2.1. problem presentation 
 
Table 1 : Geometrical characteristics 

a (cm) a/b h 
20 1.0 1,05 
30 1,5 1,05 

                                                                                
Mechanical proprieties of lamina : 
E1 = 123 x105 N/cm2 E2 = 8,2 x 105 N/cm2 
G12 = 4,1 x 105 N/cm2 
ν12 = 0,5 

The plate is formed by 6 laminas with sequence [90/-90/0] s 

Boundaries conditions  

We consider 2 boundries conditions 
- Simply supported plates on 4 edges (4SA) 
- Clamped plates on 4 edges (4C) 

 

 

 

 

 

 

Figure 1 : Uniaxial Compression 
 
Table 2 :Critical load Ncr for a simply supported laminated [90/-
90/0] s 

a/b Meshes 4x2 4x4 5x5 8x8 10x10 
Ncr 

analytica 
[5] 

(m,n)
 

1 23.492 23.60966 23.808 23.8846 23.885 23.885 (2.1)

1.5 
crN  

N/cm 21.660 21.689 23.294 23.857 23.885 23.885 (3.1)
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Figure 2 : The plate laminated with an  Orientation (90, -90,0) s 
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Figure 3 : Variation of uniaxial buckling load for simply 
supported plates 
 
3. BUCKLING BEHAVIOR OF PLATES WITH 
CUTOUTS 
 
 
 
 
 
 
 
 
 
 
Figure 4 : Finite element mesh 
 
4. NUMERICAL RESULTS AND DISCUSSION 
 

The plates are subdivided into 2x2, 4x4, 6x6 and 10x10 
elements as for the first study.  The computed values of the 
critical loads for various parameters by the present element 
the results presented on the table 2 and over of figures 3 
and 4 show the performance of the element where 
compared to results obtained analytical by Whitney. 

In this chapter, there is an analysis of some cases of the 
small plates of the singularities centered during the 
analysis, certain watches results that the presence of 
opening under certain conditions of support increases the 
critical load of buckling compared to that relating to the 
corresponding blank flanges. The results as showed as the 
position of the opening can have a direct influence on the 
value of the critical load in certain measurements. 
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Figure 5 : The variation Fcr in function b/d for  plate Laminated 
a/b=1 
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Figure 6 : The variation Fcr in function b/d for  plate Laminated 
a/b=1,5 
 

In figures 5 and 6 there is an analysis of some cases of 
the small plates of the singularities centered During the 
analysis, certain watches results that the presence of 
opening under certain conditions of support increases the 
critical load of buckling compared to that relating to the 
corresponding blank flanges. The results as showed as the 
position of the opening can have a direct influence on the 
value of the critical load in certain measurements. 

 
CONCLUSION 

 
Buckling laminated plates is a very complex 

phenomenon because of the specificity of this type of the 
materials. Indeed, the laminates have in general an 
anisotropic behavior, significant shearing transverse 
deformations in the direction of the thickness and a 
coupling extension bending. 

For buckling analysis of the laminated thin plates, a four 
nodes finite element of 32 degrees of freedom was 
developed the formulation was based on the theory of 
kirchhoff extension to the plate laminated adopting the 
equivalent mono-laver Approach. For the construction 
rigidity and geometrical matrices, the Principe of minimum 
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potential energy was used. The developed element was 
tested to buckling of laminated thin plates. 

The obtained results when compared to those available 
in literature, showed the rapidity of convergence and the 
good performance of the element. In continuation, we 
showed the effect of square opening centers on the plates 
square or rectangular solicited by a uniaxial pressing, the 
critical load of buckling decrease. But For the case of the 
laminated plates, the effect of the dimension of the opening 
depends on the type of boundary conditions. The critical 
load of buckling believes with the increase in the dimension 
of the opening, although it keeps the same pace for the case 
of the simply supported plates. 
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