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Abstract 

The free vibration of isotropic, orthotropic clamped rectangular plates using the Rayleigh-Ritz 
energy approach has been studied. The solution of the eigenvalue problem is obtained by assuming a 
deflected shape in the form of series functions that satisfy the edge boundary conditions of the plate. 
Simplified analytical expressions for frequencies are obtained that describe the vibrational 
characteristics of the plate. To demonstrate the accuracy of the present approach the same plate is 
discritisated  and  analyzed using the finite element method and the corresponding frequencies are 
obtained. The frequencies obtained with energy approach agree closely with those of the conventional 
finite element method.  

Keywords: Free vibration, Isotropic, Orthotropic, Plate, Natural frequency, fundamental 
frequency, F.E.M, Clamped. 

 
Résumé  

Les  vibrations libres des  plaques rectangulaires, orthotropes et  isotropes ont été étudiées en 
utilisant la méthode énergétique de Rayleigh Ritz. La solution du problème aux  valeurs propres est 
obtenue en proposant une déformée de  fonction forme  de séries  qui vérifie les conditions aux limites 
de la plaque. Ensuite une expression  analytique simplifiée pour le calcul de la fréquence fondamentale 
a été proposée. Pour démontrer la précision de la présente  approche, la même plaque a été discrétisée 
et analysée par la méthode des  éléments finis. Les fréquences  par l’approche  énergétique sont  
comparées  avec celles obtenues par la méthode numérique des éléments finis  et les résultats montrent 
une bonne concordance entre les deux méthodes 

Mots clés: Vibration libre, Isotrope, orthotrope, plaque, fréquence naturelle, fréquence 
fondamentale, Méthode des éléments finis, Encastrée. 
 
 
 
 

he use of orthotropic material has increased during the last three 
decades, particularly in the aerospace and civil engineering. Examples 

are corrugated plates and stiffened plate structures. The need of using 
composite materials for plate structures intensified the search of finding 
simplified solutions that predict accurately the frequencies of free 
vibration orthotropic plates. The finite element method was applied to the 
free vibration of plates by assuming a displacement field model that 
satisfies the convergence criteria. This method leads to the calculation of 
the eigenvalues in a numerical sense and therefore it allows the 
computations after discretizing the plate domain into finite elements. The 
results of applying this technique can only be obtained after assuming a 
large number of elements. For design purposes it is usually preferred to 
have an idea on the period of the plate structure prior to the estimation of 
the maximum quantities such as the stresses that can be developed when 
the plate is subjected to extreme loadings that arise from blast loads. In 
this sense, analytical expressions of the frequencies present an important 
parameter rather than the numerical values obtained from the FEM.  

The study of the free vibration of orthotropic plates is not a new 
subject. There is a number of solutions on free vibration of rectangular 
plates in the natural frequencies with a wide range of support conditions. 
The most widely known are those of Warburton [1] and Leissa [2, 3]. The 
work of Warbuton [1] has been extended by Hermon [4] to analyze the 
free vibration of rectangular orthotropic plates having either clamped or 
simply supported edges using the Rayleigh method. G. Aksu and R. Ali 
[5] applied the finite difference method to examine the free vibration 
characteristics of rectangular stiffened plates having a single stiffener. For  
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  خصمل
تمت دراسة الاھتزازات الحرة لصفیحة مستطیلة 
مثبتة في أربعة جوانب موحدة الخواص وأخرى 
متعامدة الخواص باستعمال طریقة ریلي ریتز 
الطاقویة. تم الحصول على حلول مسألة القیم الذاتیة 
بافتراض شكل مشوه للصفیحة باستعمال متسلسلة 

اقتراح توافقیة تحقق الشروط الحدیة للصفیحة. وتم 
أیضا صیغة مبسطة للعبارة التحلیلیة لحساب التوتر 
الأساسي. للبرھنة على دقة الطریقة الحالیة، نفس 
الصفیحة تم تكتیمھا وتحلیلھا باستعمال طریقة العناصر 
المنتھیة. مقارنة التوترات المحصل علیھا بالطریقة 
الطاقویة مع التوترات المحصل علیھا بطریقة 

  تظھر توافق مقبول بین الطریقتین. العناصر المنتھیة

الاھتزازات الحرة، موحدة  :الكلمات المفتاحیة
الخواص، متعامدة الخواص، صفیحة، تواتر طبیعي، 

  تواتر أساسي، طریقة العناصر المنتھیة، مثبت.
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conventional homogeneous, orthotropic, plate continuum, a 
(3-D) exact solution was developed by Srinivas and Rao [6] 
for bending and vibration analysis with simply-supported 
conditions. For clamped plates on four edges many 
approximate solutions have been reported. For example, for 
the case of all edges clamped, Sakata and Hosokawa [7] 
proposed a double series solution for free and forced 
vibration analysis. Gorman [8] analyzed the free vibration 
frequencies and mod shapes of clamped rectangular 
orthotropic plates Using the superposition method while 
Guttérrez et al. [9] studied the problem of fundamental 
frequency of transverse vibration of clamped rectangular 
orthotropic plate with a free edge hole. Numerical 
techniques such as the FEM have been widely applied to 
plate problems, Ahmadian and Sherafati Zangeneh [10] 
used the concept of super elements for vibration analysis of 
orthotropic rectangular plates. Lee [11] developed  a four-
node plate element by using the assumed natural strains on 
the basis of Reissner-Mindlin to investigate the vibrational 
characteristics of plates,. The finite difference method is 
another numerical technique that has been used for free 
vibration of plates. This technique was used by Karim et al. 
[12] to solve differential equation of motion of free 
vibration of composite plates with different boundary 
conditions. 

The purpose of the present paper is to develop analytical 
expressions that predict the fundamental frequency and 
therefore the fundamental period of thin plate structures 
with clamped edges. The frequencies are obtained using 
several terms in the assumed shape function by applying the 
Rayleigh–Ritz method. Simple analytical expressions for 
the fundamental natural frequencies are presented for 
isotropic and orthotropic plates. 

 
1- ANALYTICAL FORMULATION 

The Rayleigh Ritz method is an extension of the 
Rayleigh method which not only provides a means of 
determining a more accurate value of the fundamental 
frequency, but it also gives approximation to the higher 
frequencies and mode shapes. It is always known that 
fundamental frequencies obtained using the Rayleigh Ritz 
method are always higher than the exact values, since the 
plate’s mode shape is postulated by a finite number of 
terms in the shape function which inherently increases the 
rigidity of the plate. The accuracy  of  the Rayleigh Ritz 
method therefore depends on the selection of compatible 
shape functions.    

 
   
 
 
 
 

 
 
 

 
 
 

  If the general expressions for deflected shape (Table 1) 
had been used throughout the above formulation, 
frequencies for higher modes would have been obtained. 
These higher mode frequencies can be obtained by taking 
various integer combinations of m and n.

 Consider a rectangular orthotropic plate of length a, 
width b and thickness h. For the free vibration case, the 
frequency equation may be derived using the Rayleigh-Ritz 
approach. Where the maximum strain energy of bending of 
orthotropic plate is 
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and for isotropic plate is  
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where the integration is performed over the plate domain.  

xD and yD are the flexural rigidities, xyD is the 

torsional  rigidity and 1D is the reduced Poisson’s ratio and 

they are given by : 
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xE  and yE  are the Young’s moduli in the x and y 

directions, x  and y are the corresponding Poisson ratios, 

and 12G  is the shear modulus. 

 
 
 
 
 
 
 
 
 
 
 
 
 

         Table1: Assumed deflected functions. 
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The maximum kinetic energy of the plate freely 
vibrating with amplitude w and radian frequency    is 
given by 

 
2

2
max , ( , )

2

b a

b a
T x y w x y dxdy


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 
                           (7) 

where ( , )x y  is the mass density of the plate material per 

unit area. 

In Eqs. 1 and 2 the function ( , )w x y is the assumed 

deformed shape and   is the natural frequency of the plate. 
The total energy of the vibrating plate is formulated as 

max maxp U T                                                                (8) 
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Mathematically the shape function describing the modes 
of vibration is assumed in the form of a harmonic series as 
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where  ( )nX x  and ( )nY y are appropriate shape functions 

along x and y axes that must satisfy the geometrical 
corresponding boundary conditions of the edges normal to 

the x and y axes respectively. mnA  are the unknown 

numerical coefficients of the functions.  
   The assumed displacement functions defining the 

deflection of the plate are given in Table 1 in the form of 
series functions. These functions satisfy the boundary 
conditions as follows  

 
1.1- Boundary conditions 

Clamped edges: 
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Thus the problem can essentially be solved by 
substituting expression (4) into Eq.(3) and solving the 
resulting linear equation system for the unknown 

coefficients mnA ; once the latter have been calculated, the 

approximate response of the plate can be calculated 
explicitly trough Eq.(4). 
 

1.2- Rayleigh’s quotient  

By making the ratio of the maximum strain energy to 
the maximum kinetic energy the Rayleigh’s quotient is 
defined as 
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where maxU  and maxT are given by Eqs.2 and 7 

respectively. 
Based on the principle of potential energy, and applying 

the Rayleigh-Ritz method, Eq. 13 is minimized with respect 

to each unknown coefficient mnA to give a series of 

homogenous simultaneous equations leads to the necessary 
conditions 
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Substituting the ratio given by Eq. 13 into Eq. 14 leads to 
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Substituting the assumed function of Eq. 4 into Eq. 7 
yields the eingenvalue equation. 

 
2- FINITE ELEMENT FORMULATION  

The governing equation of motion for free vibration can 
be derived from Hamilton principle, which is a 
generalization of the principle of virtual displacement in the 
dynamics of deformable bodies. The equilibrium 
differential equations of motion can be obtained using 
Hamilton’s principle expressed as 
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where   is variational operator, L is the Lagrangian 

function of the plate, 1t and 2t  are the arbitrary time limits, 

T is the kinetic energy, p is the potential energy. The 

Lagrangian equations become 
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where { iw }and { iw } are the displacement and the velocity 

vectors of the generalized coordinates. 
For free vibration analysis, the differential equations for 

orthotropic plate can be written as 

       0M W K W             (18) 

where  K  and  M are the global stiffness matrix and 

the global mass matrix respectively.  W  is the global 

displacement vector.  
Assuming that the displacements vary with time in a 

sinusoidal manner with the natural frequency of , the 
eigenvalues can be obtained from the following equations 

       2 0K M W                                            (19) 
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3- SIMPLE ANALYTICAL EXPRESSIONS FOR THE 
FUNDAMENTAL FREQUENCIES 

A harmonic series function satisfying the clamped edge 
boundary conditions of the plate in the form given by table 
1 is substituted in the analytical formulation. From the 
resulting linear system of equations one obtains a 
determinant whose lowest root constitutes the fundamental 
frequency. The frequencies values resulting from analytical 
expressions for isotropic and orthotropic rectangular plates 
are compared with those of the FEM within table 2, 3 and 
4. The formulation has been programmed using Maple6 
package to compute the fundamental frequencies of 
rectangular isotropic and orthotropic plates of thin 
geometry with clamped edges conditions. 

For the FEM the modelling used corresponds to 64 
quadrilateral elements in the full plate. For comparison 
purposes, results have been generated using the SAP90 and 
the SUPERSAP commercial finite element package for the 
case of isotropic and orthotropic plates respectively. 

 
3.1- Isotropic rectangular plate  

Consider a rectangular isotropic plate of length a, width 
b and thickness h as shown in figures 1a and 1b. For free 
vibration the frequency equation may be derived using the 
Rayleigh-Ritz approach.  

For isotropic plate, the material 
parameters are  
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The fundamental natural frequency 
is presented in term of non dimensional 

parameter i defined as 
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Using a first approximation given 
from Ref.[13] as shown in table 1 as 
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The fundamental natural frequency 
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Using a first approximation of the 
proposed shape function shown in 
table 1 as 
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The fundamental natural frequency is given by 
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Figure1: (a) Rectangular plate, (b) clamped  plate. 

Table 2: Values of frequencies ωi and non dimensional frequency coefficient Ωi for 
rectangular isotropic clamped plate using the Rayleigh –Ritz method in eq (1) and the 
FEM. 

Author F.E.M [13] 

Mode (m,n) Frequency ωi Ωi Frequency ωi Ωi Frequency ωi Ωi 

(1,1) ω1=22596.50 36.98 ω1=21684.9 36.65 ω1=21706.94 36.69 

(1,2) ω2=46094.11 75.43 ω2=44017.9 74.40 ω2=44276.21 
 

74.84 

(1,3) ω3=83127.30 
 

136.04 ω3=440179.9 
 

74.40 ω3=76943.46 134.01 
 (1,4) ω4=131772.71

1 
227.63 ω4=63331.9 107.50 ω4=137874.49 233.03 

 
Table 3: Values of frequencies ωi  and non dimensional frequency coefficient Ωi for 
rectangular isotropic clamped plate using the Rayleigh –Ritz method in Eq(2) and the FEM. 

Author F.E.M [13] 

Mode (m,n) ωi Ωi ωi Ωi ωi Ωi 

(1,1) ω1=22442.35 36.72 ω1=21684.9 36.65 ω1=21996.04 35.99 

(1,2) ω2=45595.11 74.62 ω2=44017.9 74.40 ω2=44940.03 
 

73.50 

(1,3) ω3=81860.32 
 

133.97 ω3=440179.9 
 

74.40 ω3=80933.10 132.45 
 (1,4) ω4=139088.57 215.66 ω4=63331.9 107.50 ω4=141499.11 231.58 

 
Table 4: Values of frequencies ωi and non dimensional frequency coefficient Ωi for 
orthotropic clamped plate.                      

Author F.E.M [13] 

Mode (m,n) ωi Ωi ωi Ωi ωi Ωi 

(1,1) ω1=14829.45 24.27 ω1=15188 25.67 ω1=15016.68 24.57 

(1,2) ω2=19153.67 31.34 ω2=19912 33.65 ω2=18990.22 
 

31.08 

(1,3) ω3=27464.52 
 

44.94 ω3=28648 
 

48.42 ω3=25688.76 42.04 
 (1,4) ω4=39861.88 65.23 ω4=39654 67.02 ω4=36654.65 59.99 

 

(21)

(22)
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3.2- Orthotropic rectangular plate  

Using a first approximation given from Ref.[13] as 
shown in table 1 as 
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The fundamental natural frequency is given by: 
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   Using a first approximation of the proposed shape 
function shown in table 1 as 
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The fundamental natural frequency is given by: 
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4- NUMERICAL RESULTS  

The obtained results by applying the present 
formulation combined respectively with the proposed 
displacement function and that of Ref.[13] are very close 
resulting from the FEM The present results compare very 
closely with the FEM  in Table 2. 

 
4.1- Isotropic Plate 

For this example, a rectangular plate panel of length 
a=0.25m and width b=0.25m and a thickness of 0.005m is 
considered. Young’s modulus E=525000 N/mm2, Poisson’s 
ratio ν=0.25 and density ρ=800 kg/m3. In generating the 
finite element results a mesh of 8x8 quadrilateral elements 
is used. 

 
4.2- Orthotropic plate 

For this problem, the plate dimensions are the same as 
the isotropic plate. The results of applying the present 
formulation with the proposed displacement function and 
that of Ref. (13) and the FEM are presented in Table 2. The 
present formulation results are very close with the FEM 
results. The fundamental natural frequency is presented in 

term of non dimensional parameter i  defined as

  
2

i i
x

h
a

D


                                               (29) 

                     
5- DISCUSSION 

The free vibration of orthotropic plates, based on the 
linear, 2-D elasticity theory have been investigated. The 
simple Rayleigh –Ritz method was applied to orthotropic 
clamped plates to derive the eigenvalue equation and 
determine the natural frequencies. As it is well known, the 
Raleigh-Ritz method can provide accurate solutions. 
However, its efficiency depends greatly on the choice of 
shape functions. Although the result from the finite element 
analysis gave the best correlation with the predicted ones, 
however they require much longer computing times. In this 
respect approximate analytical tools such as the present 
method and Rayleigh quotients are better. The comparative 

results indicate that one term approximation is not 
sufficient to predict the first lowest frequencies of the plate. 
For the modes percentage error is quite satisfactory ie for 

CCCC orthotropic plate  11  (2.3%),   12  (3.8 %),   13  

(4.13 %) and 14  (0.52 %). For CCCC isotropic plate 

11 (3.37%) , 12 (3.46%). But if higher modes are 

required percentage error is increasing considerably. 
Practically, only the lowest modes are considered in the 
dynamic analysis. The frequencies obtained could be 
improved by increasing the number of terms of admissible 
functions in the computation and hence solution of any 
accuracy can be obtained in theory. However, a practical 
limit to the number of terms used always exists because of 
the limited speed, the capacity and the numerical accuracy 
of computers. In the technical literature there is no exact 
solution for the clamped orthotropic plate. However, the 
above study, show that a good shape functions are suitable 
for engineering analysis to determine the first lowest 
frequencies in the free vibration of orthotropic plate. 

 
CONCLUSION 

The free vibration of isotropic, orthotropic clamped 
rectangular plates using the Rayleigh-Ritz energy approach 
has been studied. Using mechanical characteristics of the 
plate, the fundamental frequency has been determined by a 
proposed simple analytical formula. For isotropic and 
orthotropic plates, the values of natural frequency obtained 
by Rayleigh-Ritz method  agree well with those given by 
the finite element method in case of low frequencies only. 
However, for high frequencies, the percentage error 
increases with increasing the frequency mode. Since only 
the lowest modes are important, so it ‘s sufficient to design 
our structure. 
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