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Abstract   

 

The north-east area of Constantine has a very complex geological setting. The variety of sedimentary rocks such as 

sandstone and clay in abundance, represent a big importance in the industry and road infrastructure. 

The X-ray diffraction (XRD) analysis, Scanning Electron Microscopy SEM/EDS, FTIR spectroscopy of sandstone and 

clay are required for qualitative and quantitative analysis of the existing phases. 

In addition, chemical analysis of the same samples is required to confirm the XRD, EDS (Energy Dispersive X ray 

Spectroscopy) and FTIR spectroscopy results. 

The results of this multidisciplinary study, obtained by various analytical techniques, show a good agreement on the 

existing phases. 
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Résumé  

 

La zone située au nord-est de Constantine a un contexte géologique très complexe. La variété des roches sédimentaires 

telles que les argiles et les grès en abondance, représentent une grande importance dans l'industrie et l'infrastructure 

routière. 

L'analyse de Diffraction des Rayons X (DRX), la Microscopie Electronique à Balayage MEB/EDS, la 

spectroscopie Infra Rouge FTIR des grès et des argiles est nécessaire pour l'analyse qualitative et quantitative des phases 

existantes. 

En outre, l'analyse chimique des mêmes échantillons est nécessaire pour confirmer la DRX, EDS (Energy 

Dispersive Spectroscopy rayons X) et les résultats de la spectroscopie FTIR. 

Les résultats de cette étude pluridisciplinaire, obtenus par diverses techniques d'analyse, montrent un bon accord 

sur les phases existantes. 

 

Mots clés : Grès, Argile, DRX, MEB/EDS, FTIR 

 
 

 ملخص.

الوضع الجيولوجي لمنطقة شمال شرق قسنطينة معقد جدا. التنوع الكبير و الوفير لمجموعة الصخور الرسوبية 

 .كالحجرالرملي والطيني ذات أهمية كبيرة في الصناعة والبنية التحتية للطرقات

 .تتة للأشعة السينيةوالطاقة المتش (MEB) ، المجهر الإلكتروني الماسح(DRX)  استعمال حيود الأشعة السينية

(EDS) بالإضافة إلى تحويل فورييه الطيفي للأشعة تحت الحمراء (FTIR)  ضروري للتحليل الكمي والكيفي

للأطوار المتواجدة في الطين والصخور الرملية. النتائج المتحصل عليها بواسطة هذه الطرق يمكن تأكيدها باستعمال 

 .التحليل الكيميائي

 لمتحصل عليها من مختلف تقنيات التحليل تظهر اتفاقاً جيدا لكل الأطوار الموجودة.نتائج هذه الدراسة ا
  

(،تحويل فورييه الطيفي MEB(، المجهر الإلكتروني الماسح )DRXالحجر الرملي، الطين ، حيود الأشعة السينية ) الكلمات المفتاحية: 

 .(FTIRللأشعة تحت الحمراء  )
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Nomenclature 

 

a           Defined constant in the elliptic 

coordinates,     

                (distance to the poles).                               

(m) 

cp           Specific heat at constant pressure.  (J.kg-

1.K-1) 

e1           Eccentricity of the internal ellipse.  

Fr           Geometrical factor of form 


g            Gravitational acceleration.                    

(m.s-2) 

Gr           Grashof number defined by 

T
ag

Gr 
2

3





. 

h           Dimensional metric coefficient.                

(m) 

H        Dimensionless metric coefficient. 

Nu         Local Nusselt number. 

Nu         Average Nusselt number. 

P           Stress tensor. 

Pr        Prandtl number defined by 

 pc  
    Pr 

. 

SФ     Source term. 

T        Fluid’s temperature. (K) 

T1        Hot wall temperature. (K) 

T2        Cold wall temperature. (K) 

ΔT        Temperature deference.ΔT=T1-T2.              

(K)  

Vη,Vθ     Velocity components according to η and θ.                                               

                                                                               

(m.s-1) 


V          Velocity vector.                       

(m.s-1) 

 

Greek letters 

 

α          Inclination angle.                 

(°) 

β          Thermal expansion coefficient.          

(K-1)        

Г          Diffusion coefficient. 

λ          Thermal conductivity of the fluid. (W.m-

1.K-1) 

υ          kinematic viscosity.          

(m2.s-1) 

ρ          Density.                                   

(kg.m-3) 

η ,θ, z     Elliptic coordinates. 

ψ          function of current.                       

(m2.s-1) 

ω          vorticity.              

(s-1) 

          General function. 

 

 

Superscripts 

+          dimensionless parameters. 

Subscripts 

i        Inner. 

e       Outer.   

éq Equivalent 

Ni       Points number along the coordinate η 

NN       Points number along the coordinate θ 

η       According to the coordinate η 

θ       According to the coordinate θ 

 

 

1. Introduction  

 

he study of heat transfer by natural 

convection, in the annular spaces formed by 

elliptic cylinders with horizontal axes 

centered or eccentric, has given rise to many 

works include such as Zhu et al. (2004) who have 

made a  numerical study into the annulus  between 

two centered elliptic cylinders, using D.Q method 

(Differential Quadrature) to solve their equations. 

Djezzar el al. (2004), (2005) and (2006) mean 

while, have studied numerically natural convection 

in an annulus formed by two elliptical cylinders and 

horizontal axes confocal using the formulation in 

primitive variables, they could detect multi-cellular 

flows when Grashof number increases, for certain 

geometries, and for the three parietal thermal 

conditions used. 

In this work we propose a numerical simulation 

using the finite-volume method described by 

Patankar (1980), the elliptic coordinates cited by 

Moon (1961) and the vorticity stream-function 

formulation illustrated by Nogotov (1978) to solve 

the equations governing the phenomenon studied. 

The mesh adopted for the execution of our 

calculations is (101x111). 

 

2. Theoretical analysis  

    We consider an annular space, filled with a 

Newtonian fluid (in this case air), located between 

two elliptical cylinders, and two horizontal and 

T 
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centered diametrical planes. Figure 1 represents a 

cross-section of the system. 

 

 

 

 

 

 

 

 

 

FIG. 1 Cross-section of the system 

Both lower and upper walls are elliptical, 

isothermal and respectively maintained at 

temperatures T1 and T2 with T1>T2. The two 

diametrical plans are adiabatic. 

It occurs in the enclosure natural convection that 

we propose to study numerically. 

We consider an incompressible fluid flow, two 

dimensional, permanent and laminar with constant 

physical properties and we use the approximation 

of Boussinesq which considers the variations of the 

density ρ negligible at all terms of the momentum 

equations except in the term of gravity whose 

variations with temperature supposed linear, 

generate the natural convection. 

Viscous dissipation and the work of pressure 

forces are negligible in the heat equation; the 

radiation is not considered. 

With these assumptions the equations governing 

our problem can be written in vectorial form as 

follows: 

 

- Continuity equation: 

0Vdiv 


                              

(1)               

- Momentum equation: 

00 ρ

P
g

ρ

ρ
V)grad.(V








                                          

(2) 

- Heat equation:  

 

T
c

)T.V( 2

p

grad 
 

 


 

                                            

(3)  

  

It is convenient to define a reference frame such 

as the limits of the system result in constant values 

of the coordinates. The coordinates known as 

“elliptic” (η,θ) allow, precisely in our case to obtain 

this result. Thus the two elliptic isothermal walls 

will be represented by η1 and ηNI and the two 

adiabatic walls will be represented by θ1 and θNN. 

The transition from Cartesian coordinates to elliptic 

coordinates is done using the following relations: 









)).sin(a.sh( y 

)).cos(a.ch( x 




 

The equations (1), (2) and (3) are written 

respectively: 

0   ) hV ( 
θ

  )  Vh ( 
η

θη 








                                          

(5) 










     







 

h

V

h

V
 

        

        




































T
G

T
GF

h

g

   cos ,   sin, F 

 sin , cos ,   

 
































2

2

2

2

2
   

h
               

(6) 

  
θ

T
  

η

T
 

h

1
 

c ρ

λ
  

θ

T 
  V 

η

T 
V

2

2

2

2

p

θη 































                    

(7) 

 With the introduction of vorticity defined by: 























         

1
      

2

2

2

2

2









h
                                          

(8) 

After the introduction of the stream-function, in 

order to check the continuity equation identically. 

     

   

     

   

























 










 










 

 

θ

 

  

1/2
θ2sin η2sh

θsin ηch
  θη, G

1/2
θ2sin  η2sh

θcos ηsh
  θη, F

1/2
)(2sin ) (η2sh a  h

                               

(9)                                                                    

By posing the following adimensional quantities: 

Dh= a (arbitrarily selected focal distance) 
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D

h
H

h

     ,  



D

V
h V     ,  




D
V

h V     , 




2

      hD
 , 




     

  and 
21

2

  

  
    

TT

TT
T




  

The equations (5), (6), (7) and (8) becomes: 

0   )  (   ) V  ( 







 
VHH 


                                     

(10) 









 

     






 

H

V

H

V
 

        

        










































T
G

T
GF

H

Gr

   cos ,   sin, F 

 sin , cos ,   

 


















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



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




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2

2

2

2

2
   

H

1
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
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
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

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(12)  
























        

1
      

2

2

2

2

2









H
            

(13) 

The boundary conditions are: For the elliptical hot 

wall (η = η1= constant) we have: 

0        V    V θη 




















, 11 T and  
























        

1
      

2

2

2

2

2









H
and for the cold 

elliptic wall (η=ηNN=constant) we have: 

0        V    V θη 




















, 0    2 

T and 
























        

1
      

2

2

2

2

2









H
. For the two 

diametrical plans ( = 1= constant and  = 

NN=constant) we have:  

0        V    V θη 




















,  0



 



T
 and 
























        

1
      

2

2

2

2

2









H
 

Once the temperature distribution is obtained; 

local Nusselt number value is given by the 

following relation:   

 

cste

T

H
Nu










1
                                        

(14)  

 The average Nusselt number is expressed by:

  





NN

NudNu
NN








11

1
                                        

(15) 

2. 1 Numerical Formulation 

To solve the system of equations (11), (12) and 

boundary conditions, we consider a numerical 

solution by the finite volumes method. Where as for 

the equation (13), we consider a numerical solution 

by the centered differences method. 

Both methods are widely used in the numerical 

solution of transfer problems; they are well exposed 

by Patankar (1980) and by Nogotov (1978). Figure 

2 represents the physical and computational 

domain. 

We cut out annular space according to the 

directions  and  from the whole of elementary 

volumes or “control volume” equal to 

“H2...1”. (The problem is two-dimensional, 

the thickness in Z direction is assumed to the unity). 

The center of a typical control volume is a point 

P and center of its side faces “east”, “west”, “north” 

and “south”, are indicated respectively, by the 

letters e, w, n and s. Four other control volumes 

surround each interior control volume. The centers 

of these volumes are points E, W, N and S. the 

scalar variables (vorticity, temperature) are stored 

at centered points in control volumes. Thus transfer 

equations of scalar variables are integrated in 

typical control volume. 

 

 

 

 

 

 

 

 

FIG. 2 Physical and computational domain 
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Figure 3 represents a typical control volume and 

its neighbors in a computational domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3 A typical control volume and its neighbors 

in a computational domain 

2. 2 Discretization of the general transfer equation 

of a variable  in the control volume 

To illustrate the discretization of the transfer 

equations by finite volumes method, we consider 

the transfer equation in its general form: 







 S  ) 
θφ

   Vθ
H ( 

θ
 ) 

ηφ
   Vη H ( 

η
 



















  

(16) 

Sources and diffusion coefficients are specified 

in table 1. 

Tab. 1 sources and diffusion coefficients of the 

variables  

 

  S 

T+ 1/Pr 0 

+ 1 

        

        










































T
F

T
F

h

Gr

  cos ,G sin , 

  sin ,G    cos , 

  

 

The discretization equation is obtained by 

integrating the conservation equations over the 

control volume shown in Figure 3 Patankar (1980), 

we obtain the following final form: 
 baaaaa WWEESSNNPP                                  

(17) 

     The coefficients of equation 17 are well defined 

by Patankar (1980), the Power Law scheme used to 

discretize the convectif terms in the governing 

equations. 

 

3. Results and discussion 

We consider two configurations for our cavity 

characterized by two values of inclination angle (0° 

and  

45°) and a geometrical form factor (Fr = 5) which is 

defined by: 

 

 

 

3.1 Grid study 

Several grids were used arbitrarily for the 

following configuration: (α=0° and Fr=1, for 

Gr=103, Gr=104 and Gr=5.104), to see their effect 

on the results, table 2 shows us the variation of  

average Nusselt number and the maximum of the 

stream function value according to the number of 

nodes for each grid. We choose the grid (101x111). 

Tab. 2 Variation of average Nusselt number and the 

maximum of the stream-function value according to 

the number of nodes 
 Gr =103 Gr =104 Gr =5.104 

ηNIxθNN ψmax NUmoy. ψmax NUmoy. ψmax NUmoy. 

41x51 0.090 1.387 5.582 2.689 16.575 4.268 

51x61 0.090 1.387 5.588 2.685 16.572 4.234 

61x71 0.109 1.387 5.593 2.682 16.566 4.197 

71x81 0.130 1.387 5.596 2.680 15.560 4.197 

81x91 0.179 1.387 5.596 2.678 15.555 4.195 

91x101 0.201 1.387 5.596 2.678 15.549 4.190 

101x111 0.219 1.389 5.596 2.674 15.549 4.190 

111x121 0.219 1.389 5.596 2.674 15.549 4.190 

3.2 Numerical code validation 

Kuehn et al. (1976) have developed a numerical 

study on  natural convection in the annulus between 

two concentric and horizontal cylinders with a 

radius was taken equal to 2.6, they calculated a 

local equivalent thermal conductivity, defined as 

being the report of a temperature gradient in a 

convective and conductive heat exchange on a 

temperature gradient in an exchange conduction: 

 

 

 

 

They calculated an average value of the 

conductivity. To validate our numerical code, we 

compared the average value derived from our 

calculations with their results. Table 3 illustrates 

1

1










NN

NIFr

conduction

T

conductionconvection

T

éqλ

η

η







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
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this comparison and we find that quantitatively our 

results and theirs are in good agreement. 

Tab. 3 Comparison of the average thermal 

conductivity of Kuehn with our results 

 
Pr 0,70 0,70 0,70 0,70 

Ra 102 103 6x103 104 

In
n

er
 w

al
l Kuehn 1,000 1,081 1,736 2,010 

Presents calculs 1,000 1,066 1,730 2,068 

E(%) 0,000 1,388 0,346 2,886 

O
u

te
r 

w
al

l Kuehn 1,002 1,084 1,735 2,005 

Presents calculs 1,002 1,066 1,736 2,078 

E(%) 0,000 1,661 0,058 3,641 

3.3 Influence of the Grashof number 

3.4 Isotherms and streamlines 

Figure 4 and figure 5 represent the isotherms and 

the streamlines for different values of the Grashof 

number when α=0°. 

We note that these isotherms and these 

streamlines are symmetrical about the median 

fictitious vertical plane. These figures show that the 

structure of the flow is bi-cellular. The flow turns in 

the trigonometrically direction in the left side and in 

opposite direction in the right one (the fluid 

particles move upwards along the hot wall).   

     For Gr=102 the isotherms are almost parallel and 

concentric curves which coincide well with active 

walls profiles.  In this case the temperature 

distribution is simply decreasing from the hot wall 

to the cold wall. The streamlines of the fluid show 

that the flow is organized in two cells that rotate 

very slowly in opposite directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4 Isotherms for e1=0.86, Fr=5, α=0° and 

respectively Gr=102, Gr=103, Gr=104 and Gr=5.104 
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We can say that the heat transfer is mainly 

conductive. The values of the streamline which are 

given on the corresponding figure are very small. 

For Gr=103 the isothermal lines are transformed 

symmetrically with respect to the vertical axis and 

change significantly, and the values of the 

streamlines mentioned on the same figure, increase 

also significantly, which translates a transformation 

of the conductive transfer to the convective transfer, 

but relatively low as shown in the isotherms shape. 

However for Gr=104 the isotherms are modified 

and eventually take the form of a mushroom. The 

temperature distribution decreases from the hot wall 

to the cold wall. The direction of the deformation of 

the isotherms is consistent with the direction of 

rotation of the streamlines. In laminar flow, we can 

say that under the action of the particles movement 

taking off from the hot wall at the symmetry axis, 

the isotherms move away from the wall there. The 

values of the stream functions increase which 

means that the convection intensifies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5 Streamlines for e1=0.86, Fr=5, α=0° and  

respectively Gr=102, Gr=103, Gr=104 and Gr=5.104 

 

The increase of the Grashof number to 5.104 

intensifies the convection as shown in 

corresponding figures. 

Let us note that the isotherms, of all the figures 

indicated above, were plotted with a ΔT+=0.1  

3.5 Local Nusselt Number 

We determine the local Nusselt numbers for 

which changes along the walls are closely related to 

the distributions of isotherms and streamlines, so 

that, qualitatively, these variations and distributions 

can often be deduced from each other. For example, 

if we consider a current point on a wall following a 

coordinated observation of a monotonous reduction 

in the local Nusselt number corresponds to a 

directed flow following this coordinate, the 

observation of an increase corresponds to a directed 

flow in opposite direction. 

3.6 Analogy between the variation of local Nusselt 

number -isotherms and streamlines 

We thus notice on Figure 6, that the variations of 

local Nusselt number on the inner activate wall are 

in accordance with what has just been indicated 

above, a minimum reflects an existence of two 

counter-rotating cells pushing away the fluid from 

the wall, a maximum reflected, on the contrary, the 

existence of two counter-rotating cells providing 

the fluid to the wall. What thus enables us to follow 

the evolution of our flow in our annular space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6 Variation of local Nusselt number on the 

inner activate wall 

θ=90° 
θ=180° θ=0° 
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3.7 Variation of local Nusselt number on the hot 

wall 

Figure 7 illustrates the variation of local Nusselt 

number on the hot wall, and allows us to notice that 

with the increase of the Grashof number, the value 

of local Nusselt number on this wall also increases, 

which is obvious. 

3.8 Effect of the angle of inclination α 

We examine here the effect of the inclination of 

the system compared to the horizontal plane, the 

angle α is measured from the horizontal plane in the 

trigonometric direction. We used two values of α 

(0° and 45°). 

 

 

 

Appendix A.  

Appendix B.  

Appendix C.  

FIG. 7 Variation of local Nusselt number on the hot 
wall 

Appendix D.  

3.9 Case where the inclination angle α is zero 

In this case, the vertical fictitious median plane 

is in principle a symmetry plane for transfer 

phenomena. Therefore by symmetry and in relation 

to this vertical plane depending on the value of 

Grashof number, the flow is organized always in 

two principal cells rotating in opposite directions, 

as the figures (4-5) show. 

3.10 Case where the inclination angle α = 45° 

When α=45°, the symmetry of the system 

relative to the fictitious vertical plane is destroyed 

as well illustrated in figure 8 and figure 9, the ends 

of annular space move upwards for the right part of 

the system and downwards for the left part. Figure 

9 show that the cell of left can more develop that its 

counterpart on the right part and tends to occupy 

the entire annular space as the system is inclined 

more until becoming vertical. 

3.11 Local and average Nusselt number 

The figure 10 which illustrates the variation of 

local Nusselt number on the hot wall shows that for 

α=0° the minimum of local Nusselt number is 

reached at the angular position θ=90°, which is in 

agreement with figure 5 which shows that the two 

cells meet at this precise place while moving away 

the fluid from this wall. For α=45° the minimum of 

local Nusselt number moves at the position θ=53°, 

which is in agreement also with figure 9 which 

shows that for this inclination, the two cells meet at 

this angular position while moving away the fluid 

there from this wall. 

 

 

 

 

 

 

 

 

 

 

FIG. 8 Isotherms for e1=0.86, Fr=5,                       

α=45° and Gr=5.104 
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FIG. 9 Streamlines for e1=0.86, Fr=5,  

α=45° and Gr=5.104 

 

The variation of average Nusselt number on the 

hot wall as a function of Grashof number illustrated 

in figure 11 which shows that the inclination α is 

then without influence when Gr≤103, this translates 

that the heat transfer is primarily conductive. For 

the greatest values of the Grashof number, α 

influences the convective transfer. 

CONCLUSION 

We established a mathematical model 

representing the transfer of movement within the 

fluid and heat through the active walls of the 

enclosure. This model based on the assumption of 

Boussinesq and the bidimensionnality of the flow. 

We have developed a calculation code, based on the 

finite volume method, which determines the 

thermal and dynamic fields in the fluid and the 

dimensionless numbers of local and average 

Nusselt on the active walls of the enclosure, 

depending to the quantities characterizing the state 

of the system. The influence of the Grashof number 

and the inclination of the system, on the flow in 

stationary mode has been particularly examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 10 Variation of local Nusselt number 

on the hot wall  
Appendix E.  
Appendix F.  
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FIG. 11 Variation of the average Nusselt number on 

the inner activate wall 
Appendix S.  

The results of the numerical simulations have 

shown that conduction is the regime of heat transfer 

dominant for Grashof numbers lower than 103. For 

Grashof numbers higher than 103, the role of the 

convection becomes dominant, this on the one 

hand, on the other hand we saw that the transfers 

are better when our system presents elements of 

symmetry. 
Appendix T.  
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