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Résumé

L'importance en fiabilité d'un composant est une mesure quantitative de la contribution
d'un composant a la fiabilité du systéme. Dans ce papier, on discute la contribution

individuelle d'un composant a la performance en utilité d'un systéme K - consécutifs

parmi- N : C a plusieurs états, basée sur l'importance en utilité d'un état d'un
composant dans un systeme a états multiples, introduite par S.Wu et L.Y.Chan. Un
exemple illustrant ceci est traité.

Mots Clés : Fiabilité, importance de l'utilité du composant, multi-états, systémes K consécutifs parmi-

n:G

Abstract

Reliability importance of a component is a quantitative measure of the importance of
the individual component in contributing to system reliability. In this paper, we discuss
the contribution of an individual component to the performance utility of a multi-state

consecutive K -out-of- N:C system, based on the utility importance of a
component’s state in multi-state systems given by S.Wu and L.Y.Chan (2003), and we
illustrate by an example.

Kgyy\_lords: Reliability, component importance utility, multi-state, consecutive K outor- N : C

systems.
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PERFORMANCE UTILITY OF MULTI-STATE CONSECUTIVE K -OUT-OF- N : G SYSTEMS

I. INTRODUCTION

Acronyms:

M.S: multi-state.

iff :if and only if.

A system consists of many components performing
various functions. One of the most important
measures of the performance of a system is its
reliability. The reliability of a system is defined to
be the probability that the system will perform its
functions satisfactorily for a certain time period
under specified conditions. To achieve high
reliability for a complex system, it is necessary to
identify the components that have the greatest effect
on the system reliability. Such items can be
identified using importance measures. So,
importance measures are important tools to evaluate
and rank the impact of individual components
within a system. The reliability importance of a
component is the rate at which system reliability
improves as the component reliability improves.
This information can be used to determine which
components should be improved first in order to
make the largest improvement in system reliability.
Extensive research [1]-[4] for importance measures

is available for binary systems. Birnbaum-
importance  measures the contribution of
component-reliability to the system reliability [4]-

[5] Structural-importance measures the topographic
importance of a position in the system [g]-[7]
Criticality-importance corresponds  to  the

conditional probability of failure of a component,
given that the system has failed [4].[5] Joint-

importance measures how components in a system
interact and contribute to the system reliability [g]-

[9] Traditional reliability theory has been on binary

applications. In the binary system: the system and
its components are allowed to have only two
possible states (completed failure and perfect
functioning). In the M.S system: both the system
and its components may experience more than two
states, for example, completely failed, partially
functioning and perfect functioning. There are
numerous examples of M.S systems, with than 2
ordered or unordered states at the system level, or
the component level. As water distribution, a power
plant which has states 0,1,2,3,4 that correspond to
generating electricity of 0 %, 25 %, 50 %, 75% ,
100 % of its full capacity is an example of a M.S
system that has ordered multiple states [0 -A

nuclear reactor system or a pumping system,
telecommunications, a light-emission diode which
emits red, green, and yellow lights under different
inputs. Furthermore, a state in a system may take a
continuous range of quantitative measurement
instead of discrete levels, for example, a branking
system might produce an output branking force
ranging from 250 to 300 kilograms. Generally, the
elements of these systems degrade gradually,
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reducing their capacity, and the overall capability of
the system. The definition of reliability as given
under the binary assumption is no longer valid in
the M.S context. Different measures of system
performance are warranted. In recent years, M.S
system reliability analysis has received considerable
attention. Researches have realized that for some
systems, erroneous appraisal of system reliability
could lead to :

1) incorrect system modelling.

2) incorrect system reliability computation. And /or
3) incorrect conjectures regarding reliability
dependent measures.

Theoretical and applied studies have been devoted
to the areas of M.S system reliability, simulation,
approximation methodologies, and optimization
[11]- Some extension of importance measures from

binary systems to M.S systems has been extensively
investigated. EI-Neweihi, et al. [12] analysed the

theoretical relationships between M.S system
reliability  behavior, and M.S component
performance. Barlow and Wu [13] characterize

component state criticality as a measure of how a
particular component state affects a specific system
state.Griffith [14] formalized the concept of M.S

system performance, and studied the impact of
component improvement on the overall system
reliability behavior. Moreover, Griffith introduced
the concept of reliability importance vector for each
system component. Through this concept, a
generalization of the binary Birnbaum importance
measure can be extented to M.S case. Levitin and
Lisnianski ~ [15] proposed importance and

sensitivity measures for M.S systems with binary
capacitated components. Importance measures are
obtained through the universal generating function.
Zio and Podofillini [16] present M.S extention for

Reliability Achievement Worth (RAW ), Reliability
Reduction =~ Worth  (RRW),  Fussell-Vesely
Importance (FV), and Birnbaum for M.S systems.
Their results pertain to the importance of individual
components state levels. Monte-Carlo simulation
methods are used to imitate the stochastic nature of
the M.S components, and generate the proposed
importance measures. J.R.Marquez and D.V.Coit
[17] Ppresent and evaluate composite importance

measures for M.S systems. They present (type 1)
importance measures that are involved in measuring
how a specific component affects M.S system
reliability, and (type 2) importance measures have
focused on investigating how a particular
component state or a set of states affects M.S
system reliability. Few publications discuss how the
particular states of a component contribute to a M.S
system, and how the presence of a component and a
particular state of a component affect the
contributions of other components in the system.
Such an investigation has theoretical importance as
well as practical value, because the knowledge



S. BELALOUI

gained enables efficient design of the system. In a
binary system, reliability optimization mainly deals
with maximizing the system reliability under
constrains such as cost, weight, and /or size, or on
minimizing the cost under reliability constrains.
This optimization task is by no means trivial, unless
the system is very simple. In M.S systems where
components have more than 2 states and the
performance utility of the system is to be
maximized, the optimization task is obviously more
difficult. S.Wu and L.Y.Chan [1g] introduced a

new utility importance for measuring the
contribution of various components states to the
system-performance, and compared this utility
importance to Griffith's importance. So research
efforts have been focused on generalizing
frequently used binary importance measures to
accommodate the M.S behavior. These approaches
characterize, for a given component, the most
important state with regard to its impact on system
reliability.

In this paper, The consecutive K -out-of - N
systems are investigated, because they have a wide
range of applications, as telecommunications,
pipeline...By using the performance utility-
function and the component importance utility, we
focus on how a specific component and a particular
state or a set of states affects M.S system reliability.
First, we present the formula which computes the

distribution state of M.S consecutive K -out-of-

n:GC [19]
performance utility of these systems. We specify

the component and the state which contributes the
most. An example is given to illustrate this concept.

systems , and we calculate the

2 Notations and Nomenclature:
N ! number of components in the system.

S {0,1,...,M} » M the perfect functioning, 0: the
complete failure.

J © aninteger, (
& | gystem utility level when the system is in

state J-

0<a,<a <..<a,

X ! arandom variable which represents the state

of component | in the system.
X (X, X,00.X,)
states.
d(X) :
d(X)eS.

vector of components

system-state  structure function:
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kj * minimum number of consecutive components

with X, > j,ie{l,2,3,..,n}

P = P{Xi = J}

R, =Pio(X)=i}

U =Y aPo(X)- i}
perforjnzl(;nce utility-function of a system.
16(i) :
l.

1V (i)

S M.S minimal path vector :

Griffith importance vector of component

utility importance of component I.

YeS" isa

minimal path vector to system-state level J iff

(D(Y)Zj and CD(X)<j forall X <Y

YeS" isa

S M.S minimal cut vector :

minimal cut vector to system-state level ] iff

®(Y)<j and ®(X)>| forall X >Y

Let there be 2 component state vectors XY then

X<Y if x <y foralli, andx <Yy, foratleastonei
X>Y if x =y, foralli, andx >y, foratleastoneli

* The utility of the system when it is in state j
is represented by a j - Itrepresents the net profit or

loss the system can generate if it is in state i
3.1 Assumptions:
1) The system is M.S monotone

q)(X) is nondecreasing in each argument.
O(j, jprj)=] for jeS

2) The Xi are mutually s-independent.
3) The system and each component has a zero state
and || nonzero states.

4) The possible states of each component and of the
system are ordered:

state) < statel <......< stateM.

The first assumption roughly says that improving
one of the components can not harm the system.
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3 Griffith importance:

Griffith proposed the importance vector to study

component | (i =1,2,....,N) inaM.S system

190)=(12 1961 5 1))
1£6)-

The | n(i(l) in Griffith's importance vector can be

interpreted as the change of the system performance

when component I deteriorates from state 1T to

statet M—1 . A drawback of | G(i) is that it

measures only how the change of particular
component affects the system performance, but
does not measure which component affects it the
most, or which state of a certain component
contributes the most. However, the extent to which
a component and its states affect the system is a
major concern to the system designer and the

So, Wu and Chan [18]

introduced a new performance utility importance
function as follows:

system controller.

120)= 3, Plo(x)= X, = m)
- :i‘a’ P{®(X)=j/X, = miP{X, =
=§%P@uyq/x o
=anaP (m,X)=j}

| #1' (I) can be interpreted as the contribution of

state [T of component I to the system. And the

utility importance of component I can be defined
as the vector:

19 )= (12611 e 2)

A relationship between |rL]JqI (I) and coordinate

1S (I) is given by:
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A0)_AL0)_ e

m m=12,..M
api,m api,m—l

And the performance utility function U can be

Ulm

expressed in terms of |

S (o -, P, x)> 1}-Plolm-. )2yl $a plo(x)= |}

j=0

= ia{i.P{@ X

=33 a,Plo(m. X)= j}p,, = zw

m=0 j=0

= j/ X, =m}P{X, =m}}

The equation above shows that a state IT  of

component I with larger | rl;']l (I) contributes
appreciably more to the system performance utility.

4 The M.S consecutive K -out-of- n : G

system:

A M.S consecutive K -out-of- N : C system is a
system with I linearly arranged components,
which are labelled 1,2,.., The system works

iffat least K consecutive components work.
We consider that:

X > | =thecomponenworks
X < ] =thecomponentails

and similarly for the system:

®(X)> j = the system works
CD(X ) < ] = the system fails

Because ] can have various values, the terms
"working" and "failure" have dynamic meanings.
The system-state structure function L given by:

®(X)= max

I<i<n—-k+1

min X,

i<I<i+k-1

The reliability of the system is given by :

i=12..n J'=1,2,---JV|}
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In [19], [20] K is supposed not constant but it

varies with ] i.e one define the M.S consecutive

K -out-of- N: C system where in maintaining at
least a certain system-state level might require a
different number of consecutive components to be
at a certain state or above ( the required number of
consecutive components depends on the system
state level ) so:

Definition [20] :

@(X)Z j iff at least K consecutive

components are in state | or above for all |

(A<I<j, j=1.,M) .
The condition in this definition can also be phrased

as follows: (D(X)Z j(j =12,...M ) if at least
kj consecutive components are in state j or

above; at least kj»d consecutive components are in

state j—l or above; ..., and at least kq

consecutive components are in state 1 or above.
The system state distribution is expressed as

[19] :

where R, (k, n) is the probability that exactly K

components are in state J , which include among
them at least kJ consecutive components, and the

N—K components are below |
H k' (h) is the probability that:

other and

“ at least 1 and at most kh —1 components

are in state I (h > J)

© atmost K, —1 components are in state U

for j<u<h.

 the total number of components Hj s k s

which include among them at least kj consecutive

components.

“  n—K components are at states below J-

So, H kJ (h) is calculated as follows :
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Kn—1 Ky —1-1,

H(h)= 3

=l i,=0 iy=

R, (=1 oo (G + 1), < )]

Ky o =11, K —1=Th i

in_;=0

where:

and R[N, (h=1),..o, (G+ 1), 1" I s
the probability that there are exactly:

< 11 components at level h

D) components at level h—1.

<

I,_; components at level | +1.

k—1,_; components at level J-

[«

the remaining N—K components are at

states below J-

5 Performance utility of the M.S
consecutive K -out-of- N : C system:

In this paper, we suppose that k is constant, i.e k
is s-independent of the value of the system state
level. In other words; in maintaining at least a
certain system state level requires the same number
of consecutive components to be at or above a
certain state. And we compute the utility
importance of a component in the M.S consecutive

K -out-of- N: C system, based on the definition
given by [1 ] ,

5.1 Theorem:
The utility importance of state

MmO <m< M)

of component I in the system is given by:

n,m, m+1 ]

m-1
i m .
zajAn,m,m + am[Ln,m +A

@)= pm ™ W | it 0<m<M
+ Z aj [L#—l,m + Aln—l,m,j+1:|
j=m+1
if m=M

M-l
= P {zajAJn,M,M +ay L’r\ﬂM }
20

M
= pi,o{ao [L(r)uo + A*n,o,l ]+ Zaj [Li\—l,O + Ajn—],o,j+l ]} it m=0
j=1
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the sumin | :TJ]I (I) can be written as :
Proof:

The distribution state of the system is : .

o w RSUIRD)
Po(X)=j}= Z{Rj(k ,n)+ > Hk’(h)} =0 G50 jem o jema

k =k . .
the Z consists of a single term, then :

we can see that : J=m

«m=j =M = Plo(m.X)= j}= 3[R (m.k .n] Zh%%w< =S S H (mn

k =k =0 ) gh=m

%Z{ .k nf+ ZH mh}

#m= ] <M=Pl®(m,X)=j}= Z{R(ﬂ?k )+ ZH mh} Za] Z{ (m,k n) ZH’ }

Z{ (m.k )+ gm;lHl mh} o i
if 0<m<M
é?ﬂqimx) ;e}ZH M, M+qAZR(Iv| k rﬁ if m=M
*M< j(j= M):>P{CD(m X [R](m K n)] k=

) 231P{®(m X)= aUZFi(O.,k n) ZZH“ 0,,h)

K o Pl

J(J<M):>P{ = j}= +zajz{ (0. )+ ZH Ol,h}

et ( h=j+
k n
kzk|: " h j+1 :| if m=0
Lo . By setting :
*m> j(j=M)= P{®(m,X)=j}=0
ZZH s=n-1,n; w=0,m
Kk =k h=i+

*m> j(j <M)=Pl@(m, X X{ZHJ } Am= ZZH' B = ZZHJ( -

K =k =M K k=M
The performance utility function of the system is : Z HJ |V| M)
M M k =
U= aPlo(x)= 1= 3120) .
=0 o =ZRj(V\4,k,n) s=n-1,n; w=0,mM
and by definition:
|UI plmZaP m X = } sww+1 ZZH S=n; W:O’m

k kh W1

it follows that :
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ua'<i>=p,m§qﬂaxm,x>=n

iai&lmm_"qﬂ[qm_"&mmm]

B p’m + Za][Ln—lm+Ar1—lmj+1]

j=m#l

if 0<m<M
Mo y
= p,M{Za]'AJn,M,M +awLnM}
=0
if m=M

= p,o{ao[l-?w +A*u0,1]+2=1:a1‘ [ng—l,O +Ajn—1,0, j+1]}

if m=0

Hence, we can obtain the performance utility :
M
u=>1.0)
m=0
5.2 Remark:

We can consider the case where a component [
may be in all the minimal paths sets of a M.S

consecutive K -out-of- N: C system, so the
precedent theorem can be reformuled as follows :

5.3 Corollary:
The component I is in all the minimal paths sets

of a M.S consecutive K -out-of- N : C system.

The utility importance of state M0 <M< M)

of component I in the system is given by:

()= n,m&a,ﬂgmm+am[qm+&mm]} if 0<m<M

= p,M{ia].A{lM’M +a, LxM} if m=M
= p,o{ao[l-?lm +A*10,1D

if m=0

Proof :
We have

19 i p.mZaP )=i}

The sum in | m ( ) can be written as :
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M M M
IASRIID)
j=0  j=0  j=m  j=mil

the last term in this sum is 0 because :

P{®(m,X)=j}=0, j=m+l,...M

and we can see that :

em= =M = Plo(m. X)- |

n

]:Z[Rj(m,k',n)]

- z{amk s Sovimn)

=M, j<M)= Pl®o(m,X)=

] <M= Ha(m, X

*m< j(] j]=0

#m> j(j=M)= Pl®(m,X)=j]=0

*m> j(j <M)=Pld(m,X)=

then :
M m-1
)=> aPla( =Y aPlo(m,X)= j}+
j=0 j=0

Za P{®(m, X) = j}

—Za ZZH m, h+qn2[ (m k n) in (m,h)}

j=0 kkh:m

if m«M
M-1 n ‘
=34 ZH,'( (M
=0
if m=M
M
—802{ (0K e (oi,hﬂ
h=l

if m=0

. S

and by using the notations of the precedent
theorem, one can have the result.
6.4 Example:

Let : a 4- component system with K =3 .

Both the system and the components can have 3

possibles states : 0,1,2,3 4.
n=4, k=3, M=4
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and the components have the following
probabilities to be in each state :
state / component 1 2 3

0 0.1 0.1 0.1

1 0.1 0.2 0.2

2 0.2 0.2 0.2

3 0.4 0.3 0.2

4 0.2 0.2 0.3

This system has two minimal path sets :
{1 23}, {234} , we can see that component 2 and

component 3 are in the two minimal path sets.
For

(a,,a,,a,,a,,a, )= (0,100,1000,2000,8000),

we comput the utility importance for component 2
which is in the two minimal path sets, and for
component 1 which is not in all minimal path sets.
Case 1:

2e{123},2 € {234}
By using the corollary, the utility importance for
component 2 is as follows :
* Atlevel: m=M =4

IUI ) P24 {zaA444 +a4|-1,4}
4
444 ZH

=3

(4,,4)=

=

H.(4,,4)=[(14100411]+[(2410142004210412]+

[(341014300413043 1)
+(4410144004410414)

H.(4,,4)= [(1411)]+[(241114211412)]+[(341114311413}

+[(441114411414]

Az4,4,4 = H32(42’4)+ H 2(4 4)

H?(4,,4)=[(x 422,242 x)]+ [(342x, 243x,x432 ><423)

[(442x,244x,x424,%x442)]

x canbeQorl

H;(4,,4)=[(2422)]+[(3422,2432,2423)] +

[(4422,2442,2424)]

A34,4,4 = H;(42>4)+ H:(42=4)

HI(4,.4)+ H1(4,.4)

L, = ZR (4,.k,4)=R,(4,,3,4)+R,(4,,4,4)

4 R,(4,.3.4)= [(444><,><444)], R, (4,,4,4) = [(4444)]

0.1 xcanbe0,1,2,3

03

0.2then:

03 1V (2)=71.532
* Atlevel: m=3<M =4

2
IUI( p23{ZaJAJ433+a[L43+A434]}

j=0

Al4,3,3 = H;(32,3)+ H31(32’4)+ Hzlt(32’3)+ Hi(32’4)

H1(3,,3)=[(0311,1310)]+[(0321,0312,1320,2310)] +
[(3310,1330,0331,0313)]
[(1311)]+[(2311,1321,1312)]+
[(3311,1331,1313)]
[(4310,1340,0314,0341)],

H1(3,,4)=[(4311,1341,1314)]

H1(3,.3)

H3(3,.4)

Az4,3,3 = H32(32,3)+ H32(32’4)+ Hf(32,3)+ Hf(32>4)

H2(3,,3)=[(x322,232 x)]+[(x 332,x323,332x,233 )]
x can be 0,1

[(432x,234%,x324,x342)] , x can be 0,1
[(2322)]+[(3322,2332,2323)],
H2(3,,4)=[(4322,2342,2324)]

»4)
( 3)

Ly, =[(333%,x333)]+[(3333)] xcanbe0,1,2

A*4,3,4 = H33(3294)+ Hj(32v4)
H3(3,,4) = [(x334,x343,334x,433 x)]+
[(x344,434 )] xcanbe0,1,2
H:(3,,4) = [(3334,3343,4333)] + [(3344, 4343,4334)]

H3(4,,4) = [(343x,x433)] + [(443x,344x,x443,x434)]

x canbe 0,1,2
H:(4,,4)=[(3433)]+[(4433,3443,3434)]

19'(2) = 52.626

* Atlevel: m=0
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19 (2) = pyolan[Lsy + A%, | H!(0,,2)=[(0211,0121,0112)]+ [(0221,0212,0122)]
12'(2)=0 H1(0,,3)=[(0311,0131,0113)]+
onecanseethat: L [(0321,0312,0132,0123,0213,0231)]
17(2)> 15" (2)> 15" (2) +[(0331,0313,0133)]
so, from the user's view-point, effort should be .
made to keep the component 2 at state 4. i.e the H3(01>4): [(041 1,0141,0114)]"‘
state 4 of component 2 has the highest contribution [(0421 0241.0142.0412.0124 0214)]
t th t . b 2 b b b
Case 2 +[(0431,0341,0143,0413,0134,0314)]
B ing the th , the utility i 1t f
component 1 isas follows: +[(0441,0414,0144)

* Atlevel: m=M =4 , , ,
A3,0,3 = H3 (01,3)+ H3 (01’4)

I . D= P 4{23 A4 ast a4|—3,4}
(0,,3) = [(0322,0232,0223)]+[(0332,0323,0233)]

2
3
2(0,,4) = [(0422,0242,0224)] +

Al4,4,4 = H31(41 a4)+ Hzlt(41 74)
[(0432,0423,0342,0324,0234,0243)]

Hi(4,,4)=[(4110)]+[(42104120)]+[(43104130)]

+[(#4104140] +[(0442,0424,0244)]
Hi(4,,4)=[(4111]+[(421141214112))+ A, = H2(0,,4)=[(0433,0343,0334)]+
[(431141314113)]+[(441141414114]  [(0443,0434,0344)]
) 5 5 then:
Ayas= H; (4134)"' H4(4194) |(§“ (1)2 6.551
HZ2(4,,4) = [(422x)]+ [(432x, 423 )] + ¥ Atlevel m=3<M =4
[(442%,424 x)] xcanbe 0,1 ()= p QA+ A, Al +
H2(4,,4) = [(4222)]+ [(4322,4232,4223))] Plall, AL raL,
+[(4422,4242,4224)]
Ky ,s=H3(@,4)+H}(4,,4) Nyss =[HIG,3)+ HIGL 4 [HIG,,3)+ HIG,4)
H3(4,,4)=|(433x)|+((443x,434 x
(4e4) x[(canbe)]() 1[(2 ) H!(3,.3)=[(3110)]+[(3210,3120)]+[(3310,3130)]
H:(4,,4)=[(4333)]+[(4433,4343,4334)| H3(3,,4)= [(3410,3140)
Lt =[(444 )]+ [(4444)] xcanbe0,1.2.3 H!(3,.3)=[3111)]+[(3211,3121,3112)]+
“: [(3311,3131,3113)]
19" (1)=37.104 H,(3,,4)=[(3411,3141,3114)]

* Atlevel: m=0

4
IUl( ) p1o{ao[|-40 +A401]+Zaj[l- 3,0 +A30 1+1]}
j=1

A24,3,3 = [H

@0

(3,,3)+ HIB,.4)]+ [H(3,.3)+ HI(3,.4)

H2(3,.3) = [(322x)]+[(332x,323 x)] x can be 0,1
i, =[(o111)] , L3, =[(0222)], H2(3,,4)=[(342x,324 x)] xcanbe0,1
L, =[(0333)] . L, =[(0444)] HZ(3,,3)=[(3222)]+ [(3322,3232,3223)]
AL, =H0,,2)+ H!(0,,3)+ H!(0,,4) H3(3,.4) = [(3422,3242,3224)]
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L, =[(333x)]+[(3333)] xcanbe0,1,2
A, =H;(3,,4)+H;(3,.4)
H2(3,,4)=[(334x,343 x)|+[(344 x)]
xcanbe0,1,2
H:(3,,4) = [(3334,3343,3433)]+
[(3344,3434,3443)]
L1, =R,(3,,3,4)=[(3444)]

SO:

19'(1)=328.576

we find:

151()> 15" (1)> 15 (1)

so, from the user's view-point, effort should be
made to keep the component 1 at state 3. i.e the
state 3 of component 1 has the highest contribution
to the system.

In this example, with the data above such that:

Pos > Py > Paoo Pis>Pa> P
and

(a,,a,,a,,a;,a,)=(0,100,1000,2000,8000)
we find that :

12'(2)> 17 (2) > 17 (2) and

1) > 15 (1) > 15 (1)

However, the component 2 and the component 1

have the greatest probability in state 3

(p2,3 =0.3, P :0.4) , but it hasn't a big

influence on their importance utility. So, one can
see that the position of a component in a M.S

consecutive K -out-of- N : C system is important
and has the most effect on the component
importance utility.
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CONCLUSION

In this paper, we present a method for computing
the performance utility-function of a M.S

consecutive K -out-of- N : C system. Since this
function depends directly on the importance utility

(| rl;' (i),i =1,...,n) , so the
|r?ql (I) of

component I, and we have seen that the position

of the components

theorem and the corollary give

of component I s very important and has a great
effect on the results as shown in the example. Of

course, the values of Bij and
a, (i =L..,n, |= 0,1,...,|V|) are taken into

consideration. In other words, by ignoring the
performance utility levels and the probability
distribution of the components, it is impossible to
define a meaningful index to measure the
performance utility of an individual component.
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