First order autoregressive representation of Markov bi-dimensional chains of 1-order

Reçu le 22/03/2005 - Accepté le 15/12/2006

Abstract

This paper suggests an extension of Lai's results about the first order autoregressive representation of Markov bi-dimensional chain of 1-order. In the case of markov chain with independent components, we find of course the conditions validating these results for each component.

Keywords: Markov'chains , autoregressive process, spectral density, diagonal development of bivariate distribution

Résumé

Ce papier suggère une extension d'un résultat de Lai à propos de la représentation autorégressive des chaînes de Markov bi-dimenssionnelle d'ordre 1. Dans le cas où les composantes de la chaîne sont indépendantes, nous retrouvons naturellement les conditions validant ces résultats pour chaque composante.

Mots clés: Chaînes de Markov, processus autoregressif, densité spectrale, développement diagonal des distributions bivariées.

M. BOUSSEBOUA

F. L. RAHMANI

Département de Mathématique, Université Mentouri Constantine, Algérie

Generally, a markov chain is not an autoregressive process, except for first order homogeneous, aperiodic and irreducible markov chains at two states $\{0,1\}$. However, Lai (1977) has shown that under convenient hypothesis, a first order uni-dimensional markov chain, valued in a finite or non-finite countable set, belong to a first order autoregressives processes class. In this paper, we extend this result to the cases of first order bi-dimensional markov chains valued in $\{0,1, \ldots, N\}^{2}$. Firstly, we study Lai's analogue conditions and secondly the case of the bivariate distributions having a diagonal development.

1. $A R(1)$ representation of first order bi-dimensional markov chains

Let $\left(Z_{t}=\left(X_{t}, Y_{t}\right): t \in Z\right)$ be a first order bidimensional markov chain valued in $\{0,1, \ldots, N\}^{2}$. If the chain $\left(Z_{t}\right)$ is stationary, the probabilities $p_{x, y}(t)=P\left(Z_{t}=(x, y)\right)$ and the transition probabilities $p_{x, y, x^{\prime}, y^{\prime}}(t)=P\left(Z_{t+1}=\left(x^{\prime}, y^{\prime}\right) / Z_{t}=(x, y)\right)$
are independent of time ${ }^{t}$. Let's set down P as the transition probabilities matrix, P^{n} its $n^{\text {th }}$ power $(n \geq 1)$ and $\pi=\left(\left(\pi_{x, y}\right): 0 \leq x, y \leq N\right)$
its stationary distribution.
We start writing the covariance function $\gamma^{(.) \text {of the chain }}$ $\left(Z_{t}\right)$ under the form of a matrix product. After that we determine its spectral density which we shall compare to that of autoregressive process.

Proposition 1
Let $\left(Z_{t}=\left(X_{t}, Y_{t}\right): t \in Z\right)$ be a first order bidimensional markov chain valued in $\{0,1, \ldots, N\}^{2}$. If this chain is stationary, then its covariance matrix $\gamma($.$) has the$ form
$\left.\gamma(n)=A \mid P^{n}-1_{(N+1)^{2}} \cdot \Pi\right] B, \quad \forall n \geq 0$
where

$$
\begin{equation*}
\Pi=\left(\pi_{.0}, \pi_{.1}, \ldots, \pi_{. N}\right) \tag{1.1}
\end{equation*}
$$

with
$\pi_{\cdot j}=\left(\pi_{0 j}, \ldots, \pi_{N j}\right), \quad 1_{(N+1)^{2}}=^{t}(1, \ldots, 1)$ a vector of $R^{(N+1)^{2}}$ and A and B are conveniently chosen matrices.
Proof. Let us set down that the relation (1.1) determines entirely the covariance function $\gamma($.$) and a$ simple computation provides us the coefficients of the covariance matrix $\gamma(n)$:
$\sigma_{i, j}(n)=$
$\left\{\begin{array}{l}\sum_{x, x, x, y^{\prime}}^{N} x^{2-j} y^{j-1}(x)^{2-1}(y)^{i-1} \cdot \pi(x, y) \cdot p^{(n)} x, x, x, y^{\prime}-\alpha_{i, j} \beta_{i, j} \text { if } n>0 \\ \sum_{x, y, x, y^{\prime}}^{N} x^{4(i+j)} y^{i+j-2} \cdot \pi(x, y)-\alpha_{i, j} \beta_{i, j} \text { if } n=0\end{array}\right.$

$$
\alpha_{i, j}=\left(\sum_{x, y=0}^{n} x . \pi(x, y)\right)^{4-(i+j)}
$$

and
with

$$
\beta_{i, j}=\left(\sum_{x, y=0}^{n} y \cdot \pi(x, y)\right)^{i+j-2}, \quad \forall i, j=1,2
$$

Considering then the matrix
$A=\left(\begin{array}{ccccc}A_{0 .} & A_{1 .} & \cdot & \cdot & A_{N .} \\ A_{0 .}^{\prime} & A_{1 .}^{\prime} & \cdot & . & A_{\text {N. }}^{\prime}\end{array}\right) \quad$ where
$A_{x .}=x .(\pi(x, 0) \pi(x, 1) \cdots \quad \cdot \pi(x, N))$,
$A_{x .}^{\prime}=(0, \pi(x, 1), 2 \pi(x, 2), \ldots, N \pi(x, N))$
and
the
matrix
$\left.B=^{t}\left(\begin{array}{llll}0.1_{1+1} & 1.1^{t} 1_{N+1} & 2.1^{t} 1_{N+1} & \ldots \\ \left(0.1 \ldots, l^{t} 1_{N+1}\right. \\ (0,1, \ldots, N) & (0,1, \ldots, N) & (0,1, \ldots, N) & \ldots\end{array}\right)(0,1, \ldots, N), ~\right)$
we verify easily that

$$
A \cdot\left(P^{n}-1_{(N+1)^{2}} \cdot \Pi\right) \cdot B=\gamma(n)
$$

This is being true for every $n \geq 0$, setting down of course $P^{0}=I_{(N+1)^{2}} \quad$ the $(\mathrm{N}+1)^{2}$-order unit matrix.

Proposition 2

Let $\left(Z_{t}: t \in Z\right)$ be a first order bi-dimensional markov chain with valued in $\{0,1, \ldots, N\}^{2}$, irreducible, aperiodic and stationary and let be its stationary distribution. If the matrix P of transition probabilities of $\left(Z_{t}: t \in Z\right)$ admits simple and non nul eigenvalues and if one at least of the following conditions (C) is satisfied, then the spectral density of the chain $\left(Z_{t}: t \in Z\right)$ is given by :

$$
\begin{equation*}
f(\lambda)=\frac{1}{2 \pi} \frac{1-z_{2}^{2}}{1+z_{2}^{2}-2 z_{2} \cdot \cos (\lambda)} \gamma(0) \tag{1.2}
\end{equation*}
$$

where Z_{2} is the secund large eigenvalue (in absolute value) of .
Conditions (C) :
i) $\left\{\begin{array}{l}\sum_{x, y=0}^{N} x, A(x, y+1) \cdot u^{(j)}{ }_{x(N+1)+y+1}=0 \\ \text { and } \\ \sum_{x, y=0}^{N} y \cdot \pi(x, y+1) \cdot u^{(j)}{ }_{x(N+1)+y+1}=0\end{array}, \quad\right.$ ii) $\left\{\begin{array}{l}\sum_{x, y=0}^{N} x v^{(j)}{ }_{x(N+1)+y+1}=0 \\ \text { and } \\ \sum_{x, y=0}^{N} y \cdot v^{(j)}{ }_{x(N+1)+y+1}=0\end{array}\right.$
$\forall j=3, \ldots,(N+1)^{2}$ and where $u^{(j)}$ and $v^{(j)}$ are respectively the eigenvectors of matrices P and ${ }^{t} P$ associated to the eigenvalue Z_{j}.

Proof.

Taking into account the factorization (1.1) of $\gamma(n)$ and that $I-1_{(N+1)} .{ }^{t} \Pi=\gamma(0)$ is symetrical, we can write the series $\sum_{n \in Z} e^{-i n \lambda} \gamma(n)$ under the form
$\sum_{n \in \Omega} e^{-n^{-n 2} \gamma} \gamma(n)=-A \cdot\left[I-1_{\left((x+1)^{2}\right.} \Pi\right]_{B}+A \cdot G\left(e^{-1 \lambda}\right)_{B+}+\left[A \cdot G\left(e^{(n)}\right) B\right]$
$-\frac{1}{1-e^{1 \pi}} A \cdot 1_{(N+1)^{2}} \cdot \Pi \cdot B-\frac{1}{1-e^{-x_{X}}}\left[\left\{A .1_{(N+1)^{2}} \cdot \Pi \cdot B\right]\right.$
where $\quad G(z)=(I-z . P)^{-1} \quad:|z| \leq 1 \quad$ is the generating function of the transition probabilities matrix P. As P is supposed to be simple and its eigenvalues aren't nul, then following result of Lancaster (1968) and taking into account (C) conditions, we can write :
$A \cdot G(z) \cdot B=-\frac{1}{\bar{z}-1} A \cdot u_{1} \cdot{ }^{t} \cdot v_{1} \cdot B-\frac{\lambda_{2}}{\bar{z}-\lambda_{2}} A \cdot u_{2}{ }^{t} v_{2} B$
and
${ }^{t}[A \cdot G(z) \cdot B]=-\frac{1}{z-1}{ }^{t}\left(A \cdot u_{1} \cdot{ }^{t} v_{1} \cdot B\right)-{\frac{\lambda_{2}}{z-\lambda_{2}}}^{t}\left(A \cdot u_{2}{ }^{t} v_{2} B\right)$ where $u_{1}=1_{(N+1)^{2}}$ and $\quad v_{1}=\Pi$ are the eigenvectors of P and ${ }^{t} P$ associated to the eigenvalue $z_{1}=1$ and λ_{2} indicate the inverse of the eigenvalue Z_{2} (we shall notice that the vector is solution of the equation $\Pi=\Pi . P$ because π is a stationary distribution). Reporting these expressions in (1.3), this latter becomes
$\left.\sum_{n \in Z} e^{-i n} \gamma(n)=-A\left[I-1_{(N+1)^{2}}{ }^{t} \Pi\right]\right]_{B-} \frac{1}{1-e^{-i \lambda}} A u_{1} \cdot v_{1} \cdot B-\frac{1}{1-e^{j \lambda}}\left(A u_{1} \cdot V_{1} \cdot B\right)$

$$
\begin{equation*}
-\frac{\lambda_{2}}{e^{-\lambda}-\lambda_{2}} A u_{2} \cdot V_{2} \cdot B \frac{\lambda_{2}}{e^{-i \lambda}-\lambda_{2}}\left(A u_{2} \cdot V_{2} \cdot B\right) \tag{1.4}
\end{equation*}
$$

The sum of the first three terms on the right hand side of (1.4) is reduced to $-A B$ (because the matrices $A B$ and A. $1_{(N+1)^{2}} \cdot{ }^{t} \Pi . B$ are symetrics), and taking into account (C) conditions, we have (Lancaster (1968)) :

$$
A u_{2}{ }^{t} v_{2} B=A B-A \cdot 1_{(N+1)^{2}} \cdot{ }^{t} \Pi \cdot B
$$

Substiting these results in relation (2.4), we obtain :

$$
\sum_{n \in Z} \gamma(n) \cdot \bar{Z}^{n}=\frac{\lambda_{2}^{2}-1}{\left|z-\lambda_{2}\right|^{2}} A u_{2}^{t} v_{2} B
$$

from which we deduce the result of the proposition.

Now, we deduce the autoregressive representation of the chain $\left(Z_{t}: t \in Z\right)$.

Corollary 1

Let $\left(Z_{t}: t \in Z\right)$ be a first order bi-dimensional markov chain with states in $\{0,1, \ldots, N\}^{2}$.
If this chain satisfies the conditions in the proposition 2, then this chain is a first order autoregressive and admits as representation

$$
\begin{equation*}
Z_{t}=z_{1} \cdot Z_{t-1}+\varepsilon_{t} \tag{1.5}
\end{equation*}
$$

where $\left(\varepsilon_{t} ; t \in Z\right)$ is a sequence of an uncorrelated random variable, having as covariance matrix

$$
\Gamma_{1}=\left(1-z_{1}^{2}\right) \cdot \gamma(0) .
$$

The representation (1.5) allows us to see that the components $\quad X_{t}$ and Y_{t} of the chain $\left(Z_{t}\right)$ satisfy a first order autoregressive equation without being markov chains. This result is then legitimely proved by the fact that if the components $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ are stochastically independent, so each component defines a first order markov chain valued in $\{0,1, \ldots, N\}^{2}$, which are homogeneous, aperiodic and irreducible, and if P_{1} and P_{2} are the transition probabilities matrices of $X_{t} \quad$ and $\quad Y_{t}$ respectively, then we have $P=P_{1} \otimes P_{2}$ (tensorial product of P_{1} and P_{2}) and it is easy to see that the covariance matrix R is in this case $\left(\begin{array}{cc}\gamma_{1} & 0 \\ 0 & \gamma_{2}\end{array}\right)$ where γ_{1} and γ_{2} are the covariance matrices of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ respectively. On the other hand, if λ is an eigenvalue of P_{1} and ${ }^{t}\left(x_{1}, \ldots . ., x_{N+1}\right)$ is an eigenvector associated to λ, then the latter is also eigenvalue of P associated to the eigenvector $u=^{t}\left(u_{1}, \ldots ., u_{N+1}\right)$ with $u_{j}={ }^{t}\left(x_{1}, \ldots ., x_{N+1}\right)$: $\forall j=1, \ldots, N$, and if λ is an eigenvalue of P_{2} and ${ }^{t}\left(y_{1}, \ldots ., y_{N+1}\right)$ is an eigenvector associated to λ, then so λ is also an eigenvalue of P associated to the eigenvector $\omega=^{t}\left(\omega_{1}, \ldots . ., \omega_{N+1}\right)$ with $\omega_{j}=y_{j} .1_{N+1}$: $\forall j=1, \ldots, N+1$. From this, we show that the conditions (C) are reduced to Lai's conditions for each chain $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. This confirms the individual autoregressive representation of $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ deduced from the equation (1.5).

02. Diagonal Development

According once more to Lai, let's suppose that the transition probabilities of a bi-dimensional markov chain $\left(Z_{t}\right)$ satisfy the relation
$p_{x, y, x^{\prime}, y^{\prime}}=p\left(x^{\prime}, y^{\prime}\right) \sum_{n, m=0}^{N} \rho_{n, m} \cdot \theta_{n, m}(x, y) . \theta_{n, m}\left(x^{\prime}, y^{\prime}\right)$
where $.\left(\theta_{n, m}\right): n, m \in\{0, \ldots, N\}$ is a sequence of orthogonal functions relatively to the law
$\left\{p(x, y)=P\left(X_{t}=x, Y_{t}=y\right) \quad: \quad x, y \in\{0, \ldots, N\}\right\}$
(i.e. $\sum_{n, m=0}^{N} p(x, y) . \theta_{n, m}(x, y) . \theta_{n^{\prime}, m^{\prime}}(x, y)=\delta_{n, n^{\prime}} \cdot \delta_{m, m^{\prime}}$, and $\left(\rho_{n, m}\right)$ is a sequence of parameters caracterizing the bivariate distribution of $\left(Z_{t}\right)$ and $\left(Z_{t-1}\right)$ which we find directly from (1.4). We find the following result :

Lemma 1

If the markov chain $\left(Z_{t}\right)$ is irreducible and if we suppose $\rho_{00}=\rho_{10}=\rho_{01}=1, \quad \theta_{00}(x, y)=1$,
$\theta_{10}(x, y)=\alpha_{10} x+\beta_{1,0} \quad$ and $\quad \theta_{01}(x, y)=\alpha_{01} x+\beta_{01}$, where α_{10} and α_{01}, β_{10} and β_{01} are real constants with $\alpha_{10} \neq 0$ and $\beta_{10} \neq 0$, then we have

$$
\begin{aligned}
& E\left(Z_{t} \cdot \theta_{n, m}\left(Z_{t}\right)\right)=0 \\
& \forall(n, m) \in\{0,1, \ldots, N\}^{2}-\{(0,0),(1,0),(0,1)\} .
\end{aligned}
$$

If the components of the chain are independent, with the same initial law and for each transition
probability admitting a diagonal development, then the chain $\left(Z_{t}\right)$ admits an ease to write diagonal
development. In reverse, if the transition probabilities of the bivariate chain admit a diagonal
development and is at independent components and if $\theta_{n, m}(x, y)=\theta_{n}(x) \cdot \theta_{m}(y)$ and
$\rho_{n, m}(x, y)=\rho_{n}(x) \cdot \rho_{m}(y)$, then the transition probabilities of each chain $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ admit a diagonal development.
A markov bi-dimensional chain of which the transition probabilities are of the form (2.1) is necessarily stationary.

Lemma 2

The eigenvalues of P are $\left(\rho_{n, m}: n, m=0, \ldots, N\right)$ with
${ }^{t} Q_{n, m}=\left(\widetilde{Q}_{n, m}(0), \ldots, \widetilde{Q}_{n, m}(N)\right)$
where
$\widetilde{Q}_{n, m}(j)=\left(Q_{n, m}(0, j), \ldots, Q_{n, m}(N, j)\right)$ with
$Q_{n, m}(x, y)=p(x, y) \cdot \theta_{n, m}(x, y) ; \forall(x, y) \in\{0,1, \ldots, N\}^{2}$
. Moreover

$$
\sum_{n, m=0}^{N} \theta_{n, m} \cdot{ }^{t} Q_{n, m}=I_{(n+m)^{2}} .
$$

Proof.

Let's set down $\left(p_{x, y, x^{\prime}, y^{\prime}}: 0 \leq x, x^{\prime}, y, y^{\prime} \leq N\right)$ the transition probabilities matr)x and note $\Pi_{n, m}$ the $(n, m)^{\text {th }}$
IS Kroneck : $\Pi_{n, m}=\left(p_{n, m, 3,0}, \ldots, p_{n, m, N, 0}, p_{n, m 0,1}, \ldots, p_{n, m, N, 1}, \ldots \ldots, p_{n, m, N, N}, \ldots, p_{n, m, N, N}\right)$

By using diagonal development (3.1) of the transition probabilities $p_{n, m, x, y}$ and orthogonality of the sequence $\left(\theta_{n, m}(.,):. 0 \leq n, m \leq N\right)$, we easily set up without any difficulty that $\rho_{n, m}$ is an eigenvalue of P associated to the eigenvector $\theta_{n, m}$. Similarly, we check that $Q_{n, m}$ is an $\forall x, y \in\{0,1, \ldots, N\}$ and
eigenvector of the matrix P associated to the eigenvalue $\rho_{n, m}$. Let's show now that $\theta_{n, m}$ satisfies the dual orthogonality relationship. Let's note Θ the eigenvectors matrix, $\theta_{n, m}$, and let Θ^{-1} be its inverse. Let's set down
$\theta(x, y)=\binom{\theta_{0,0}(x, y), \ldots, \theta_{N, 0}(x, y), \theta_{0,1}(x, y), \ldots, \theta_{N, 1}(x, y), \ldots}{\ldots, \theta_{0, N}(x, y), \ldots, \theta_{N, N}(x, y)}$ the $(x, y)^{\text {th }}$ row vector of Θ and
$\alpha(x, y))^{t}\binom{\alpha_{0,0}(x, y), \ldots, \alpha_{N, 0}(x, y), \alpha_{0,1}(x, y), .}{.., \alpha_{N, 1}(x, y), \ldots \ldots, \alpha_{0, N}(x, y), \ldots, \alpha_{N, N}(x, y)}$
the $(x, y)^{t h}$ column vector of Θ^{-1}. We have
$\theta(x, y) \cdot \alpha\left(x^{\prime}, y^{\prime}\right)=\sum_{n, m=0}^{N} \theta_{n, m}(x, y) \cdot \alpha_{n, m}\left(x^{\prime}, y^{\prime}\right)=\delta_{x, x^{\prime}} \cdot \delta_{y, y^{\prime}}$

Since the sequence $\left(\theta_{n, m}(.,).\right)$ is $p(.,$.$) -orthogonal, then$ the coefficients $\alpha_{n, m}\left(x^{\prime}, y^{\prime}\right)$ are provided by for eigenvectors on the right $\theta_{n, m}=\left(\widetilde{\theta}_{n, m}(0), \ldots, \widetilde{\theta}_{n, m}(N)\right)$ where $\widetilde{\theta}_{n, m}(j)=\left(\theta_{n, m}(0, j), \ldots, \theta_{n, m}^{\left.\left.\alpha_{n}\left(n\left(r^{\prime}, j, j\right)\right)^{\prime}\right)=p\left(x^{\prime}, y^{\prime}\right) \cdot \theta_{n, m}\left(x^{\prime}, y^{\prime}\right)\right) ~}\right.$ and as eigenvectors on the left
for every x^{\prime}, y^{\prime}, and so,

$$
\begin{gathered}
\theta_{n, m}(x, y) \cdot \theta_{n, m}\left(x^{\prime}, y^{\prime}\right) \cdot \alpha_{n, m}\left(x^{\prime}, y^{\prime}\right)= \\
\sum_{n, m=0}^{N} \sum_{n, m=0}^{N} \frac{\theta_{n, m}(x, y) \cdot \alpha_{n, m}\left(x^{\prime}, y^{\prime}\right)}{p\left(x^{\prime}, y^{\prime}\right)}=\frac{\delta_{x, x^{\prime}} \cdot \delta_{y, y^{\prime}}}{p\left(x^{\prime}, y^{\prime}\right)}
\end{gathered}
$$

Now, the $(x, y)^{\text {th }}$ coefficient of $\Pi_{n, m}$ is

$$
\theta_{n, m}(x, y) \cdot Q_{n, m}\left(x^{\prime}, y^{\prime}\right) \cdot p\left(x^{\prime}, y^{\prime}\right), \text { then }
$$

$$
\sum_{n, m=0}^{N} \theta_{n, m} \cdot{ }^{t} Q_{n, m}=\sum_{n, m=0}^{N} \Pi_{n, m}=I_{(n+m)^{2}}
$$

Theorem

Let $\left(Z_{t}\right)$ be an irreducible markov chain for which the transition probabilities $p_{x, y, x^{\prime}, y^{\prime}}$ satisfy the diagonal development (2.1). If the eigenvalues $\rho_{n, m}$ are simple and real and $\rho_{0,0}=1$ and if $\left\{\begin{array}{l}\theta_{1,0}(x, y)=\alpha_{1,0} \cdot x+\beta_{1,0} \\ \theta_{0,1}(x, y)=\alpha_{0,1} \cdot x+\beta_{0,1}\end{array}\right.$, then the process $\left(Z_{t}\right)$ is a first order autoregressive process.

Proof.

The required conditions in the lemma 1 and 2 being satisfied, then the (C) conditions of the proposition 2 are also satisfied, and consequently the chain $\left(Z_{t}\right)$ is indeniably a first order autoregressive process.

References

1. Brockwell, P. J. and Davis R. A., (1987). Time series : Theory and methods (Springer Verlag).
2. Feller, W., (1968). An introduction to probability theory and its application Vol 1 (John Wiley \& sons)
3. Fuller, W.A. (1996). Introduction to Statistical Times series (Wiley Series in Probability and statistics).
4. Lai, C.D.,(1977). First order autoregressive markov processes. Stochastic processes and their applications, 3 1-4.
5. Lancaster, P., (1968.). Theory of matrices (Academic Press).
