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Résumé  

 Ce travail propose une étude numérique des écoulements confines, générés par la 
rotation des disques co-axiaux d’une enceinte cylindrique / tronçonique. La topologie de 
l’écoulement résultant dépend fortement de la direction et du rapport de rotation des 
disques. Pour des couples de paramètres de contrôle, les calculs ont révélé l’occurrence 
de zones de recirculation, sous forme de bulbes, caractérisées par des points de 
stagnation sur l’axe de rotation. Pour suivre l’évolution de ces éclatements 
tourbillonnaires, l’étude propose des moyens de contrôle basés sur une modification des 
conditions cinématiques et géométriques à l’amont de l’éclatement. Les résultats 
révèlent que ces conditions peuvent soit éliminer ces bulbes ou favoriser leur apparition.    
Mots clés:  Ecoulement stationnaire, éclatement tourbillonnaire et contrôle, disques en  
                    rotation, simulation numérique. 
 

Abstract   

Confined steady swirling flows, driven by the end disks of a cylindrical/truncated 
conical enclosure have been numerically studied. Particular attention is focused on 
combined kinematics and geometric conditions  of generation and control of the vortex 
breakdown phenomenon. First, the basic steady flow topology in a truncated conical 
cavity is described, which is shown to depend strongly on the direction as well as the 
rate of rotation of the end disks. For a set of governing flow parameters, the 
computations revealed the occurrence of bubble-like reverse flows, characterised by on-
axis stagnation points. The present work, explores means of controlling the evolution of 
this physical phenomenon, by modifying the boundary conditions upstream the vortex 
breakdown. These means are found to either suppress or enhance the occurrence and 
size of the bubbles. 
Keywords:  steady swirl flow; vortex breakdown control; rotating disks; numerical   
                      nvestigation 

 
 
 
 
 

wirling flows in cylindrical cavities, driven by the 
independent rotation of the boundaries, have been the 

subject of numerous numerical and experimental works, 
primarily motivated by their widespread engineering 
applications [2]. Particular interest has been devoted to the 
phenomenon of vortex breakdown, characterised by an abrupt 
change in the flow topology, ever since it was observed by 
Vogel [1], in the model flow driven by the rotation of a single 
disk of a cylindrical cavity. In this model set up, the flow is 
governed by only two parameters, namely, the rotational 
Reynolds number Re and the aspect ratio of the enclosure 
(height/radius) and characterised by a concentrated vortex core 
along the axis. Beyond a threshold rotation ratio, the core 
breaks and gives rise to bubble-like recirculation regions with 
on axis stagnation points; commonly defined as vortex 
breakdown [2]. Most subsequent research topics[2,3,5], have 
adopted Vogel’s setup, as it presents well defined boundary 
conditions and provides direct and effective comparison 
between numerical and experimental simulations.  
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نقترح في هذا العمل دراسة عددية لسيلان مغلق، لسائل لزج غير 

قابل للانضغاط ناتج عن دوران الأقراص الملساء متوازية المحور 
بنية السيلان المحصل عليها  .لتجويف أسطواني أو مخروطي

، من اجل جملة ) S(تتعلق أساسا باتجاه و نسبة دوران الأقراص 
تائج أثبتت ظهور مناطق رجوع السيلان من عوامل المراقبة، الن

تظهر على شكل فقاعات، تتميز بنقاط رآود على محور الدوران، 
لمتابعة تطور الانتفاخ االدوراني ، الدراسة تقترح وسائل مراقبة 
تعتمد على تغيير في الشروط الحرآية و الهندسية قبل الانتفاخ، 

قاعات أو تفضل آما أن النتائج بينت أن هذه الشروط قد تزيل الف
 :الكلمات المفتاحية  .ظهورها

 
 سيلان مستمر، مراقبة الانتفاخ : لكلمات المفتاحيــــةا

 .الدوراني، أقراص دورانية، نموذجة عددية
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Escudier[3], extended Vogel’s work and uncovered, 
experimentally, much wider parameters range to map 
regions of occurrence of up to three vortex bubbles as well 
as steady and unsteady flow regions. Escudier[3] also 
reported that the vortex phenomena appeared highly 
axisymmetric; which subsequently motivated extensive 2D 
numerical investigations, giving accurate steady results 
comparable with experiments. A noteworthy feature of 
vortex breakdown, as reported by Tsiberblit [7], is that its 
onset does not result from a hydrodynamic instability or 
bifurcation, but is a continuous process with increasing Re. 
In practical situations, vortex breakdown may be harmful, 
as observed, for instance, on the tip vortices of a delta-
winged aircraft; causing a loss of its control [7,8,10 ]. On 
the other hand, it may be beneficial and desired, for 
example, in bioreactors where it can constitute an ideal 
environment for cell growth [13]. More over, it enhances 
mixing in vortex chambers and stabilises flames in burners. 
With these considerations in mind, it appeared necessary to 
investigate appropriate means of vortex breakdown control.  
In the present work, the primary objective is to explore 
numerically, intrusive and non intrusive methods of 
controlling on-axis as well as off-axis vortex breakdown. 
These methods are based, essentially, on modifying 
kinematics and/or geometric conditions upstream the 
breakdown. First, the basic steady flow topology, in a 
conical cavity is described. Then, interest is focused on the 
steady flow regimes which display on-axis vortex bubbles. 
By varying the radial aspect ratio parameter, we explored 
effects of the sidewall inclination. Furthermore, the 
sensitivity of the on-axis bubbles, to weak differential 
rotation of a top end conical lid, is studied. Finally, we 
numerically confirm Husain’s et al. [10] experimental 
findings, based on the concept of adding a near-axis swirl.  
 
I. Formulation and numerical approach    
 
Consider the flow in a truncated conical cavity, driven by 
the top and bottom end walls of radii Rb and  Rt , which 
rotate with constant, but different, angular velocities Ωb 
and Ωt , respectively. We note that Rb= Rt corresponds to 
the cylindrical enclosure. Using as the timescale 1/ Ωb and 
Rb as a length scale, this configuration introduces the 
following dimensionless parameters, which govern the 
dynamics; namely, the Reynolds number, the rotation ratio, 
the axial and radial aspect ratios, defined respectively by: 

2Re , , ,b b b t h b r t bR S H R R Rν= Ω = Ω Ω Λ = Λ =  
  The flow is described using axisymmetric Navier-Stokes 
equations, expressed in cylindrical coordinates expressed in 
a conventional stream function-vorticity formulation. Let 
ψ(r, z) denote the stream function, Г the circulation 
(angular momentum) such that the velocity and the 
corresponding vorticity fields may be written, respectively:  
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The transport equations, in terms of tangential vorticity 
component and circulation are, respectively:  
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The Poisson equation, is written in the form: 
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To solve numerically the above system, boundary and 
initial conditions are required. These are based on the no 
slip on the solid walls and symmetry assumptions on the 
axis. 
 
-Boundary conditions: 
 
at the bottom disk:     0=ψ , 2r=Γ   

at the top flat disk:    0=ψ , 2S.rΓ =  

at the sidewall:          0=ψ , 0Γ =   

The tangential vorticity on all solid walls:  
2

2

1
r l

ψξ ∂
=

∂
 ; l 

being the direction normal to the boundary. 
The symmetry condition at the axis is:  
 0=ψ ,  0=Γ ,   0=ξ                   
-If a top conical lid, of dimensionless height hc (height/base 
radius) and radial extent rc, is employed, then the 
conditions on its surface are : 0=ψ ,  2.c cΓ S r=  Where 

;c c cS  = Ω / Ω Ωb being its constant angular speed.  
-When a central thin rod, of radius rd, is introduced, the 
symmetry condition is replaced by the no slip condition. 
The rod can rotate with a rotation ratio  

;r r rS  = Ω / Ω Ωb being its constant angular speed.  
 
-Initial conditions: 
 
Let t<0 denote the time when fluid and cavity are at rest. 
Then, at t=0, the top and/or bottom end walls are 
impulsively rotated with uniform, but different, angular 
velocities, while the sidewall remains stationary. These are 
expressed as follows:  
 t≤0 : 0=ψ , 0=Γ ,  0=ξ ;  

*, ) ] [ 0, [s cr z D r z( ∈ = 0, ×] . 

Here, cz denotes the axial position of the top lid and rs   the 
radial location of the sidewall.       
 t≥0:   conditions at the walls , given above, still apply. 
 
To solve the parabolic transport equations, subject to the 
prescribed conditions, we have adopted a three level time-
marching finite difference scheme, akin to that employed 
successfully, in a related work, and described in detail by 
Gerrard et al.[4] and by Bellamy-Knights and Saci[6]. 
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The numerical scheme is second order in time and space, 
and a uniform mesh grid is adopted. For small time, an 
adequate description of the timewise development of the 
flow field requires, in general, a time increment δt≈0.001, 
with a mesh length  δr= δz=0.0125. Since the steady state, 
in the limit of large time, is our main objective, the time 
step is relaxed up to  δt≈0.05 as the solution proceeds. The 
flow is governed by non linear coupled differential 
equations, and stability requirements were based essentially 
on numerical experiments. Appropriate time and space 
mesh grids were employed and the time dependent solution 
is calculated until an essentially ultimate steady state is 
approached. Poisson’s elliptic equation is iterated at each 
time level and, subsequently, the azimuthal vorticity 
component is updated. The accuracy of the scheme is first 
assessed by comparing the present findings, in the case of a 
cylindrical enclosure, with previous qualitative and 
quantitative results   reported in the literature by Lopez[12] 
and  H.S.Husain [10]. In particular, the velocity fields 
reported by Lopez [12], using a different approach, have 
been reproduced and compared favourably. As an 
additional check, very good agreement is found when 
comparing the ultimate solution obtained for large times 
with the solution obtained by solving the steady equations, 
within the range of the prescribed control parameters.  
 
II. Main results            
 
Convergent steady solutions were obtained in the following 
range of parameters: 
 250 2000,0 1,0.5e r hR S≤ ≤ ≤ ≤ ≤ Λ ≤ 2 , 1≤ Λ  ≤ 2.5 . 
The Reynolds number is fixed below the critical value 
beyond which flow becomes unstable, as indicated by 
Escudier’s diagram [3] in the case S=0. 
 
3.1 Basic flow in a truncated conical cavity: 
 
The basic flow topology, induced by the end disks of a 
truncated conical cavity, is clearly exhibited in fig.1, for the 
couple of particular parameters 

250 , 0.5 ,e r hR S=   − ≤ ≤ 0.5  Λ = 2, Λ =1.  The meridian 
streamlines indicate that co-rotation displays a two-cell 
structure, with a dividing stagnation line (ψ=0) , in the 
meridian plane, and a core region in a quasi-solid body 
rotation (fig.1(C2 )). In contrast, counter-rotation induces a 
three cell-structure which reduces to two cells with 
increasing rotation ratio. Counter-rotation is also 
characterised by an azimuthal layer Г=0 (fig.1 (c1 )), which 
tend to coincide with the stagnation line (ψ=0) as the 
rotation ratio increases. The competition of the outward 
circulations induced by the end disks, give rise to a 
stagnation point on the sidewall, at which fluid is deviated 
into the interior, forming a shear layer (ψ=0). The leading 
stagnation point location is, virtually independent of the 
direction of rotation.          
 
 
 
 
 

3.2 Steady Flow with vortex breakdown: 
      
3.2.1 Model flow driven by the bottom disk of a 
cylinder ( 0 , rS =   Λ =1) : 
The steady model flow driven by the bottom end disk of a 
cylindrical enclosure, of aspect ratio Λh  =2.5  is described 
when Re=2000 (fig2.a). In addition to the azimuthal 
motion, which the fluid acquires, initially, at the rotating 
disk, there develops a secondary circulation with a 
concentrated central vortex core which breaks to give rise 
to two distinct on-axis bubbles, reminiscent to a B type 
vortex breakdown as defined by Leibovitch[2]. These are 
depicted in fig.2a, where meridian streamlines are drawn; 
non- uniformly spaced so as to emphasize the relatively 
weak, but relevant, reverse flow regions. The breakdown 
process, may be associated to a centrifugally unstable 
redistribution of the angular momentum within the central 
vortex core flow[12].  
 
3.2.2 Influence of the sidewall inclination 
(0.8 r≤ Λ ≤1 ).  
This part explores the effect of sloping the stationary 
sidewall of the rotor-stator cylindrical configuration 
discussed in the above section, which, for a given set of 
parameters exhibits two distinct on-axis bubbles. Aiming to 
alter the axial swirl upstream the breakdown region, the 
radial aspect ratio Λr of the resulting truncated conical 
cavity is varied in the range 0.8≤ Λr ≤1 (which corresponds 
to an inclination angle 0°≤θ≤4.57°), (fig.2). We recall that 
Λr =1 (θ=0°) corresponds to the cylindrical casing. The 
resulting effect is best viewed and described with reference 
to (fig.2), which illustrate the meridian streamlines 
corresponding to the model flow driven by the bottom end 
disk. It is clearly observed that a relatively small 
perturbation causes large and relevant changes to the vortex 
structure. In fact, for Λr =0.9 (θ ~ 2.29°)  , fig.2b indicates 
a substantial size reduction of the bubbles, followed by an 
axially  downward shift; and the threshold value Λr =0.8 (θ 
~ 4.57°), (fig.4c), causes the elimination of both vortex 
breakdown bubbles.  
                
3.2.3 Influence of a top conical lid: 
 
The rotor- stator cavity described above, has been modified 
by introducing a top conical lid of height hc instead of the 
flat disk. The cone may rotate with a rotation ratio Sc in the 
range  
-0.5≤ Sc ≤0.5 . The influence of the conical geometry is 
clearly exhibited in fig.3, which illustrates, in the meridian 
plane, streamlines corresponding to the steady flow 
induced by the independent rotation of the end walls; the 
side wall being stationary. For the same parameters Re and 
Λh , computations show that, as hc increases, the stationary 
conical lid (Sc=0) causes an axial downward shift to the 
upper bubble which eventually coalesces with the lower 
one for hc =0.3   (fig.3b). This latter has not been shifted, 
as the distance of its trailing edge stagnation point to the 
bottom disk remained constant. To explore the effect of 
modifying the kinematics conditions upstream the vortex 
bubbles, fig.3b,c clearly indicates that a relatively weak 
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counter-rotation of the top conical lid is sufficient to 
suppress, successively, the bubbles; while maintaining 
steady flow. In the process, an axial shifting is noticed, the 
upper bubble is first eliminated at a counter-rotation rate of 
2%, then follows the suppression of the second vortex as 
the cone counter-rotation attains, approximately, 4% that of 
the bottom disk. By contrast, meridian streamlines, not 
depicted here, revealed that co-rotation tend to enhance the 
bubble size; giving rise to a more elongated vortex 
breakdown bubbles.          
   
3.2.4 Effect of a near-axis swirl 
 
Previous experimental works [8,10] related to vortex 
breakdown control in confined flows have introduced a 
near-axis swirl by means of a rotating central rod mounted 
at the cylinder axis. Motivated by their findings, the present 
numerical investigation re-examined and confirmed the 
effectiveness of this approach to control on-axis vortex 
bubbles, which occur in the concentrated vortex core of the 
flow driven by only one end wall. 
The influence of a differentially co-rotated thin rod 
( 0r rS  = Ω / Ω >b ), on on-axis vortex breakdown, is 
best viewed with reference to fig.4. Results indicate that 
the presence of a stationary central thin rod has virtually no 
qualitative effect on the vortex structure, but its co-
differential rotation (fig.4b), yields, effectively, to the 
suppression of the bubbles. This result is consistent with 
H.S.Husain’s et al. experimental observations [10], carried 
out using a cylindrical enclosure of aspect ratio Λh=3.25, 
but contradicts Mullin’s et al. conclusions [8], which 
reported that the rod (0<rd≤0.1) had no qualitative effect on 
the vortex structure. Moreover, the present investigation 
also revealed that counter-differential rotation of the rod 
induces a centrifugally instable flow and breakdown 
enhancement , as clearly shown in fig.4c, for a rotation 
ratio Sr= -2. 
 
CONCLUDING REMARKS  
 
Confined vortex breakdown, induced by the independent 
rotation of the end walls of a cylindrical   enclosure, have 
been numerically studied, and methods of controlling their 
occurrence and evolution were explored. For on-axis 
bubbles with axial stagnation points, generated by the 
rotation of the bottom end disk, a weak counter-rotation of 
a top conical lid is found sufficient to suppress the bubbles, 
while co-rotation is observed to enhance their size. 
Computations have also revealed that, sloping slightly the 
stationary sidewall, constitutes an effective means of 
eliminating the vortex structure. Finally, the effectiveness 
of adding a near- axis swirl, driven by a differentially 
rotated thin rod, is analysed and found to have a substantial 
influence on the occurrence and evolution of the vortex 
bubbles. 
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