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Résumé - Les auteurs expriment les équations de Boussinesq de la convection naturelle thermique 
laminaire permanente et bidimensionnelle. Ils proposent un nouveau code de calcul aux volumes 
finis qui utilise les fonctions primitives (formulation vitesse-pression) et un système de 
coordonnées elliptiques. Le nombre de Prandtl est fixé à 0.7 (cas de l’air) mais le nombre de 
Rayleigh varie. Ils examinent l’effet de la géométrie du cylindre elliptique intérieur sur les 
résultats obtenus. 

Abstract - The authors express the Boussinesq equations of the laminar thermal and natural 
convection, in the case of permanent and bidimensional flow, in an annular space between two 
confocal elliptic cylinders. A new calculation code using the finite volumes with the primitive 
functions (velocity-pressure formulation) and the elliptic coordinates system is proposed.  The 
Prandtl number is fixed at 0.7 (case of the air) with varying the Rayleigh number. The effect of the 
geometry of the interior elliptic cylinder on the results is examined. 

Keywords: Natural convection - Boussinesq equations - Annular space - Elliptic cylinders - 
Velocity - Pressure formulation. 

 
1. INTRODUCTION  

Heat transfer by natural convection, in an annular space delimited by two concentric or 
eccentric horizontal cylinders, was the subject of many theoretical and experimental studies 
because of their importance in many engineering applications. 

The majority of these studies are related to cylinders, whose cross-sections are circular. 
Mack and Bishop [1] made a study in an annular space ranging between two horizontal 
concentric cylinders. They employed a power series truncated at the third power of the 
Rayleigh number to represent the stream function and temperature variables. The work of 
Kuehn and Goldstein [2] can be referred as a comprehensive review for concentric cases. 
They compared the obtained experimental and numerical results using a method with finite 
differences. 

Comparatively, fewer publications were found for natural convection in non-circular 
domain, e.g., the elliptic domain considered in this study. Lee and Lee [3] attempted to 
formulate the free convection problem in terms of elliptical coordinates for the symmetrical 
cases of oblate and prolate elliptical annuli. Elshamy et al [4] studied numerically the case in 
the horizontal confocal elliptical annulus and developed some practical correlations for the 
average Nusselt number. Chmaissem et al [5] simulated the case of natural convection in an 
annular space: having a horizontal axis bounded by circular and elliptical isothermal 
cylinders. Cheng and Chao [6] employed the body-fitted coordinate transformation method to 
generate a non-staggered curvilinear coordinate system and performed numerical study for 
some horizontal eccentric elliptical annuli. 
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In the numerical simulation of natural convection in elliptical space annuli, finite 
difference, finite volume and finite element methods were usually used with the vorticity-
stream function formulation. For example, the work of Guj and Stella [7] was conducted by 
the finite difference method, Chmaissem et al [5] used the finite element method, Elshamy et 
al [4] and Cheng and Chao [6] used the finite volume method, and in the study of Zhu et al [8] 
the natural convective heat transfer was simulated using the differential quadrature (DQ) 
method. 

In this work we use a new calculation code with the finite volumes [9] which uses the 
elliptic coordinates and the primitive functions (velocity-pressure formulation), associated to 
traditional SIMPLER algorithm [9], in order to resolve our system of equations. The grid is 
made of 130 x 60 nodes. 

2. PROBLEM FORMULATION AND BASIC EQUATIONS 
Let's consider an annular space, filled with a Newtonian fluid, and located between two 

confocal elliptic cylinders of horizontal axes. (Fig. 1) represents a cross-section of the system. 
Both internal and external walls are maintained respectively at the temperatures T1 and T2 
with T1 > T2.  The physical properties of the fluid are constant, apart from the density ρ whose 
variations are at the origin of the natural convection.  Viscous dissipation is neglected, just as 
the radiation (emissive properties of the two walls being neglected).  We admit that the 
problem is bidimensional, permanent and laminar. 

 
Fig. 1: A cross-section of the system 

The laminar natural convection equations within the framework of the Boussinesq 
approximation are written in vectorial form: 

- Continuity equation :  0Vdiv =
→

          (1) 

- Momentum equation :  
00

gVgradV
ρ

π∇
+

→

ρ
ρ

=
→→

⋅
→

        (2) 

- Heat equation :   T2

pc 
TgradV ∇

ρ
λ

=
→

⋅
→

         (3) 

It is convenient to define a reference frame such as the limits of the system result in 
constant values of the coordinates.  The coordinates known as "elliptic" (η, θ) allow in our 
case to obtain precisely this result.  The wall of the external elliptic cylinder is represented by 
η = η2 = constant, while for the interior elliptic cylinder by η = η1 = constant. 
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The passage of the Cartesian coordinates to the elliptic coordinates is obtained by the 
following relations : 

{ } sinashy   and   cosachx θη=θη=          (4) 
The metric coefficients in elliptic coordinates are given by : 
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The gravity vector 
→
g  is written in the new system of coordinates as : 
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The dimensionless equations are written by posing the following dimensionless quantities : 
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a is the characteristic length and ν/a is the characteristic velocity. 
So let us introduce the following dimensionless numbers : 

The Prandtl number,
λ

ρν
= pc

Pr  and the Grashof number, TagGr 2

3
∆

ν
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After some lengthy manipulations, the following set of equations, is obtained : 
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and following the θ axis, it gives:  
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and finally equation (3) becomes :  
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The boundary conditions are the following ones :  

- Conditions on the inner surface (η=ηi= constant): 

{ }1T and0VV *
1
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- Conditions on the outer surface (η = ηe = constant) : 
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To evaluate the stream's function values, we use the following relations: 













η∂
ψ∂

−=
θ∂

ψ∂
= θη

*

*
*

*

*
*

h
1Vand

h
1V      (14) 

3. NUMERICAL METHOD 
To solve equations (9) to (11) with associated boundary conditions equations (12) and (13), 

we consider a numerical solution by the method of finite volumes, presented by S.V.Patankar 
[9].  The algorithm of SIMPLER [9] is used for the sequential solution of the system of 
equations of discretization. The iterative numerical solution of the algebraic system of 
equations is that of sweeping implying the tridiagonal algorithms of Thomas and cyclic. 

 
Fig. 2: Physical domain and computational 

Figure 2 shows both the physical and the computational domain.  Once the temperature 
distribution is available, the local Nusselt number in the physical domain is defined as : 

η∂
∂

−=
*

*
T

h
1Nu           (15) 

The average Nusselt number is obtained by integrating the local Nusselt numbers around 
the walls : 

  ∫
π+

π−
θ

π
= dNu

2
1Nu          (16) 

4. RESULTS AND DISCUSSION 
We consider three annular spaces characterised by the eccentricity of the internal elliptic 

tube (e1 = 0.999), (e1 = 0.9) and (e1 = 0.83).  The eccentricity of the external elliptic tube is 
maintained constant (e2 = 0.75).  We use four values for the Grashof number Gr  (  Gr = 103, 
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Gr = 104, Gr = 105 and Gr = 2 105).  The fluid is assumed as air, so the number of Prandtl is 
supposed to be constant and equal to 0.7. 

4.1 Numerical code validation 
An annular space ranging between two confocal and horizontal elliptic cylinders [4] has 

been considered. We present in (Fig. 3), the streamlines and the isotherms resulting from our 
calculation code with the same parameters used by Elshamy et al [4]. 

Fig. 3: Streamlines and isotherms for Ra = 104, α = 0 ° and e0 = 0.4 

By comparing this figure with (Fig. 9) and (Fig. 10) of the ref. [4], we can notice, that the 
results are similar. Further, we gather in the (Table 1), the average Nusselt number's values on 
the two walls resulting from our calculations and those of the ref. [4].  

Furthermore, we can notice that these values are in a good agreement. 

Table 1: Comparison of average Nusselt number Ref. [4] with our results 

    Internal wall External wall 
e1  e2 Inclinaison Ra Ref. [4] Our results Ref. [4] Our results 

0.688 0.4 α = 90 ° 104  2.66 2.72 1.38 1.43 
0.388 0.4 α = 90 ° 104 4.94 4.78 2.51 2.52 
0.86 0.4 α = 90 ° 104 3.68 3.46 1.35 1.30 

4.2 The influence of the Grashof number 

Figures 4-8 and 9 correspond to α = 0°.  They represent the isotherms and the streamlines 
for different Grashof number values. The vertical fictitious plan passing by system centre is a 
plan of symmetry. The isotherms and the streamlines are symmetrical compared to the 
vertical plan. On the left side of this plan, the flow turns in the trigonometrical direction. On 
the right side, the flow is in the opposite direction (the particles of the fluid move upwards, 
under the action of gravity forces, along the intern hot wall and go down near to the extern 
cold wall). 

When the Grashof number is weak, as being lower or equal to 103, the heat transfer is 
essentially conductive, so the isotherms (Fig .4) have the same form as the walls. 
Nevertheless there is a movement of the fluid: the particles, which warm up on the wall of the 
internal elliptic cylinder, tend to rise along this one, then to go down again along the wall of 
the external elliptic cylinder. Thus the flow is organised in two principal cells which turn very 
slowly in opposite directions.  The laminar convection is weak. 

 
a) e1 = 0.86                     b) e1 = 0.688                   c) e1 = 0.474 
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Fig. 4: Isotherms and streamlines for Gr = 103, α = 0 °, e1 = 0.999 and e2 = 0.75 

 
Fig. 5: Isotherms and streamlines for Gr = 105, α = 0 °, e1 = 0.999 and e2 = 0.75 

When the Grashof number increases to 105 (fig .5) shows that the streamlines values 
increase, the flow which is going up on the side of the hot wall and going down on the side of 
the cold wall, becomes intense and the natural convection is dominant. The isotherms become 
deformed and inserted at the top where the convection is strong.  

The variation ∆T* between the isotherms of (Figs. 4-6) is equal to 0.1 and the values of the 
streamlines are given on these figures. 

For Gr = 2 105, the streamlines values show an appreciable increase in the flow. This 
means that the convection becomes more important and predominates on the conduction. The 
flow of the fluid becomes multicellular. Both in the left side and in the right side of the 
annular space, a secondary flow is done in opposite direction of the principal cell, (Fig .6). It 
seems to us that the geometry of the two walls is at the origin of the formation of secondary 
flow, by increasing the number of Grashof, the two secondary cells turn between two 
horizontal planes in the top region of the annular space. The transfer is done primarily by 
convection. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6: Isotherms and streamlines for Gr = 2 105, α = 0 °, e1 = 0.999 and e2 = 0.75 
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4.3 The influence of the internal eccentricity 
The variation of the internal eccentricity has a considerable effect both on the fields of 

flow and temperature. We can already notice that for the same value of the Grashof number 
Gr = 105, (Fig. 5) and (Fig. 7) show the influence of the internal eccentricity, the fluid which 
was bicellular for e1 = 0.999 becomes multicellular for e1 = 0.9.  

When Gr = 2 105, the comparison of (Fig. 6) for e1 = 0.999 with (Fig. 8) for e1 = 0.9, shows 
that the variation of the internal eccentricity modifies the flow and its intensity: Initially there 
is one bifurcation (Fig. 6) and after, we can notice two bifurcations (Fig.8) in annular space. 
We also notice that for e1 = 0.83 (Fig. 9) there is no bifurcation.  

Variation ∆T* between the isotherms of (Fig. 7-9)  is equal to 0.1 too and the values of the 
streamlines are given on these figures. 

 
 
 
 

 
 
 
 
 
 

Fig. 7: Isotherms and streamlines for Gr = 105, α = 0°, e1 = 0.9 and e2 = 0.75 

 
Fig. 8: Isotherms and streamlines for Gr = 2 105, α = 0°, e1 = 0.9 and e2 = 0.75 

 
Fig. 9: Isotherms and streamlines for Gr = 2 105, α = 0°, e1 = 0.9 and e2 = 0.75 
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Since this study examines the natural convection in an annulus whose geometry varies with 
eccentricity, the equivalent conductivity is the most suitable parameter with which to compare 
the surface heat transfers of the various annular spaces. The equivalent conductivity is defined 
as : 

conduction

convection
eq

T

T

η∂
∂

η∂
∂

=λ
∗

∗

∗  

The Nusselt number is proportional to the overall value of heat transfer rate which consists 
of both conductive and convective modes; whereas the equivalent conductivity represents the 
ratio of total heat transfer between the inner and outer cylinders, the Nusselt number is not a 
good indicator of heat transfer when comparing different geometries. 

The local equivalent conductivity is defined as the ratio of the local Nusselt number on the 
surface over which a fluid is moving to the local Nusselt number which would be calculated if 
the fluid were quiescent. The overall equivalent conductivity is given by the ratio of the 
average Nusselt numbers for either case. 

Table 2 gathers the overall equivalent conductivities for all the cases examined, on the 
internal wall. 

Table 2: *
eqλ  for all the cases examined in this paper 

e1 ↓ α   Gr → 103 104 105 106 
0.999 0 ° 1.001 1.183 1.849 2.448 
0.9 0 ° 1.000 1.000 1.221 1.444 
0.83 0 ° 1.000 1.000 1.000 1.001 

Figure 10 shows that the average equivalent conductivity values on the internal wall 
increase with the increasing of the internal eccentricity. 

 
Fig. 10: Average equivalent conductivity on the internal wall 
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5. CONCLUSION 
The suggested calculation code, which uses the method of finite volumes, with the 

velocity-pressure formulation, makes it possible to find with a good agreement, the literature 
results, which solve problems similar to that studied.  Thus we theoretically studied, the 
bidimensional thermal natural convection, in laminar flow and permanent, in an annular space 
located between two confocal elliptic cylinders.  We examined, in particular, the influence, of 
the internal eccentricity on the convective mode. We considered one value of α: α = 0°. 
Simulations were executed from four values of the Grashof number :   Gr = 103,   Gr = 104,  
Gr = 105  and  Gr = 2 105. 

The results underline the influence of the internal eccentricity on the average equivalent 
conductivity  ( *

eqλ ).  The maximum value is obtained for α = 0 ° when e1 = 0.999. 

For low Grashof number values, the coefficient of heat transfer is dominated by the 
mechanism of the conduction for the considered values of e1. 

Acknowledgments: 

The first author acknowledges Professor M. Afrid of the department of Physics of the 
University Mentouri of Constantine, for the many discussions which they had together, as for 
the numerical method of resolution and the discussion of some results.   

NOMENCLATURE 
A  : Constant defined in the system of elliptic coordinates 

= characteristic length (m) 
A1, A2 : Length of major axis in internal and external cylinder (m)      
B1, B2 : Length of minor axis in internal and external cylinder (m)      
cp : Specific heat at constant pressure (J.kg-1.K-1) 
e1, e2 : Eccentricities of ellipses 
Nu, Nu  : Local and average Nusselt number 
P : Pressure (Pa) 
Ra : Rayleigh number, Ra = Gr Pr 
T : Fluid's temperature (K) 
T1, T2 : Temperature of the wall of elliptic internal and external cylinder (K) 
∆T : Temperature difference between the inner and the outer wall,  

∆T = T1 - T2 (K) 
t : Time (s) 
u, v : Velocities components according to coordinates x and y (m.s-1) 
Vη, Vθ : Velocities components according to coordinates η and θ (m.s-1) 
V
r

 : Velocity vector (m.s-1) 
x, y, z : Cartesian coordinates (m) 
Greek letters 
α  : Angle of inclination between OH and OX (fig. 1) (°) 
β : Thermal expansion coefficient (K-1) 
λ : Thermal conductivity (W.m-1.K-1) 

*
eqλ  : Average equivalent thermal conductivity 

ν  : Kinematic viscosity (m2.s-1) 
ρ  : Density (kg.m-3) 
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π  : Stress tensor 
η, θ, z : Elliptic coordinates 
ψ  : Stream function (m2.s-1) 
Exponents 
* : Dimensionless parameters 
Indices   
i and 1 : Interior 
e and 2 : Exterior 
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