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Abstract: We investigate under the notion of Large Deviation 
Principle & Concentration of Measure as a technique, the ability of 
estimating the probability density function of any random vector in 
the space ℝ𝑛𝑛. We found that an appropriate probability distribution 
for any convex body in the space is sub – Gaussian. 

تحت مفهوم مبدأ الانحراف الأعظم و تركيز الحجم, بحثنا عن امكانية تقدير  المستخلص:  
لكثافة الاحتمالية  أن دالة ا  . و وجدنا  ℝ𝑛𝑛   دالة الكثافة الاحتمالية للجسم المحدب في الفضاء

 لأي جسم محدب هي دالة جاوس للتوزيع الاحتمالي.  ناسبة الم 

Key words: Probability density function, concentration of 
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I- INTRODUCTION 
   In the space of probability measure, the law of large 
numbers scales the probability that, 𝑆𝑆𝑛𝑛

𝑛𝑛 → 𝐸𝐸[𝑋𝑋 ], 𝑎𝑎. 𝑠𝑠 , where 
{𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ ℕ} is a sequence of random variable which is 
independent and identically distributed. The quantity 𝑆𝑆𝑛𝑛 
stands for the 𝑛𝑛𝑡𝑡ℎ sum of 𝑋𝑋𝑖𝑖; 𝑖𝑖 = 1, … , 𝑛𝑛. So, and according 
to the forgoing convergence we can conclude that  

lim
𝑛𝑛→∞

𝑃𝑃 (|𝑆𝑆𝑛𝑛
𝑛𝑛 − 𝐸𝐸[𝑋𝑋]| ≥ 𝜀𝜀) = 0 … … (1) 

   The point 𝑆𝑆𝑛𝑛
𝑛𝑛  is some fixed point on the probability space. 

If we investigate on where it placed we can deal with two 
probabilities: The first one take 𝑆𝑆𝑛𝑛

𝑛𝑛  to be in some Borel 𝐴𝐴 

subset of the 𝜎𝜎 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 of the probability space (𝑆𝑆𝑛𝑛
𝑛𝑛 ∈ 𝐴𝐴). 

The second one takes 𝑆𝑆𝑛𝑛
𝑛𝑛  to be near some fixed point  𝑥𝑥  ,that 

is, (𝑆𝑆𝑛𝑛
𝑛𝑛 ∈ 𝑑𝑑𝑥𝑥). To describe the measure of these probabilities 

we need to have a distribution function. R.C.Srivastava [16] 
was described the estimation of the distribution function (for 

short) and he state that, �̂�𝐹𝑛𝑛(𝑋𝑋) = [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑋𝑋𝑖𝑖
′ 𝑛𝑛   ≤𝑥𝑥]

𝑛𝑛 . We will 

stop here for a second. The numerator of �̂�𝐹𝑛𝑛(𝑋𝑋) stands for a 
level set which supporting the �̂�𝐹𝑛𝑛(𝑋𝑋). Maarten Loffler and 
Jeff M. Philips[12] was investigate the shape of the level set. 
So to produce a density function (𝑓𝑓𝑓𝑓𝑎𝑎 𝑠𝑠ℎ𝑓𝑓𝑎𝑎𝑜𝑜(𝐷𝐷𝐹𝐹)), we need 
a level set for which 𝑋𝑋𝑖𝑖

′𝑠𝑠 ≤ some known quantity, which is 
confirm with the principle of well organized. This level set 
demands some mild conditions. By the other hand, to 
generate the probability density function (𝑝𝑝𝑑𝑑𝑓𝑓 for short) for 
a certain (𝐷𝐷𝐹𝐹) we also need a sequence of 𝜀𝜀𝑛𝑛 numbers which 
𝜀𝜀𝑛𝑛 → 0 𝑎𝑎𝑠𝑠 𝑛𝑛 → ∞. 

1.1  Lemma (Parzen): Let {ℎ(𝑛𝑛)} be a sequence of 
numbers such that ℎ(𝑛𝑛) → 0 as 𝑛𝑛 → ∞ and 𝐾𝐾(𝑦𝑦) be a 
Borel function which positive definite, symmetric and 
‖𝐾𝐾‖∞ = 1, sup 𝐾𝐾(𝑦𝑦) < ∞ and lim

𝑦𝑦→∞
|𝑦𝑦𝐾𝐾(𝑦𝑦)| → 0: 

i- The estimate: 
 𝑓𝑓𝑛𝑛(𝑋𝑋) = 1

ℎ(𝑛𝑛) ∫ 𝐾𝐾 (𝑥𝑥−𝑦𝑦
ℎ(𝑛𝑛))

∞
−∞ 𝑑𝑑�̂�𝐹𝑛𝑛(𝑦𝑦) =

1
𝑛𝑛ℎ(𝑛𝑛) ∑ 𝐾𝐾 (𝑥𝑥−𝑦𝑦

ℎ(𝑛𝑛))
𝑛𝑛
𝑖𝑖=1 … … (2) 

Is asymptotically at all points of  𝑋𝑋 at which 
𝑝𝑝𝑑𝑑𝑓𝑓 is continuous. 

ii- Its variance is given by 𝜎𝜎2 (𝑓𝑓𝑛𝑛(𝑥𝑥)) =
1
𝑛𝑛 𝑣𝑣𝑎𝑎𝑎𝑎 ( 1

ℎ(𝑛𝑛) 𝐾𝐾 (𝑥𝑥−𝑋𝑋
ℎ(𝑛𝑛))) and satisfies the 

following equation: 
lim

𝑛𝑛→∞
𝑛𝑛ℎ(𝑛𝑛)𝜎𝜎2 (𝑓𝑓𝑛𝑛(𝑥𝑥))

= 𝑓𝑓(𝑥𝑥) ∫ 𝐾𝐾2(𝑦𝑦)
∞

−∞
𝑑𝑑𝑦𝑦 

At all points 𝑥𝑥 of continuity of 𝑓𝑓(𝑥𝑥).  
iii- If 𝑛𝑛ℎ(𝑛𝑛) → ∞  𝑎𝑎𝑠𝑠  𝑛𝑛 → ∞, then 𝑓𝑓𝑛𝑛(𝑋𝑋) is 

consistent,  
iv- It is asymptotically normal, that is  

lim
𝑛𝑛→∞

𝑃𝑃 {(
(𝑓𝑓𝑛𝑛(𝑥𝑥) − 𝑓𝑓(𝑥𝑥))

𝜎𝜎 (𝑓𝑓𝑛𝑛(𝑥𝑥))
) ≤ 𝑢𝑢}

= 1
√2𝜋𝜋

∫ 𝑎𝑎−𝑥𝑥2
2

𝑛𝑛

−∞
𝑑𝑑𝑥𝑥 … … (3) 

v- It is uniformly consistent, that is, for every 
𝑃𝑃{sup𝑥𝑥|𝑓𝑓𝑛𝑛(𝑋𝑋) − 𝑓𝑓(𝑥𝑥)| < 𝜀𝜀} → 1  𝑎𝑎𝑠𝑠  𝑛𝑛

→ ∞ 
If the (𝑝𝑝𝑑𝑑𝑓𝑓) is uniformly continuous. 

   Form Parzen Lemma, we can conclude that for a Borel 
function, to guarantee the estimation 𝑓𝑓𝑛𝑛(𝑋𝑋), it demand to 
satisfies that it has a density  ‖𝐾𝐾‖∞ = 1 with zero mean 
lim
𝑦𝑦→∞

|𝑦𝑦𝐾𝐾(𝑦𝑦)| = 0 and identity covariance (𝑐𝑐𝑓𝑓𝑣𝑣 (𝑋𝑋) = 𝐾𝐾2𝐼𝐼𝑑𝑑) 

with domain lim
𝑦𝑦→∞

|𝑦𝑦𝐾𝐾(𝑦𝑦)| → 0. By the other hand the same 

Lemma obtains the sufficient conditions for appropriate 
(𝑝𝑝𝑑𝑑𝑓𝑓). 
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   As we mentioned before, to measure (𝑆𝑆𝑛𝑛
𝑛𝑛 ∈ 𝐴𝐴) or 

(𝑆𝑆𝑛𝑛
𝑛𝑛 ∈ 𝑑𝑑𝑑𝑑) and with respect to Parzen Lemma, we can deal 

with the large deviation principle (  for short). So from the 
law of large number to large deviation, we check that in (i – 
iii ) of Parzen Lemma the formula of the plausible probability 
density function in the sense of large deviation principle. So 
for a level set we can describe the notion of convex set to be 
the mother set of any random variable. 
   Amir Dembo with Ofer Zeitoumi [1] had removed from a 
sequence of random variable, to generate the (𝑝𝑝𝑑𝑑𝑝𝑝) using 
large deviation as technique in a sense that if 𝑋𝑋1,… , 𝑋𝑋𝑛𝑛 is 
independent, standard normal, real – valued sequence of 
random variable with empirical mean �̂�𝑆𝑛𝑛 = 1

𝑛𝑛 ∑ 𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1  and 

zero mean and variance 1𝑛𝑛, then 𝑃𝑃(|�̂�𝑆𝑛𝑛| ≥ 𝛿𝛿) → 0, and for any 

Borel set 𝐴𝐴, then 𝑃𝑃(|�̂�𝑆𝑛𝑛| ≥ 𝛿𝛿)𝑛𝑛 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 1
√2𝜋𝜋 ∫ 𝑒𝑒−𝑥𝑥2

2𝐴𝐴 𝑑𝑑𝑑𝑑. Then 

we conclude that 1
𝑛𝑛 log 𝑃𝑃(|�̂�𝑆𝑛𝑛| ≥ 𝛿𝛿) 𝑛𝑛 → ∞⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑠𝑠2

2  , where 

�̂�𝑆𝑛𝑛 = 𝑠𝑠 in 𝐴𝐴.  
   Under the notion of Concentration of Measure we can 
relate any probability measure 𝜇𝜇 of any probability space to 
another probability measure 𝜎𝜎 with an affine transformation 
map 𝑇𝑇:ℝ𝑛𝑛 → ℝ𝑛𝑛, in a sense of convergence . 
1.2 Theorem: Let 𝑋𝑋 be a normed space and let 𝑇𝑇 be a 

subset of 𝑆𝑆𝑛𝑛−1. Then for every 𝜀𝜀 > 0, if 𝐸𝐸𝑇𝑇
∗ ≤

𝐶𝐶𝜀𝜀𝐸𝐸(𝑋𝑋), there is a linear operator 𝐴𝐴:ℝ𝑛𝑛 → 𝑋𝑋 with; 
(1 − 𝜀𝜀) ≤ ‖𝐴𝐴𝐴𝐴‖ ≤ (1 + 𝜀𝜀); for all 𝐴𝐴 ∈ 𝑇𝑇, 𝐶𝐶 > 0 is a 
universal constant. 

This topic shall investigate the convex set as container set of 
random variable, and its log – concave function as a 
probability density; for the purpose of 𝑃𝑃(𝑑𝑑 ∈ 𝐾𝐾). Our main 
result Corollary (4.7) gets an appropriate 𝑝𝑝𝑑𝑑𝑝𝑝 for the 
distribution of random vector in a convex body in the space. 

Our paper will organize as follows. In 2nd section we will 
investigate the notion of Large Deviation Principle & 
Concentration of Measure as an important technique to 
estimate the appropriate 𝑝𝑝𝑑𝑑𝑝𝑝. In the third section, we will 
describe the notion of the log – concave function and its 
appropriateness to be as probability density function for any 
random vector. We know that every log – concave function 
can create a convex body. The fourth section takes the notion 
of convex bodies in the space as appropriate body to 
concentrate with in the space, and it contains our main result 
Corollary (4.7). At the end we give a brief discussion.  

II- Appropriation of Concentration of Measure & 
Large Deviation Theorem in Estimation of 

Probability Density Function 

   From measure theory point of view, given a sequence of 
probability measures 𝜇𝜇𝑛𝑛, we say that 𝜇𝜇𝑛𝑛 converge (weakly) 
to 𝜇𝜇 or simply 𝜇𝜇𝑛𝑛 → 𝜇𝜇 if lim

𝑛𝑛→∞
∫𝑝𝑝 𝑑𝑑𝜇𝜇𝑛𝑛 = ∫𝑝𝑝𝑑𝑑𝜇𝜇 for every 𝑝𝑝 ∈

𝐶𝐶𝑏𝑏(𝐸𝐸) (space of bounded continuous function). For a good 
reference of the topic refer to {[1],[7],[9],[13]}. The theory 
of large deviation calculates the exponential rate of decay of 
this convergence on a closed interval under probability 
measure. Fraydoun Rezakhanlou[7] had explained an 
appropriate definition for 𝐿𝐿𝐿𝐿𝑃𝑃; Throughout, the probability 
measure on a measure space (𝐸𝐸, ℬ), where 𝐸𝐸 is a polish 
(separable complete metric space) and ℬ is the corresponding 
𝜎𝜎 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 of the Borel sets, to motivate the definition of 
𝐿𝐿𝐿𝐿𝑃𝑃 we recall two facts: 

i- By definition, a sequence of probability measures 
{𝑃𝑃𝑛𝑛}𝑛𝑛∈ℕ converges weakly to a probability measure 
𝑃𝑃 if and only if lim

𝑛𝑛→∞
∫ 𝑝𝑝𝑑𝑑𝑃𝑃𝑛𝑛 = ∫𝑝𝑝𝑑𝑑𝑃𝑃, or 

equivalently: 
- For every open set 𝑈𝑈 : lim

𝑛𝑛→∞
inf 𝑃𝑃𝑛𝑛(𝑈𝑈) ≥ 𝑃𝑃(𝑈𝑈), 

or 
- For every closed set 𝐶𝐶: lim

𝑛𝑛→∞
inf 𝑃𝑃𝑛𝑛(𝐶𝐶) ≤ 𝑃𝑃(𝐶𝐶) 

ii-   If 𝑙𝑙1,… , 𝑙𝑙𝑘𝑘 ∈ ℝ, then: 
lim
𝑛𝑛→∞

𝑛𝑛−1 log(∑ 𝑒𝑒−𝑛𝑛𝑎𝑎𝑖𝑖𝑘𝑘
𝑖𝑖=1 ) = − inf𝑖𝑖 𝑙𝑙𝑖𝑖. 

2.1  Definition: Let {𝑃𝑃𝑛𝑛}𝑛𝑛∈ℕ be a family of probability 
measure on a polish space 𝐸𝐸 and let 𝐼𝐼: 𝐸𝐸 → [0,∞) be a 
function: 
i- We then say that the family {𝑃𝑃𝑛𝑛}𝑛𝑛∈ℕ satisfies 

a large deviation principle with rate function 
𝐼𝐼, if the following conditions satisfied: 

- For every 𝑙𝑙 ≥ 0 the set {𝑑𝑑: 𝐼𝐼(𝑑𝑑) ≤ 𝑙𝑙} is 
compact. 

- For every open set 𝑈𝑈: lim
𝑛𝑛→∞

inf 1
𝑛𝑛 𝑃𝑃𝑛𝑛(𝑈𝑈) ≥

− inf𝑥𝑥∈𝑈𝑈 𝐼𝐼(𝑑𝑑) 
- For every closed set 𝐶𝐶: lim

𝑛𝑛→∞
sup 1

𝑛𝑛 𝑃𝑃𝑛𝑛(𝐶𝐶) ≤
− inf𝑥𝑥∈𝐶𝐶 𝐼𝐼(𝑑𝑑).  

ii- We say that the family {𝑃𝑃𝑛𝑛}𝑛𝑛∈ℕ satisfied a 
weakly 𝐿𝐿𝐿𝐿𝑃𝑃 with rate function 𝐼𝐼, if 𝐼𝐼 is lower 
semi – continuous and the forgoing statements 
are true. 

   As we mentioned before to deal with the theory of 
probability measure, we need a sequence (𝜀𝜀𝑛𝑛 → 0   𝑙𝑙𝑠𝑠  𝑛𝑛 →
∞) and a level set.  

2.2 Definition: Fix a metric space 𝑀𝑀. A function 𝐼𝐼:𝑀𝑀 →
[0,∞) is called  

- A rate function if its lower semi – continuous, 
which means that the level set {𝑑𝑑 ∈ 𝑀𝑀: 𝐼𝐼(𝑑𝑑) ≤
𝑙𝑙} are closed for any 𝑙𝑙 ≥ 0. 

- A good rate function if the level set are compact 
for any 𝑙𝑙 ≥ 0.  

2.3 Definition: A sequence of random variable 𝑋𝑋1, 𝑋𝑋2,… 
with values in a metric space, is said to satisfy a large 
deviation principle with: 

- Speed 𝑙𝑙𝑛𝑛 → ∞ and, 
- Rate function 𝐼𝐼 
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If, for all Borel set 𝐴𝐴 ⊂ 𝑀𝑀, 

- lim
𝑛𝑛→∞

𝑠𝑠𝑠𝑠𝑠𝑠 1
𝑎𝑎𝑛𝑛

log 𝑃𝑃{𝑋𝑋𝑛𝑛 ∈ 𝐴𝐴} ≤ − inf𝑋𝑋∈𝑐𝑐𝑐𝑐 𝐴𝐴 𝐼𝐼(𝑋𝑋) 

- lim
𝑛𝑛→∞

𝑖𝑖𝑖𝑖𝑖𝑖 1
𝑎𝑎𝑛𝑛

log 𝑃𝑃{𝑋𝑋𝑛𝑛 ∈ 𝐴𝐴} ≥ − inf𝑋𝑋∈ 𝐼𝐼𝑛𝑛𝐼𝐼  𝐴𝐴 𝐼𝐼(𝑋𝑋) 

Notation: the condition  𝑎𝑎𝑛𝑛 → ∞ stands in [15] for 𝑖𝑖ℎ(𝑖𝑖) →
∞. 

Definition (2.3) show the bounds for the 𝐿𝐿𝐿𝐿𝑃𝑃. By the other 
hand, it state that the random variable 𝑋𝑋𝑛𝑛 or its 𝑠𝑠𝑝𝑝𝑖𝑖 satisfy 
𝐿𝐿𝐿𝐿𝑃𝑃 if the following limit exist: 

lim
𝑛𝑛→∞

− 1
𝑖𝑖 ln 𝑃𝑃𝑋𝑋𝑛𝑛 = 𝐼𝐼(𝑥𝑥) … … (4) 

This implies that 𝑃𝑃𝑋𝑋𝑛𝑛 ≈ 𝑒𝑒−𝑛𝑛𝐼𝐼(𝑥𝑥). 

   From static mechanic point of view, the rate function can 
be considered as the difference between energy function and 
some kind of entropy. We will get that in Cramer’s Theorem 
later. By the other hand, the rate function is called large 
deviation rate, so we can think of it as 𝐼𝐼(𝑥𝑥) ≈ (.)

(.).  

2.4 Definition: A rate function 𝐼𝐼 is a lower semi – 
continuous mapping 𝐼𝐼: 𝑋𝑋 → [0, ∞), such that the level 
set Ψ𝐼𝐼(𝛼𝛼) ≔ {𝑥𝑥: 𝐼𝐼(𝑥𝑥) ≤ 𝛼𝛼} is closed subset of 𝑋𝑋. A 
good rate function is a rate function for which all the 
level sets  Ψ𝐼𝐼(𝛼𝛼) are compact subset in 𝑋𝑋. The effective 
domain of 𝐼𝐼, denoted 𝐿𝐿𝐼𝐼 , namely D𝐼𝐼(𝛼𝛼) ≔ {𝑥𝑥: 𝐼𝐼(𝑥𝑥) ≤
𝛼𝛼}. 

So, up to this definition the rate function works to measure 
the degree of concentrated around some (point of event), and 
it can be evaluated numerically according to the moment 
generating function, see [13] for insure, and that appear 
obviously in Cramer’s Theorem. Also in the same theorem, 
we can see the convexity of the rate function.  

2.5 Theorem (Cramer’s): Assume that ∫ 𝑒𝑒𝑥𝑥.𝑣𝑣 𝜇𝜇(𝑝𝑝𝑥𝑥) <
∞, for every 𝑣𝑣 ∈ ℝ𝑑𝑑. Then the sequence {𝑃𝑃𝑛𝑛} satisfies 
𝐿𝐿𝐿𝐿𝑃𝑃 with rate function: 

𝐼𝐼(𝑥𝑥) = sup𝑥𝑥∈ℝ𝑑𝑑(𝑥𝑥. 𝑣𝑣 − 𝜆𝜆(𝑣𝑣)) … … (5) 
Where, 𝜆𝜆(𝑣𝑣) = log ∫ 𝑒𝑒𝑥𝑥.𝑣𝑣 𝜇𝜇(𝑝𝑝𝑥𝑥). 

2.6 Lemma: For 𝑟𝑟 ∈ 𝑃𝑃𝑛𝑛, the rate function 𝐼𝐼𝑞𝑞(𝑟𝑟) measure 
the discrepancy between 𝑟𝑟 and 𝑞𝑞 in the sense that 
𝐼𝐼𝑞𝑞(𝑟𝑟) > 0 and 𝐼𝐼𝑞𝑞(𝑟𝑟) = 0 if and only if 𝑟𝑟 = 𝑞𝑞. Thus 
𝐼𝐼𝑞𝑞(𝑟𝑟) attains its infimum of 0 over 𝑃𝑃𝑛𝑛 at the unique 
measure 𝑟𝑟 = 𝑞𝑞. In addition, 𝐼𝐼𝑞𝑞 is strictly convex on 𝑃𝑃𝑛𝑛, 
that is, for 0 < 𝜆𝜆 < 1and only 𝜇𝜇 ≠ 𝑣𝑣 in 𝑃𝑃𝑛𝑛; 
𝐼𝐼𝑞𝑞(𝜆𝜆𝜇𝜇 + (1 − 𝜆𝜆)𝑣𝑣) ≤  𝜆𝜆𝐼𝐼𝑞𝑞(𝜇𝜇) + (1 − 𝜆𝜆)𝐼𝐼𝑞𝑞(𝑣𝑣) … … (6) 

   From the above clarifications we can think of the level set 
as convex with rate function as support function. 

   For more properties of the rate function we have, 

2.7 Theorem: Suppose that 𝑌𝑌𝑛𝑛 satisfies 𝐿𝐿𝐿𝐿𝑃𝑃 on 𝑋𝑋 with rate 
function 𝐼𝐼. The following conditions hold:   
a- The infimum of 𝐼𝐼 over 𝑋𝑋 equals 0, and the set of 

𝑥𝑥 ∈ 𝑋𝑋 for which 𝐼𝐼(𝑥𝑥) = 0 is nonempty and 
compact. 

b- Denote ℰ to be the nonempty, compact set of 𝑥𝑥 ∈
𝑋𝑋 for which 𝐼𝐼(𝑥𝑥) = 0 and let 𝐴𝐴 be a Borel subset 
of 𝑋𝑋 such that �̅�𝐴 ∩ ℰ = ∅. Then 𝐼𝐼(�̅�𝐴) > 0, and for 
some 𝐶𝐶 < ∞ 

𝑃𝑃𝑛𝑛{𝑌𝑌𝑛𝑛 ∈ 𝐴𝐴} ≤ 𝐶𝐶 exp [− 𝑖𝑖𝐼𝐼(�̅�𝐴)
2 ] → 0  𝑎𝑎𝑠𝑠 𝑖𝑖

→ ∞ … … (7) 

We can see that up to Equation (7), that |𝑃𝑃𝑛𝑛{𝑌𝑌𝑛𝑛 ∈ 𝐴𝐴} −

𝐶𝐶 exp [− 𝑛𝑛𝐼𝐼(�̅�𝐴)
2 ]| ≤ 𝜀𝜀 for some 𝜀𝜀 ∈ [0,1]. With the same 

Equation we can remove from 𝐿𝐿𝐿𝐿𝑃𝑃 to the notion of 
Concentration of measure. The concentration of measure 
plays an important role in the estimation of 𝑠𝑠𝑝𝑝𝑖𝑖 of any 
random variable which distributed uniformly on anybody in 
the space ℝ𝑛𝑛.  

2.8 Definition: Let 𝑋𝑋 be ℝ𝑛𝑛 with norm ‖. ‖. Let 𝑘𝑘 =
𝑘𝑘(𝑋𝑋) ≤ 𝑖𝑖 be the largest integer such that: 

𝜇𝜇𝐺𝐺𝑛𝑛,𝑘𝑘 ({𝐸𝐸; 𝑀𝑀
2 |𝑥𝑥| ≤ ‖𝑥𝑥‖ ≤ 2𝑀𝑀|𝑥𝑥|, 𝑖𝑖𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ 𝐸𝐸})

> 1 − ( 𝑘𝑘
𝑖𝑖 + 𝑘𝑘) … … (8) 

With Equation (8) we can see that the probability of  𝑥𝑥 ∈ 𝐸𝐸 
has a density that proportional to the function 𝑘𝑘 ↦

(1 − ( 𝑘𝑘
𝑛𝑛+𝑘𝑘))

𝑛𝑛−1
≈ 𝑒𝑒−𝐶𝐶(𝑘𝑘) for large 𝑖𝑖. Here 𝐶𝐶(𝑘𝑘) is depends 

only on 𝑘𝑘. 

2.9 Theorem:  
i- If, for some orthogonal transformation 

𝑠𝑠1, … , 𝑠𝑠𝐼𝐼 ∈ ℝ𝑛𝑛 and all 𝑥𝑥 ∈ ℝ𝑛𝑛, |𝑥𝑥| ≤
1
𝐼𝐼 ∑ ‖𝑠𝑠𝑖𝑖𝑥𝑥‖𝐼𝐼

𝑖𝑖=1 ≤ 𝐶𝐶|𝑥𝑥|. Then (ℝ𝑛𝑛, ‖. ‖) 
Contains, for each 𝜀𝜀 > 0, a subspace of 

dimension 𝑘𝑘 = [𝜂𝜂𝜀𝜀2

𝑐𝑐2
𝑛𝑛
𝐼𝐼] on which the norm is 

(1 + 𝜀𝜀) equivalent to a multiple of the 
Euclidean norm, 𝜂𝜂 > 0 is a universal constant,  
Moreover, the collection of all subspaces of 
dimension 𝑘𝑘 having this property has 

probability ≥ 1 − exp (− 𝐶𝐶(𝜀𝜀)
𝐶𝐶2𝐼𝐼 𝑖𝑖) , here 

𝐶𝐶(𝜀𝜀) > 0 depends only on 𝜀𝜀 and the 
probability measure is the normalized Haar 
measure on the relevant Grassmanian.  

ii- Conversely, there exist an absolute constant 
𝐶𝐶 > 0 such that if for some 1 < 𝑡𝑡 < 𝑖𝑖 and 

some 𝜀𝜀 > 0, the collection of all ( 𝑛𝑛
𝐶𝐶2𝜀𝜀2𝐼𝐼 +

1) − 𝑝𝑝𝑖𝑖𝑑𝑑𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑎𝑎𝑎𝑎 subspace 𝑉𝑉 of  (ℝ𝑛𝑛, ‖. ‖), 
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satisfying |𝑥𝑥| ≤ ‖𝑥𝑥‖ ≤ 2|𝑥𝑥| for all has 
probability larger than 1 − 1

2𝐶𝐶2𝜀𝜀2𝑡𝑡. 

So, we conclude that (1 − 1
2𝐶𝐶2𝜀𝜀2𝑡𝑡)

1−𝑛𝑛
≈ exp (− 𝐶𝐶(𝜀𝜀)𝑛𝑛

𝐶𝐶2𝑡𝑡 ). 
Form another point of view: 

2.10 Theorem: Let ‖. ‖ be a norm on (ℝ𝑛𝑛), for every 
0 < 𝛽𝛽 < 1, there exist a subspace 𝑌𝑌 of dimension [𝛽𝛽𝛽𝛽] of 
(ℝ𝑛𝑛, ‖. ‖) For �̅�𝑑𝑌𝑌 is bounded by a constant depending on 𝛽𝛽, 𝑡𝑡 
only. Moreover, the collection of all [𝛽𝛽𝛽𝛽] − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
satisfying the conclusion has probability tending to one as 𝛽𝛽 
tends to ∞. 
Notation: �̅�𝑑𝑌𝑌 stands for the natural distance of 𝑌𝑌 to the 
natural Euclidean space. 
  The shape of a level set under concentration of measure is 
had a ball design   
2.11  Theorem: For all 0 < 𝛼𝛼 < 1 and all 𝜀𝜀 > 0;  

min{𝜎𝜎𝑛𝑛(𝐴𝐴𝜀𝜀): 𝜎𝜎𝑛𝑛(𝐴𝐴) = 𝛼𝛼} … … (9) 
Is attained for a spherical cap 𝐶𝐶 = {𝑥𝑥 ∈ 𝑆𝑆𝑛𝑛−1: 𝑑𝑑(𝑥𝑥, 𝑥𝑥0) ≤ 𝑟𝑟} 
with 𝑥𝑥0 ∈ 𝑆𝑆𝑛𝑛−1 and 𝑟𝑟 > 0 such that 𝜎𝜎𝑛𝑛(𝐶𝐶) = 𝛼𝛼. 
2.12 Theorem (Concentration on 𝑺𝑺𝒏𝒏−𝟏𝟏): Let 𝑓𝑓: 𝑆𝑆𝑛𝑛−1 →
ℝ be 1 − 𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿𝑡𝑡𝑖𝑖 function. Then for any 𝜀𝜀 > 0; 
𝑃𝑃{|𝑓𝑓(𝑥𝑥) − 𝐸𝐸𝑓𝑓(𝑥𝑥)| ≥ 𝐿𝐿𝑆𝑆𝑛𝑛−1𝜀𝜀} ≤ 2 exp(−𝐶𝐶𝜀𝜀2𝛽𝛽) … … (10)  
III- Log – concave Measure: Geometric Properties and 

its Density Function 

Brunn – Minkowski inequality plays an important role in the 
theory of convex body and log – concave measure, which it 
states that the well-known measure on a convex body is the 
log – concave, and that the distribution under this log – 
concave has sub – exponential tail. B. Klartag and V.D. 
Milman in [6] had investigated widely the connection 
between the convex bodies and log – concave function. Jon 
A.Wellner [10], and Laszlo Lovasz, Santosh. Vempala[11]  
was described the geometric properties of the log – concave 
measure. 

   A function 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞) is log – concave, if for every 
𝑥𝑥, 𝑦𝑦 ∈ ℝ𝑛𝑛 and 0 < 𝜆𝜆 < 1, then 𝑓𝑓(𝜆𝜆𝑥𝑥 + (1 + 𝜆𝜆)𝑦𝑦) ≥
𝑓𝑓𝜆𝜆(𝑥𝑥)𝑓𝑓1−𝜆𝜆(𝑦𝑦). If 0 < ∫ 𝑓𝑓 < ∞, then 𝑓𝑓 has moments of all 
order. We denote the isotropic constant of a log – concave 
function 𝑓𝑓 as: 

𝐿𝐿𝑓𝑓 = (sup𝑥𝑥∈ℝ𝑛𝑛 𝑓𝑓(𝑥𝑥)
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥ℝ𝑛𝑛

)

1
𝑛𝑛

(det 𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓)) 
1

2𝑛𝑛 … … (11) 

Also, if 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞) is log – concave with 0 < ∫ 𝑓𝑓 < ∞ 
and 𝑀𝑀 is the median of the Euclidean norm |. | with respect 
to 𝑓𝑓, then by Borel’s lemma we get: 

∫ |𝑥𝑥|2 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
∫ 𝑓𝑓ℝ𝑛𝑛

= 𝑀𝑀2 ⇒ ∫ |𝑥𝑥|2 𝜇𝜇(𝑑𝑑𝑥𝑥)
ℝ𝑛𝑛

= 𝑀𝑀2 

We say that 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞) is in isotropic position if 
sup𝑥𝑥∈ℝ𝑛𝑛 𝑓𝑓 = ∫ 𝑓𝑓(𝑥𝑥) = 1, and 𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓) is scalar matrix. In 
other words 𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓) = 𝐿𝐿𝑓𝑓

2𝐼𝐼𝑑𝑑. For observation ∫|𝑥𝑥|2𝜇𝜇(𝑑𝑑𝑥𝑥) =
𝐿𝐿𝑓𝑓

2. In the same way, for every log – concave function 
𝑓𝑓: ℝ𝑛𝑛 → [0, ∞) the level set is 𝐾𝐾𝑓𝑓(𝑡𝑡) = {𝑥𝑥 ∈ ℝ𝑛𝑛: 𝑓𝑓(𝑥𝑥) ≥ 𝑡𝑡}. 

   From another point of view for a log – concave function to 
be a density function for an isotropic random variable then 
𝑓𝑓 ≈ 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝛽𝛽 density function.   

3.1  Theorem: Let 𝑋𝑋 be an isotropic random vector in 
ℝ𝑛𝑛 with a log – concave density. Let 1 ≤ 𝑘𝑘 ≤ 𝛽𝛽𝑐𝑐1  be an 
integer. Then there exist a subset ℰ ⊆ 𝐺𝐺𝑛𝑛,𝑘𝑘 with 𝜇𝜇𝑛𝑛,𝑘𝑘(ℰ) ≥
1 − 𝐶𝐶 exp(−𝛽𝛽−𝑐𝑐2) such that for any 𝐸𝐸 ∈ ℰ, the following 
holds: Denote by 𝑓𝑓𝐸𝐸 the density of the random vector 
𝑠𝑠𝑟𝑟𝐶𝐶𝑝𝑝𝐸𝐸(𝑥𝑥). Then, 

|𝑓𝑓𝐸𝐸(𝑥𝑥)
𝛾𝛾(𝑥𝑥) − 1| ≤ 𝐶𝐶

𝛽𝛽𝑐𝑐3
… … (12) 

For all 𝑥𝑥 ∈ 𝐸𝐸 with |𝑥𝑥| ≤ 𝛽𝛽𝑐𝑐4. Here 𝛾𝛾(𝑥𝑥) =
(2𝜋𝜋)−𝑘𝑘

2 exp (− |𝑥𝑥|2

2 ) is the standard Gaussian density in 𝐸𝐸, 

and 𝐶𝐶, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4 > 0 are universal constants. 
Notation: We say that the random variable 𝑋𝑋 in ℝ𝑛𝑛 is in 
isotropic position or isotropic if the following holds: 𝐸𝐸(𝑋𝑋) =
0, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) = 𝐼𝐼𝑑𝑑. In other words 𝑋𝑋~𝑁𝑁(0,1). 
3.2 Corollary: Let 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞) be log – concave 
function which is in isotropic position, then for the 
distribution function of any random variable 𝑥𝑥 ∈ 𝐾𝐾𝑓𝑓, the 
appropriate density function is equivalent to a Gaussian 
density in such way that: 

𝑥𝑥~𝑁𝑁(0, 𝐿𝐿𝑓𝑓
2) … … (13) 

   Now let 𝑑𝑑𝑇𝑇𝑇𝑇 = 2 sup𝐴𝐴⊂Ω[𝑠𝑠𝑟𝑟𝐶𝐶𝑠𝑠{𝑋𝑋 ∈ 𝐴𝐴} − 𝑠𝑠𝑟𝑟𝐶𝐶𝑠𝑠{𝑌𝑌 ∈ 𝐴𝐴}] 
denote the total variance distance, which 𝑋𝑋 and 𝑌𝑌 are some 
random variable in some measure space Ω.  
3.3 Theorem: There exist a sequence 𝜀𝜀𝑛𝑛 → 0 , 𝛿𝛿𝑛𝑛 →
0 𝑠𝑠𝑠𝑠 𝛽𝛽 → ∞ for which the following hold: Let 𝛽𝛽 ≥ 1, and let 
𝑋𝑋 be a random vector in ℝ𝑛𝑛 with an isotropic, log – concave 
density. Then there exists a subset Θ ⊂ 𝑆𝑆𝑛𝑛−1 with 𝜎𝜎𝑛𝑛−1(Θ) ≥
1 − 𝛿𝛿𝑛𝑛 such that for all 𝜑𝜑 ∈ Θ; 

𝑑𝑑𝑇𝑇𝑇𝑇(〈𝑥𝑥, 𝜑𝜑〉, 𝑍𝑍) ≤ 𝜀𝜀𝑛𝑛 … … (14) 
Where, 𝑍𝑍~𝑁𝑁(0,1) is the standard normal distribution. 
Now, we had the following corollary. 
3.4 Corollary: Let 𝑋𝑋 be a random vector in ℝ𝑛𝑛 and 
satisfies 𝐿𝐿𝐿𝐿𝑃𝑃, with an isotropic log – concave density 
function 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞).set 𝜀𝜀 ∈ [0,1], 𝛿𝛿 ∈ [0,1]. Then with 
probability greater than 1 − 𝛿𝛿𝑛𝑛there exist a subspace 𝐺𝐺𝑛𝑛,𝑘𝑘 ⊂
ℝ𝑛𝑛of dimension 𝑘𝑘 = 𝑘𝑘(𝜀𝜀, 𝛽𝛽, 𝐶𝐶) such that for every 𝐴𝐴 ⊂ 𝐺𝐺𝑛𝑛,𝑘𝑘 
and for all 𝑦𝑦 ∈ 𝐴𝐴, 𝑋𝑋 has a density function of the form : 

𝑓𝑓𝐴𝐴(𝑋𝑋) = 1

(2𝜋𝜋𝐿𝐿𝑓𝑓
2)

𝑘𝑘
2

∫ 𝑠𝑠
−𝑑𝑑𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)

2𝐿𝐿𝑓𝑓
2 𝜇𝜇𝑛𝑛,𝑘𝑘𝑑𝑑(𝑥𝑥)

𝐴𝐴
… … (15) 
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Such that: |𝑃𝑃(〈𝑥𝑥, 𝑦𝑦〉 ∈ 𝐴𝐴) −

1

(2𝜋𝜋𝐿𝐿𝑓𝑓
2 )

𝑘𝑘
2

∫ 𝑒𝑒
−𝑑𝑑𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)

2𝐿𝐿𝑓𝑓
2 𝜇𝜇𝑛𝑛,𝑘𝑘𝑑𝑑(𝑥𝑥)𝐴𝐴 | ≤ 𝜀𝜀𝑛𝑛 … … (16) 

And here 𝑋𝑋~𝑁𝑁(0, 𝐿𝐿𝑓𝑓
2), and 𝜀𝜀𝑛𝑛 → 0, 𝛿𝛿𝑛𝑛 → 0 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞. 

The principles of concentration of measure for the log – 
concave function appear in the next lemma. 
3.5  Lemma: Let 𝑛𝑛 ≥ 2 and let 𝑔𝑔, 𝑓𝑓: ℝ𝑛𝑛 → [0, ∞)be 
continuous log – concave functions, 𝐶𝐶2 − 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ on [0, ∞), 
such that 𝑓𝑓(0) > 0, 𝑔𝑔(0) > 0, ∫ 𝑓𝑓 < ∞, ∫ 𝑔𝑔 < ∞. Assume 
that for any 𝑠𝑠 ≥ 0: 

|𝑓𝑓(𝑠𝑠) − 𝑔𝑔(𝑠𝑠)| ≤ 𝑒𝑒−5𝑛𝑛 min{𝑓𝑓(0), 𝑔𝑔(0)}  
Then, 

(1 − 𝑒𝑒−𝑛𝑛)𝑠𝑠𝑛𝑛(𝑔𝑔) ≤ 𝑠𝑠𝑛𝑛(𝑓𝑓) ≤ (1 + 𝑒𝑒−𝑛𝑛)𝑠𝑠𝑛𝑛(𝑔𝑔) 
Also, in the sense of 𝐿𝐿𝐿𝐿𝑃𝑃 we have; 
3.6 Lemma: Let 𝑋𝑋 ∈ ℝ𝑛𝑛 be a random point from an 
isotropic log – concave distribution. Then for any 𝑅𝑅 > 1 

𝑃𝑃(|𝑋𝑋| > 𝑅𝑅) ≤ 𝑒𝑒−𝑅𝑅 
One the most important probability properties of the log – 
concave measure appear  in the following theorem  
3.7 Theorem (Prekopa (1971,1973), Rinolt (1976)): 
Suppose 𝑃𝑃 is a probability measure on ℬ𝑛𝑛( (ℝ𝑛𝑛, ℬ𝑛𝑛) is a 
probability space) such that the affine hull of 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃) has 
dimension 𝑑𝑑. Then 𝑃𝑃 is log – concave if and only if there is 
a log – concave (density) function 𝑓𝑓 on ℝ𝑛𝑛 such that; 

𝑃𝑃(𝐵𝐵) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐵𝐵

        𝑓𝑓𝑠𝑠𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎  𝐵𝐵 ∈ ℬ𝑛𝑛 

IV- Concentration of Measure and Probability Density 
Function of Convex Bodies 

   The distribution of a linear functional on a convex set has 
a sub – exponential tail, that is, if 𝐾𝐾 ⊂ ℝ𝑛𝑛 of volume 1 and a 
linear functional 𝜑𝜑: ℝ𝑛𝑛 → ℝ we have 
𝑉𝑉𝑠𝑠𝑎𝑎𝑛𝑛{𝑥𝑥 ∈ 𝐾𝐾: |𝜑𝜑(𝑥𝑥)| ≥ 𝑠𝑠‖𝑥𝑥‖𝐿𝐿1(𝐾𝐾)} ≤ 𝑒𝑒−𝑐𝑐𝑐𝑐 (𝑓𝑓𝑠𝑠𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 > 1) 

Where, ‖𝑥𝑥‖𝐿𝐿1(𝐾𝐾) = ∫ |𝜑𝜑(𝑥𝑥)|𝐾𝐾 𝑑𝑑𝑥𝑥 and 𝑐𝑐 > 0 is universal and 
𝑉𝑉𝑠𝑠𝑎𝑎𝑛𝑛 stands for Lebesgue measure on ℝ𝑛𝑛. 
   In [2] B.Klartag, clarify this with more assumption, that is 
if 𝜑𝜑: ℝ𝑛𝑛 → ℝ be a non – zero, linear functional and non – 
negative with ‖𝜑𝜑‖𝐿𝐿1(𝐾𝐾) = 1, and if 𝑥𝑥 is a random variable 
that is distributed uniformly in 𝐾𝐾 ⊂ ℝ𝑛𝑛(convex body), then 
𝜑𝜑(𝑥𝑥) has density proportional to 𝑒𝑒−𝑐𝑐 for some 0 ≤ 𝑠𝑠 ≤ 𝑛𝑛 −
1. For example if ℰ ⊂ ℝ𝑛𝑛 is an ellipsoid with volume 1 and 
𝜑𝜑 with assumption as before, then 𝜑𝜑 has density has density 

function proportional to exp (−𝑎𝑎𝑐𝑐2

2 ) for some 𝑎𝑎 > 0. 
   B. Klartag[4] and R. Eldan, B. Klartag[15] was described 
the concentration of measure on convex bodies and a central 
limit theorem for convex bodies. According to Dvortzky’s 
theorem, the geometric structure of the support of the 
suggested distribution may be approximated by a regular 
body like, Euclidean ball or ellipsoid. 
4.1  Theorem (Borell’s inequality): Let 𝐺𝐺(𝑠𝑠), 𝑠𝑠 ∈ 𝑇𝑇 be 
a centered Gaussian process indexed by the countable set 𝑇𝑇, 

and such that sup𝑐𝑐∈𝑇𝑇 𝐺𝐺(𝑠𝑠) < ∞ almost surely. Then 
𝐸𝐸 sup𝑐𝑐∈𝑇𝑇 𝐺𝐺(𝑠𝑠) < ∞, and for every 𝑓𝑓 ≥ 0 we have, 

𝑃𝑃{sup𝑐𝑐∈𝑇𝑇 𝐺𝐺(𝑠𝑠) − 𝐸𝐸 sup𝑐𝑐∈𝑇𝑇 𝐺𝐺(𝑠𝑠) ≥ 𝑓𝑓} ≤ 2𝑒𝑒−𝑟𝑟2
2𝜎𝜎 … … (17) 

Where, 𝜎𝜎2 = sup𝑐𝑐∈𝑇𝑇 𝐸𝐸(𝐺𝐺2(𝑠𝑠)) ≤ ∞. 
4.2 Definition: A Borell measure 𝜇𝜇 in ℝ𝑛𝑛 is called log 
– concave, if for any compact sets 𝐴𝐴, 𝐵𝐵 ⊂ ℝ𝑛𝑛, and any 0 ≤
𝜆𝜆 ≤ 1; 

𝜇𝜇(𝜆𝜆𝐴𝐴 + (1 − 𝜆𝜆)𝐵𝐵) ≥ (𝜇𝜇𝐴𝐴)𝜆𝜆(𝜇𝜇𝐵𝐵)1−𝜆𝜆 
Here, 𝜆𝜆𝐴𝐴 + (1 − 𝜆𝜆)𝐵𝐵 = {𝜆𝜆𝑥𝑥 + (1 − 𝜆𝜆)𝑦𝑦: 𝑥𝑥 ∈ 𝐴𝐴, 𝑦𝑦 ∈ 𝐵𝐵}. 
4.3 Definition: A random vector 𝑋𝑋 is called log – 
concave, if  its density has the form : 

𝑓𝑓𝑋𝑋(𝑥𝑥) = exp(−𝑠𝑠(𝑦𝑦)) … … (18) 
Where, 𝑠𝑠: ℝ𝑛𝑛 → [0, ∞) is a convex function. 
4.4 Corollary: Every random variable 𝑋𝑋 which satisfies 
𝐿𝐿𝐿𝐿𝑃𝑃 is log – concave and the rate function 𝐼𝐼 is convex 
function. 
4.5 Theorem (Dvortzk’s Theorem): Let 𝐾𝐾 be an 
origin – symmetric convex body in ℝ𝑛𝑛 such that the ellipsoid 
of maximum volume contained in 𝐾𝐾 is the unite Euclidean 
ball 𝐵𝐵2

𝑛𝑛. Fix 𝜀𝜀 ∈ (0,1). Let 𝐸𝐸 be the random space of 
dimension 𝑑𝑑 = 𝑐𝑐𝜀𝜀−2 log 𝑛𝑛 down from the Grassmanian 𝐺𝐺𝑛𝑛,𝑑𝑑 
according to the Haar measure, then there exist 𝑅𝑅 ≥ 0 such 
that with high probability (say 0.99), we have; 

(1 − 𝜀𝜀)𝐵𝐵(𝑅𝑅) ⊆ 𝐾𝐾 ∩ 𝐸𝐸 ⊆ (1 + 𝜀𝜀)𝐵𝐵(𝑅𝑅) 
4.6 Theorem: Let ‖𝑥𝑥‖𝑌𝑌 be a norm on ℝ𝑛𝑛. Let 𝑔𝑔 ∈ ℝ𝑛𝑛 
be the standard Gaussian vector. Set ; 

𝑏𝑏(𝑌𝑌) = max𝑥𝑥∈𝑆𝑆𝑛𝑛−1‖𝑥𝑥‖𝑌𝑌 
Then, a random subspace 𝐸𝐸 ⊂ ℝ𝑛𝑛 of dimension 𝑘𝑘 =
𝑐𝑐𝜀𝜀2 𝐸𝐸‖𝑔𝑔‖𝑌𝑌

𝑏𝑏(𝑌𝑌)  satisfies ∀𝑥𝑥 ∈ 𝐸𝐸; 

(1 − 𝜀𝜀)‖𝑥𝑥‖2 ≤ ‖𝑔𝑔‖𝑌𝑌 ≤ (1 + 𝜀𝜀)‖𝑔𝑔‖2 
Let 𝐺𝐺 be an 𝑛𝑛 × 𝑘𝑘 Gaussian matrix. Set 𝐸𝐸 = 𝐺𝐺ℝ𝐾𝐾. Then 𝐸𝐸 is 
uniformly distributed over the Grassmanian 𝐺𝐺𝑛𝑛,𝑘𝑘. 
Notation: We note that for an isotropic convex body in ℝ𝑛𝑛 
we have ‖𝐾𝐾‖ = 1 with isotropic constant 𝐿𝐿𝐾𝐾. 
Now we had our main result for the paper. 
4.7 Corollary: Let 𝐾𝐾 ⊂ ℝ𝑛𝑛 be an isotropic convex body 
with log – concave measure. Let 𝜀𝜀 ∈ [0,1]. Suppose that 
𝑆𝑆𝑛𝑛−1 ⊂ 𝐾𝐾 with |𝑥𝑥| ≤ 𝑐𝑐(𝜀𝜀)‖𝑥𝑥‖𝐾𝐾, let 𝐸𝐸 be a random subspace 
of dimension 𝑑𝑑 = 𝑑𝑑(𝜀𝜀, 𝑛𝑛) such that 𝐸𝐸 = 𝐺𝐺𝑆𝑆𝑛𝑛−1, and  

(1 − 𝜀𝜀)|𝑥𝑥| ≤ ‖𝑥𝑥‖𝐾𝐾∩𝐸𝐸 ≤ (1 + 𝜀𝜀)|𝑥𝑥| … … (19) 
Then, for every 𝑥𝑥 ∈ (𝐾𝐾 ∩ 𝐸𝐸), there is a distribution density 
function 𝑓𝑓𝐾𝐾∩𝐸𝐸 of the form ; 

𝑓𝑓𝑥𝑥∈(𝐾𝐾∩𝐸𝐸)(𝑥𝑥) ≔  1
(2𝜋𝜋𝐿𝐿𝐾𝐾

2 )
𝑑𝑑
2

∫ 𝑒𝑒
−𝑑𝑑𝑇𝑇𝑇𝑇(𝑥𝑥,𝑦𝑦)

2𝐿𝐿𝑘𝑘
2 𝜇𝜇𝑛𝑛,𝑑𝑑(𝑑𝑑𝑥𝑥)

𝐾𝐾∩𝐸𝐸
… … (20) 

For every 𝑦𝑦 ∈ 𝐸𝐸, such that 
𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥∈ℝ𝑛𝑛|𝑃𝑃(𝑥𝑥 ∈ (𝐾𝐾 ∩ 𝐸𝐸)) − 𝑓𝑓𝐾𝐾∩𝐸𝐸(𝑥𝑥)| ≤ 𝜀𝜀 … … (21) 

1. Discussion: The notion of convex bodies assists 
powerfully in the study of scattering data in the space 
ℝ𝑛𝑛. Many topics had been discuss the problem of 
optimization under more and more conditions. A convex 
body in a space describes the geometric structure of the 
random data, in the sense of probability measure to 
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guarantee that the same points of data will be in the 
same group (Cluster). Under the concentration of 
measure we will do the same. 
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