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Abstract—Designing database systems is an inherently complex 
process, especially with the Big Data Era and the spectacular 
evolution of conceptual, logical, physical models, deployment 
platforms, and the complexity of queries. As a result, the database 
(DB) design often has to compare the goodness performance of 
hypothetical designs without having to access the full databases and 
hardware of end-users. Every physical design solution is not valid 
for every database and workload and is not adequate for every 
context. To tackle this problem, we propose an approach, based 
on the Model Driven Architecture (MDA) to facilitate the selection 
of the right physical design for non-expert users. The approach is 
based on three different models:

(i)	 a requirements model based on goal-oriented modeling 
for representing information requirements, (ii) a Database 
Context model for representing database, and query which will 
be connected to database materialization and, (iii) a database 
materialization model for representing physical design details 
regardless of their implementation technology (e.g. hardware, disk-
layout, Deployment-Platform, deployment Architecture). Together 
with these models, a set of transformations allow us to provides 
a database without requiring the setup of physical hardware, the 
deployment of architecture, or the need to configure the database. 
Finally, a case study is presented.

Keywords: database physical design, Model Driven Architecture

, User requirements.

I.	Introduction
Designing database systems is an inherently complex process, 

especially with the Big Data Era and the spectacular evolution of 
conceptual, logical, physical models, deployment platforms, and 
the complexity of queries. This process imposes the evaluation of 
the quality of service (QoS) of non-functional properties such as 
usability, reliability, performance, etc. [17] according to criteria 
limiting databases (DB) to a certain number of connections or a 
peak level of I/O, or some other criteria. Due to the increasing 
needs of companies and businesses to store and analyze the del-
uge of data, performance becomes one of the major requirements. 
The satisfaction of this requirement necessitates the optimal se-
lection of  DB deployment architecture [15].

From the conceptual modeling perspective, the Conceptual- 
Model Programming [6] and the agile methods [16], [17] in de-
signing databases pose new challenges on the traditional vision 
of database development, in which, the conceptual models are in-
dependent of underlying database materialization (e.g. hardware, 
disk-layout, deployment-Platform, deployment- Architecture).

A.Problem statement
In general, the DB deployment depends on a physical design 

vocabulary. The deployment-platform, deployment- architecture, 
and storage-device such as storage memory size, block size. In 
the DB design process, if we want to check whether ER schema 
is lively, we need to mappe ER schema into a relational schema 
and the corresponding SQL generated that represents a physical 
schema. To assist their users (in this case, the Database Admin-
istrator, or DBA) can start the final step of creating a database 

in the server.  They must have to specify a few parameters such 
as the DB server (e.g. DBMS version, memory target) and ar-
chitecture parameters (e.g. number of nodes in parallel environ-
ments). While many professionals involved in software releases 
are feeling the pain of DB deployments. To realize the choice of 
deployment architecture, we must realize a series of tests about 
CPU, memory, disk, buffer pool utilization based on quality met-
rics for this resource (e.g. throughput, response time, scalabili-
ty, and others). By exploring the major state-of-art, manually or 
semi-automated conceptual approach can increase the   cost of 
DB deployment and gives less time to react to problems. Current-
ly, most of the proposed technique is based on a manual approach 
that is time- consuming, skill-intensive for expert designers, and 
requires manual matching according to the application.	

B.	 Contribution
In this paper, we focus on the contribution of linking concep-

tual design to physical design by translating the conceptual model 
specification automatically via MDE into a physical data model 
(e.g. deployment and storage characteristics). The main objective 
of this work is to provide a DB materialization from conceptual 
model to the user application and reason up of the causality of 
its cause as mapping rules which reduce performance. For in-
stance, the choice of a supported DBMS server hosting a DB: 
SQL, NoSQL (e.g. MongoDB1  or Cassandra2), NewSQL (e.g. 
VoltDB) according to the CAP Theorem [2]), the choice of phys-
ical structure like partitioning strategy is well- suited to OLTP/
Web workloads. Consequently, we propose a framework. It is 
an intermediate framework between DB design and practical sys-
tems deployed that non-technical stakeholders (users, owners, 
clients) should be able to use this framework. In our knowledge, 
there is still no commercial tool that directly translates a concep-
tual data model into a materialization to help the user to translate 
the requirements of DB applications into diverse physical config-
uration and reduce the space of possible variants because an eval-
uation of the whole variant space within this work is not feasible.

C.Paper Outline
Our paper is structured as follows: Sect. II presents the data-

base  physical  design  domain.  Section  III  presents    our
1http://www.mongodb.org 2http://cassandra.apache.org 
approach to manage the variability of DB design. Section IV 

presents its evaluation process. Section V discussed the related 
works. Paper is conducted in Sect.   VI.

II.	 Ba ckground
In order to make this research self-contained and straight- for-

ward, this section introduces some fundamental notions of phys-
ical design for database systems.

A.Database Physical Design al models, storage lay- outs, the 
wide panoply of optimization structures, Deployment Paradigm, 
Deployment Architecture, and Storage Platform. Indeed, it would 
be much more interesting if the final DB design is valued in order 

1	 http://www.mongodb.org
2	 http://cassandra.apache.org
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to help the user to choose between different designs. In Testing 
Hardware in the Loop, the designer must have to deploy it on a 
DBMS and to compare the different costs of testing. This solu-
tion spends a lot of time/money on testing activities and adopt-
ed by companies such as GAFA (Google, Apple, Facebook and 
Amazon). The second solution is Testing Software in the Loop 
specialized tools such as database cost models [12] is a tool de-
signed to evaluate the performance of   a solution without having 
to deploy it on a DBMS, and to compare different solutions.

In practice, the DB deployment architecture is independent of 
the used query language. In a nutshell, each selected hard- ware, 
storage layout, architecture deployment, etc. have an impact on 
the workload cost, as follows (in chronological order of the DB 
design life-cycle). Accordingly, and depending on    the complex-
ity of the database system and the deployment architecture, the 
possible physical configuration is multiplying diversity of DB de-
sign. As a result, database design often has to compare goodness 
performance of hypothetical designs without having to access the 
full databases and hardware of end-users, from the conceptual 
modeling perspective, recently papers solution in the research DB 
community to facilitate the use of  Agile Methods in designing 
databases [16]. The agile methods challenge the traditional vision 
of database development, in which, the conceptual models are in-
dependent of underlying database materialization (e.g. hardware, 
disk-layout, database size) and increases the interdependencies 
between phases of the life cycle [17]. Other metrics such as us-
ability, reliability, quality,  security,  integrity,  etc.  must be taken 
into account in the database life cycle. For instance, a Relational 
Cloud Environments of database-as-a-service (DBaaS) well-suit-
ed to the high performance, high availability, and elastic scalabil-
ity. The choice of database deployment challenging for Database 
Administrators (DBAs). Moreover, this choice has a relevant im-
pact on the database performance required by end-users.

B.Motivating Example
Let consider a scenario that designer comes with a database 

schema and workload to evaluate the performance of a solution 
by having to deploy it on a DBMS, and to compare different solu-
tions. The generic conceptual processes of the database design 
are illustrated in Figure 1. In this case, we’re interested in the per-
formance criterion, for which, database design specifications be-
come as follows: Conceptual formalism has no direct measurable 
impact on performance, since it is requirement- oriented, and a 
modeling matter more than anything else. It will be of great value 
if the evaluation criteria were security or understandability. The 
user involves metrics for measuring the quality of a conceptual 
schema from the point of view of its understandability. To eval-
uate we must follow as: Conceptual schema determines which 
query to be considered from the whole workload since it provides 
the” local” schema related

Fig.1.   Process of Deploying the Database with Testing Hardware in the Loop.

to current requirements. The Logical Modeling features to de-
termine the algebraic operators to be used. Deployment Layout 
features serve to provide a final rewriting of the queries. In fact, 
queries have to be rewritten according to the final deployment of 

data. Deployment Paradigm, Deployment Architecture, and Stor-
age Platform feed the cost model with necessary parameters, such 
as storage information: memory size, block size, and the number 
of nodes in parallel environments. Optimization Structures deter-
mine the formula for each algebraic operator. Figure 1 shows the 
process of valuing the performance of DB design process. How-
ever, this is a very long, complex task and a manual solution, that 
relies on user experience and whereby he has to select the most 
appropriate paths to his application, and then compare their costs. 
the DB design process as a whole allows users to have an overall 
vision, consider life- cycle interdependencies, and tackle all DB 
design steps while increasing process automation. Moreover, in 
contrast to the classic DBMS-to-DB vision, according to which, 
comes the DBMS selection before the logical step, we  see  in  
figure  1  that the usual designer and DBA, like DB architect, an-
alyst, and developer evaluate the design process under NFR and 
can customize their choices. This observation has motivated us to 
closely analyze the latter and spot the main variables that control 
the life-cycle as well as their dependencies.

III.	 Proposed Solution
In this section, we  present our approach, which is the set     of 

step in the approach presented in Figure 2 to reduce the    gap 
between conceptual design and physical design. The usage

Fig.2.   Overview of our Framework architecture.

scenario is organized as it is shown in Figure 2. It shows a 
gescenario is organized as it is shown in Figure 2. It shows a 
generic scenario due to the usage of our framework. This latter 
helps designers to analyze step by step their database designs 
during the design phase, which can be increasingly improved by 
applying the three following processes:

•	 	Using the dbCxtDL design language for system modeling, or 
for refining imported models of CASE Tools (e.g. Power-
AMC).

•	 Selection of the database materialization by helping the da-
tabase designers to extract the relevant elements from the 
requirement of database application.

•	 	Generating script design from database materialization using 
the Object Constraint Language (OCL).

•	 In the following we detail it step by   step.
A.A Model-Based Approach
Our framework relies on the database context application that 

composes of three metamodels in green (the Requirement Data-
base Application Metamodel, the DB schema Metamodel, and 
the Query Metamodel) with database materialization using Con-
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text Mapping Relation, as depicted by Figure 3, pink and orange  
respectively.

B.Database Context Metamodel
Our approach starts from our Database Context Language 

Metamodel named dbCxtDL. By instantiating dbCxtDL lan-
guage, a designer with can specify the conceptual model of his/
her application (DB), a workload (Q) and Requirement Model 
(RM) (requirements of DB applications). Consider all instances 
on database context dbCxtDLi that are instances of dbCxtDL.  
One of these dbCxtDLi must be instantiate by database context 
Design Language Model like the query and the database meta-
model extracted from the Common Warehouse Metamodel 3 . 
dbCxtDL =<DB, Q, RM> where:  dbCxtDL characterized by the 
DB, workload and a set of element of DB application. Due to the 
lack of space, we are unable to present all metamodels.

•	 	Database: An instance of the Database class is composed of 
conceptual entities and their attributes. In addition, links be-
tween entities are also represented via associations. We also 
represent several semantically restrictions, such as primary 
and foreign keys.

•	 	Query: An instance of the Query class takes as input   a set 
of concepts which are used to perform a set of algebra op-
erations (join, union, etc.) or data manipulation operations 
(update, insert, etc.). An algebra operation can be a unary or 
a binary function. The result of the query can be restricted by 
a set of predicates using logical and arithmetic operators or 
textual   operators.

•	 	Requirement Model: Our approach bases on a goal- orient-
ed requirements model that allows us to capture informa-
tion needs, such as criteria involved by stake- holders. To 
describe the coordinates required to build a database context 
(Goal, Resource, Task) we follow the specification to auto-
mate database materialization in the deployment platform 
given. Our metamodel shown in Fig. 4. For instance, (i) if 
user needs to focus on high-availability and high-scalabil-
ity (the CAP Theorem [2]), NoSQL is recommended then 
SQL database, (ii) if ratio  of  [Qread/Qupdate]  >  1  and  
Application Server  > 2, Data Replication is generally rec-
ommended then data distributed, and (iii) Bitmap indexing is 
advantageous if low-cardinality domains, join operation, and 
aggregation operations.

C.Database Materialization
Database materialization composes of a set of parameters that 

are related to different categories.  Figure 5  gives  only a brief 
view of our meta-model classes that are organized on four cate-
gories of parameters:

•	 	Database parameters: elements of this category are related to 
the database and different functionalities that have to be pro-
vided by   the DBMS.  Through this   category3www.omg.
org/cwm/ we precise context parameters of storage systems 
(for instance relational or non-relational), buffer manage-
ment (e.g. the buffer pool size) and database schema (e.g. 
tables/columns, partitioning table).

•	 	Hardware parameters: generally, the hardware context param-
eters define device characteristics, such as processing device 
(e.g. CPU, Graphical Processing Units GPU, etc.), different 
storage device (e.g. Main-Memory, Solid State Drives SSD 
or Hard Disk Drive HDD) and communication device.

•	 	Query parameters: the query parameters mean concepts used 
to perform a set of algebra operations (join, select, etc.). The 
operation can be unary or binary function.  The result of the 
query can be restricted by a set of predicates. These operators 

should perform as fast as possible by exploiting underlying 
an access method (e.g., index methods or in-memory access 
methods [8]).

•	 	Architecture parameters: elements of this category contain 
the deployment architecture such as: distributed or parallel 
database systems, database clusters, or cloud environments. 
These category parameters feed the context on the type of the 
system architecture (e.g. shared memory, shared disc, etc.) 
and their parameters like the number of nodes in parallel en-
vironment.

The view is expressed as a feature tree in SPL. In our feature 
model of the DB materialization, we have approximately 151 fea-
tures. By using online automated analysis tool for feature models. 
S.P.L.O.T4 computed 4522 possible variants. Since we are not 
able to evaluate such a high number of possible variants, we have 
to limit our considerations to a selected number of features. We 
must reduce of the space of possible variants, because an evalu-
ation of the whole variant space within this work is not feasible.

D.Mapping Rules Elicitation and Formalization
The DBA Standards and recommended practices for database 

has been identified by academicians and industrials. In deploy-
ment database (disk, flash, etc.) development domain, engineers 
and designers have a great experience, and they can easily iden-
tify the shared concepts between devices, their re- placement 
policies, etc. A number of computer science problems such as 
selecting optimization structure, storage model choice, document 
intelligent retrieval would benefit from the capability to model 
the absolute meaning of a given domain. This experience gave 
us a motivation to propose a Mapping Repository MRrp for data-
base materialization. The MRrp contains rules which has impact 
on performance and help to choose the physical database config-
uration context corresponding to the design model

1)Formalization: We define a mapping rules as ECA type 
(Event, Condition - Action). A mapping rules are built on the fol-
lowing pattern: a list of at least one condition (connected    by a 
Logical Operator if more than one) which, if satisfied, implies 
what is defined within the action. Both conditions and the action 
are Operations, which are applied on Constrainable Elements, 
that is, a feature or an attribute of database materialization:

A rule RxCP is defined by (NRx, SRx, ERx, CRx, ARx) with:
•	 	NRx is the name identifying the rule,
•	 	SRx designates the component kind of the rule. Rules can 

be associated with either an attribute value (AVi), either to a 
features (Fi), either to a hierarchy (variants, children) (FHj) 
of DB materialization.

•	 	ERx is the manipulation operations triggering the rule and 
that are applied to the input required (DB, Q, RM) for imple-
menting the database:
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•	

Fig.3.   Database Context Metamodel connected to the Database Materialization

Fig.4.   User requirements metamodel of DB applications.

ERx=<exclude|require|recommend|recommendnot|Cardinal-
Attribute >. These operations are controlled by guideline, mean-
ing that all mandatory children have to be selected whenever this 
parent is selected, at least one feature must be selected, exactly 
one of these children has to be selected.

•	 	CRx is a condition defining if the rule is triggered through a 
current ERx.

•	 condition1 δ ... δ conditionn → action, with δ∈ {∧, ∨}. Note 
that the Abstract Operation is only for modeling purpose, as 
a condition is either a Value Operation or a simple Operation. 
Each conditioni is defined as: conditioni= Element.attribute 
θ Value, with θ ∈ {<;<=; >;>=} and Element of dbCxtDL 
<DB, Q, RM>.

•	 	ARx is the sequence of actions triggered. The actions apply 
to the components (feature, child-feature, attribute, etc.) of 
the database materialization. Actions should be included or 
excluded from a database materialization.

•	 In the following, we describe this transformation:
•	 	R1:  each concept or class c ∈ dbCxtDL is mapped to a fea-

tures (Fi), either to a hierarchy (variants, children) (FHj) of 
DB materialization.

•	 	R2: each attribute a ∈ attributes are mapped to a property 
definition (an attribute value (AVi)) of DB materialization, 

•	 where their value can be constrained to be in a given range, 
greater, lower and/or equal to a given value, or compared 
with another value.

•	 	R3: each association between classes c1, c2…, cn of dbCx-
tDL is mapped to either an attribute value (AVi), either to a 
features (Fi), either to a hierarchy (variants, children) (FHj) 
of DB materialization.

•	 example we define OCL constraints, which represent basic 
deployment of database rules. The first one checks that the 
server number of a database is always greater than 1, the sec-
ond one verifies that the Types of Non-functional require-
ment are high consistency ∧ availability, and ensures a client 
has Application Type is Transaction Profile. In this case, the 
relational data model is recommended.

context   Goal. NFRequirement   -> includesAll ( high consis-
tency  and  availability  )

context   Resource . Database   valid Server :   self.
A pplication Server   >   1
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context   Resource . A pplication Profile   ->   select   ( Trans-
action   Profile   |   OLTP )

Listing 1.   Textual Constraints

Fig.5.   Excerpt of database materialization parameters meta-model: core entities

2)Instantiation of the MR Analysis Repository: We can reuse 
the mapping rules of similar works to reduce their total cost of 
testing. We propose an analysis repository MRrp, which

is a reorganization of concepts tackled in Section III-D1. So,   
for factoring the number of assumptions and to guarantee a good 
scalability of the analysis repository, we suggest that the analysis 
repository contains also a set of identification rules R. They will 
help for identifying correctly the closest database context match-
ing the design model (dbCxtDL) which requests analysis.

Let Sr be a function for specifying database contexts in the 
analysis repository.  where, Sr(dbCxtDLi) = Rundef   ∪ Rtrue ∪ 
Rfalse= R, such that:

	 Ri
true is a set of rules which have to be satisfied, for every

 ri ∈ Ri
true, dbCxtDL |= ri ;

	 Ri
false is a set of rules whose complements have to be

satisfied, for every ri ∈ Ri
false , dbCxtDL |= (ri) ;̅

	 Ri
undef = R\ (Ri

true ∪ Ri
false)

 	 Database Schema and Query instance
To illustrate the different transformation steps of our frame- 
To illustrate the different transformation steps of our frame-

work we introduce as a running example the conceptual schema
presented in Figure 6 representing a simple excerpt of an
application. User can using a Conventional Database Schema
(e.g. TPC-H,SSB benchmark) or import the XMI file gener-

ated
from CASE Tool like PowerAMC. This schema is specified
using the ER notation that describe the SSB schema 5. The
schema contains a fact table Line order, and four dimension
tables: Customer, Supplier, Part and Dates. The OLAP que-

ries
are download file which is stored in a folder. Note that every

query instance has to conform to dbCxtDL design language. 
  
We propose an analysis repository, which is a reorganization 

as set of rules: R (NRx, SRx, ERx, CRx, ARx). In this section, 
we surround some capabilities of the MRrp Repository by instan-
tiating its elements, we have formalized this problem as follow: 
Cxt =< DB, W, RM > where: Cxt characterized by the DB, the 
workload consists of a set of queries W = q1... qm and the set of 
the element of requirements DB applications. MRrp is a mapping 
rules repository characterized by the set of Rules. Then, MRrp = 
< NRx, SRx, ERx, CRx, ARx > where:

X the context that represents all assumptions related to the
nature of the application.
As we have presented earlier in this paper, our goal is to orient 

designers to choose the appropriate cost model. Thus, the diffi-
culty for database designers is to choose the most suitable DBMS 
and database platform which matches the characteristics of the 
designed system. Once features have been identified, not all pos-
sible combinations of them correspond to feasible SPL instances. 
Thanks to the ContextMappingRelation class (see  Figure 4).

	 Case studies: proof of concepts
To stress our approach and to proof how it is useful and help-

ful, this section is devoted to present a global usage scenario of 
our framework. In parallel, technical implementations are high-
lighted.

A.Database Schema and Query instance
To illustrate the different transformation steps of our frame- 
To illustrate the different transformation steps of our frame-

work we introduce as a running example the conceptual schema
presented in Figure 6 representing a simple excerpt of an
application. User can using a Conventional Database Schema
(e.g. TPC-H,SSB benchmark) or import the XMI file gener-

ated
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from CASE Tool like PowerAMC. This schema is specified
using the ER notation that describe the SSB schema 5. The
schema contains a fact table Line order, and four dimension
tables: Customer, Supplier, Part and Dates. The OLAP que-

ries
are download file which is stored in a folder. Note that every
query instance has to conform to dbCxtDL design language.

Fig.6.  Import Database Schema and Query instance

B.	 Specifying Database Application Requirements
We assume that a design office of a company comes up with 

a database application with its components (database schema, 
workload, requirement of database application) and looks for a 
relevant DBMS that fulfills its requirements. This need has to 
be expressed via the seeker interface by using the meta-model. 
An instance of the meta-model dedicated to express this need 
is called a Manifest. Therefore, the engineers of this company 
may access our mapping repository to get the most appropriate 
DBMS that corresponds their manifest. To  clarify  the  utility 
of the Manifest concept, Figure 7 represents an example of the 
DB application requirements instance, where Application Server 
configuration are missing.

Fig.7.  Example of the DB application requirements

C.Instantiation of the identification rules
Every identification rule is specified through its properties in 

particular the description property. For instance, the proposition” 
‘the hardware storage device is HDD”’ is represented by the iden-
tification rule StorageDeviceHDD. The description of this latter 
means that if the evaluation result is true, hence the hardware 

architecture is HDD. Otherwise, the hardware architecture is not 
HDD. Figure 8 shows the identification rules that we have created 
in the repository. They correspond to the following propositions:

•	 The database schema is SQL
•	 	The Deployment Architectures is Centralized
•	 	The Processing Device is CPU
•	 	The Optimization Structures is Index
•	 	The Primary Storage is   RAM
•	 	The Storage Device is HDD
•	 	The Integrated Persistent Buffer is   SSD
•	 	The Storage Model is RowStore
•	 	The Processing Model is Tuple-at-a-time
•	 	The deployment architecture is Sharednothing Infrastructure;
•	 	The Optimization Structure Mode selection is Combined
•	 	The DBMS Licensing Type is Open   Source
•	 The rules DBMSKind is available or Undefined because Un- 

known information in requirement model instance or reposi-
tory content. In this case user can choose a Product Configu-
ration Option:” ‘Manually customize”’or”‘Set by  default”’.

D.Design tool for instantiating of database materialization
To facilitate the identification of database materialization pa-

rameters, we based on the description of three models: schema 
description model and query description model and architecture 
parameters (see Figure 9). We  present in Figure   9

Fig.8.  Identification rules and their properties

an excerpt of the database materialization instance generated 
by a set of identification rules.

Figure 9 shows the instantiation of some parameters of the 
database materialization corresponding to a manifest of Figure7. 
These parameters is done by using dbCxtDL language. These pa-
rameters are described by several characteristics related to the 
Deployment Platform, Storage Device, and Deployment Archi-
tecture.
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E.Generating Script
The last step in MDE processes is a PSM-to-code trans- for-

mation, which generates the target database structures (e.g. da-
tabase schema, index, materialized view, configuration files...). 
Thanks to the interoperability facilitated by model- driven en-
gineering, we have developed a user-friendly tool to exploit the 
parameters of materialization related of database, query, physical 
structure, device and storage layout as XMI files to a script by us-
ing Acceleo language. Listing 2 presents  an excerpt of the DDL 
statement generated from the database materialization for each 
physical structure (e.g. Index, Materialized view) and database 
system properties (e.g. parallel max servers, memory target, sga 
max size) require for ACID databases.

Listing 2.  Script of Physical Structure and DB system prop-
erties

IV.	 Related work

The BD research  community  has proposed model-driven 
approaches to DB development process that support automatic 
code generation (see [4] for survey). Many practitioners have no 
formal education in DB design and are unfamiliar with query op-
timization techniques and database deployment. By examining 
the current BD design life-cycle, we found that works consider 
dependencies between 3-phase design: conceptual (CD), logical 
(LD) and physical (PD) and other focusing only on a part of the 
BD design process. For  instance, In et al. [14] proposed a proto-
type of a DBMS product line, focusing only on PD ,LD schemas 
normalized. The automatic design process via a code generator 
consider dependencies between 3- phase design [9] and increases 
the interdependencies between phases of the life cycle [17], [16]. 
Several solutions (e.g. [11], [13], [7]) provide transformations 
from ER and UML models to relational DB then translated to an 
SQL definition before generating a server-side API (e.g. CASE 
Tools Rational   Rose,

Fig.9.  Excerpt of the database materialization instance
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PowerAMC). More specific to NoSQL DB with different data
models, such as key-values and document stores [1], the 

NoSQL
Schema Evaluator [10] generates query implementation plans
from a conceptual schema and workload definition. In [3], au-

thor focus on generating NoSQL DB (including key-value stores
and document databases) from UML models. Gwendal Dan-

iel
et al. propose the UMLtoGraphDB framework [5]. There 

have
been very interesting industrial and commercial solutions of
code generation from CD. However, this solution does not 

take
into account constraints specified in the deployment model.
Moreover, the conceptual/logical models are independent of
underlying DB materialization (e.g. hardware, disk-layout, 

DB
size). According to the known literature, this is the first frame-

work that improve the way designers select DB deployment
architecture

V.	 Conclusion

The main objective of this work is to reduce the gap between
the model and practical systems. We propose approach for
conceptual Model to DB materialization to improve the way
designers evaluate their system design. In this paper, we have
presented the MR Analysis Repository. Each instantiation of
the MR Analysis Repository offers a repository based on a set
of identification rules, their evaluation can lead to the data-

base
context of the design model. Moreover, the meta-model of the
MR Analysis Repository is flexible and can be enriched by
analysts in order to add other characteristics. In the next pa-

per,
we link the MR analysis repository with the dbCxtDL design
language in order to obtain a complete design framework. 

This
enables the design at the same time as to orient designers
(especially modelers) to choose the most suitable database
physical configuration. We have presented an example show-

ing
the instantiation of the MR analysis repository. At this stage,
the identification rules have been presented in an informal 

way.
The core of identification rules and how they check the design
model. Yet, how model transformation through the analysis
repository instance generate the script of database physical
design. As for future work, we intend to perform case studies
in real scenarios and to provide formal descriptions for the
solution proposed.
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