
28

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

Requirements Driven Database Physical Design
Abdelkader Ouared

Ibn Khaldoun University (UIK) Tiaret, Algeria
abdelkader.ouared@univ-tiaret.dz

Fatima Zohra Kharroubi
Ibn Khaldoun University (UIK) Tiaret, Algeria

fatima.kharroubi@univ-tiaret.dz

Abstract—Designing database systems is an inherently complex
process, especially with the Big Data Era and the spectacular
evolution of conceptual, logical, physical models, deployment
platforms, and the complexity of queries. As a result, the database
(DB) design often has to compare the goodness performance of
hypothetical designs without having to access the full databases and
hardware of end-users. Every physical design solution is not valid
for every database and workload and is not adequate for every
context. To tackle this problem, we propose an approach, based
on the Model Driven Architecture (MDA) to facilitate the selection
of the right physical design for non-expert users. The approach is
based on three different models:

(i)	 a requirements model based on goal-oriented modeling
for representing information requirements, (ii) a Database
Context model for representing database, and query which will
be connected to database materialization and, (iii) a database
materialization model for representing physical design details
regardless of their implementation technology (e.g. hardware, disk-
layout, Deployment-Platform, deployment Architecture). Together
with these models, a set of transformations allow us to provides
a database without requiring the setup of physical hardware, the
deployment of architecture, or the need to configure the database.
Finally, a case study is presented.

Keywords: database physical design, Model Driven Architecture

, User requirements.

I.	Introduction
Designing database systems is an inherently complex process,

especially with the Big Data Era and the spectacular evolution of
conceptual, logical, physical models, deployment platforms, and
the complexity of queries. This process imposes the evaluation of
the quality of service (QoS) of non-functional properties such as
usability, reliability, performance, etc. [17] according to criteria
limiting databases (DB) to a certain number of connections or a
peak level of I/O, or some other criteria. Due to the increasing
needs of companies and businesses to store and analyze the del-
uge of data, performance becomes one of the major requirements.
The satisfaction of this requirement necessitates the optimal se-
lection of DB deployment architecture [15].

From the conceptual modeling perspective, the Conceptual-
Model Programming [6] and the agile methods [16], [17] in de-
signing databases pose new challenges on the traditional vision
of database development, in which, the conceptual models are in-
dependent of underlying database materialization (e.g. hardware,
disk-layout, deployment-Platform, deployment- Architecture).

A.Problem statement
In general, the DB deployment depends on a physical design

vocabulary. The deployment-platform, deployment- architecture,
and storage-device such as storage memory size, block size. In
the DB design process, if we want to check whether ER schema
is lively, we need to mappe ER schema into a relational schema
and the corresponding SQL generated that represents a physical
schema. To assist their users (in this case, the Database Admin-
istrator, or DBA) can start the final step of creating a database

in the server. They must have to specify a few parameters such
as the DB server (e.g. DBMS version, memory target) and ar-
chitecture parameters (e.g. number of nodes in parallel environ-
ments). While many professionals involved in software releases
are feeling the pain of DB deployments. To realize the choice of
deployment architecture, we must realize a series of tests about
CPU, memory, disk, buffer pool utilization based on quality met-
rics for this resource (e.g. throughput, response time, scalabili-
ty, and others). By exploring the major state-of-art, manually or
semi-automated conceptual approach can increase the cost of
DB deployment and gives less time to react to problems. Current-
ly, most of the proposed technique is based on a manual approach
that is time- consuming, skill-intensive for expert designers, and
requires manual matching according to the application.	

B.	 Contribution
In this paper, we focus on the contribution of linking concep-

tual design to physical design by translating the conceptual model
specification automatically via MDE into a physical data model
(e.g. deployment and storage characteristics). The main objective
of this work is to provide a DB materialization from conceptual
model to the user application and reason up of the causality of
its cause as mapping rules which reduce performance. For in-
stance, the choice of a supported DBMS server hosting a DB:
SQL, NoSQL (e.g. MongoDB1 or Cassandra2), NewSQL (e.g.
VoltDB) according to the CAP Theorem [2]), the choice of phys-
ical structure like partitioning strategy is well- suited to OLTP/
Web workloads. Consequently, we propose a framework. It is
an intermediate framework between DB design and practical sys-
tems deployed that non-technical stakeholders (users, owners,
clients) should be able to use this framework. In our knowledge,
there is still no commercial tool that directly translates a concep-
tual data model into a materialization to help the user to translate
the requirements of DB applications into diverse physical config-
uration and reduce the space of possible variants because an eval-
uation of the whole variant space within this work is not feasible.

C.Paper Outline
Our paper is structured as follows: Sect. II presents the data-

base physical design domain. Section III presents our
1http://www.mongodb.org 2http://cassandra.apache.org
approach to manage the variability of DB design. Section IV

presents its evaluation process. Section V discussed the related
works. Paper is conducted in Sect. VI.

II.	 Ba ckground
In order to make this research self-contained and straight- for-

ward, this section introduces some fundamental notions of phys-
ical design for database systems.

A.Database Physical Design al models, storage lay- outs, the
wide panoply of optimization structures, Deployment Paradigm,
Deployment Architecture, and Storage Platform. Indeed, it would
be much more interesting if the final DB design is valued in order

1	 http://www.mongodb.org
2	 http://cassandra.apache.org

OUARED A
KHARROUBI F

29

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

to help the user to choose between different designs. In Testing
Hardware in the Loop, the designer must have to deploy it on a
DBMS and to compare the different costs of testing. This solu-
tion spends a lot of time/money on testing activities and adopt-
ed by companies such as GAFA (Google, Apple, Facebook and
Amazon). The second solution is Testing Software in the Loop
specialized tools such as database cost models [12] is a tool de-
signed to evaluate the performance of a solution without having
to deploy it on a DBMS, and to compare different solutions.

In practice, the DB deployment architecture is independent of
the used query language. In a nutshell, each selected hard- ware,
storage layout, architecture deployment, etc. have an impact on
the workload cost, as follows (in chronological order of the DB
design life-cycle). Accordingly, and depending on the complex-
ity of the database system and the deployment architecture, the
possible physical configuration is multiplying diversity of DB de-
sign. As a result, database design often has to compare goodness
performance of hypothetical designs without having to access the
full databases and hardware of end-users, from the conceptual
modeling perspective, recently papers solution in the research DB
community to facilitate the use of Agile Methods in designing
databases [16]. The agile methods challenge the traditional vision
of database development, in which, the conceptual models are in-
dependent of underlying database materialization (e.g. hardware,
disk-layout, database size) and increases the interdependencies
between phases of the life cycle [17]. Other metrics such as us-
ability, reliability, quality, security, integrity, etc. must be taken
into account in the database life cycle. For instance, a Relational
Cloud Environments of database-as-a-service (DBaaS) well-suit-
ed to the high performance, high availability, and elastic scalabil-
ity. The choice of database deployment challenging for Database
Administrators (DBAs). Moreover, this choice has a relevant im-
pact on the database performance required by end-users.

B.Motivating Example
Let consider a scenario that designer comes with a database

schema and workload to evaluate the performance of a solution
by having to deploy it on a DBMS, and to compare different solu-
tions. The generic conceptual processes of the database design
are illustrated in Figure 1. In this case, we’re interested in the per-
formance criterion, for which, database design specifications be-
come as follows: Conceptual formalism has no direct measurable
impact on performance, since it is requirement- oriented, and a
modeling matter more than anything else. It will be of great value
if the evaluation criteria were security or understandability. The
user involves metrics for measuring the quality of a conceptual
schema from the point of view of its understandability. To eval-
uate we must follow as: Conceptual schema determines which
query to be considered from the whole workload since it provides
the” local” schema related

Fig.1. Process of Deploying the Database with Testing Hardware in the Loop.

to current requirements. The Logical Modeling features to de-
termine the algebraic operators to be used. Deployment Layout
features serve to provide a final rewriting of the queries. In fact,
queries have to be rewritten according to the final deployment of

data. Deployment Paradigm, Deployment Architecture, and Stor-
age Platform feed the cost model with necessary parameters, such
as storage information: memory size, block size, and the number
of nodes in parallel environments. Optimization Structures deter-
mine the formula for each algebraic operator. Figure 1 shows the
process of valuing the performance of DB design process. How-
ever, this is a very long, complex task and a manual solution, that
relies on user experience and whereby he has to select the most
appropriate paths to his application, and then compare their costs.
the DB design process as a whole allows users to have an overall
vision, consider life- cycle interdependencies, and tackle all DB
design steps while increasing process automation. Moreover, in
contrast to the classic DBMS-to-DB vision, according to which,
comes the DBMS selection before the logical step, we see in
figure 1 that the usual designer and DBA, like DB architect, an-
alyst, and developer evaluate the design process under NFR and
can customize their choices. This observation has motivated us to
closely analyze the latter and spot the main variables that control
the life-cycle as well as their dependencies.

III.	 Proposed Solution
In this section, we present our approach, which is the set of

step in the approach presented in Figure 2 to reduce the gap
between conceptual design and physical design. The usage

Fig.2. Overview of our Framework architecture.

scenario is organized as it is shown in Figure 2. It shows a
gescenario is organized as it is shown in Figure 2. It shows a
generic scenario due to the usage of our framework. This latter
helps designers to analyze step by step their database designs
during the design phase, which can be increasingly improved by
applying the three following processes:

•	 	Using the dbCxtDL design language for system modeling, or
for refining imported models of CASE Tools (e.g. Power-
AMC).

•	 Selection of the database materialization by helping the da-
tabase designers to extract the relevant elements from the
requirement of database application.

•	 	Generating script design from database materialization using
the Object Constraint Language (OCL).

•	 In the following we detail it step by step.
A.A Model-Based Approach
Our framework relies on the database context application that

composes of three metamodels in green (the Requirement Data-
base Application Metamodel, the DB schema Metamodel, and
the Query Metamodel) with database materialization using Con-

30

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

text Mapping Relation, as depicted by Figure 3, pink and orange
respectively.

B.Database Context Metamodel
Our approach starts from our Database Context Language

Metamodel named dbCxtDL. By instantiating dbCxtDL lan-
guage, a designer with can specify the conceptual model of his/
her application (DB), a workload (Q) and Requirement Model
(RM) (requirements of DB applications). Consider all instances
on database context dbCxtDLi that are instances of dbCxtDL.
One of these dbCxtDLi must be instantiate by database context
Design Language Model like the query and the database meta-
model extracted from the Common Warehouse Metamodel 3 .
dbCxtDL =<DB, Q, RM> where: dbCxtDL characterized by the
DB, workload and a set of element of DB application. Due to the
lack of space, we are unable to present all metamodels.

•	 	Database: An instance of the Database class is composed of
conceptual entities and their attributes. In addition, links be-
tween entities are also represented via associations. We also
represent several semantically restrictions, such as primary
and foreign keys.

•	 	Query: An instance of the Query class takes as input a set
of concepts which are used to perform a set of algebra op-
erations (join, union, etc.) or data manipulation operations
(update, insert, etc.). An algebra operation can be a unary or
a binary function. The result of the query can be restricted by
a set of predicates using logical and arithmetic operators or
textual operators.

•	 	Requirement Model: Our approach bases on a goal- orient-
ed requirements model that allows us to capture informa-
tion needs, such as criteria involved by stake- holders. To
describe the coordinates required to build a database context
(Goal, Resource, Task) we follow the specification to auto-
mate database materialization in the deployment platform
given. Our metamodel shown in Fig. 4. For instance, (i) if
user needs to focus on high-availability and high-scalabil-
ity (the CAP Theorem [2]), NoSQL is recommended then
SQL database, (ii) if ratio of [Qread/Qupdate] > 1 and
Application Server > 2, Data Replication is generally rec-
ommended then data distributed, and (iii) Bitmap indexing is
advantageous if low-cardinality domains, join operation, and
aggregation operations.

C.Database Materialization
Database materialization composes of a set of parameters that

are related to different categories. Figure 5 gives only a brief
view of our meta-model classes that are organized on four cate-
gories of parameters:

•	 	Database parameters: elements of this category are related to
the database and different functionalities that have to be pro-
vided by the DBMS. Through this category3www.omg.
org/cwm/ we precise context parameters of storage systems
(for instance relational or non-relational), buffer manage-
ment (e.g. the buffer pool size) and database schema (e.g.
tables/columns, partitioning table).

•	 	Hardware parameters: generally, the hardware context param-
eters define device characteristics, such as processing device
(e.g. CPU, Graphical Processing Units GPU, etc.), different
storage device (e.g. Main-Memory, Solid State Drives SSD
or Hard Disk Drive HDD) and communication device.

•	 	Query parameters: the query parameters mean concepts used
to perform a set of algebra operations (join, select, etc.). The
operation can be unary or binary function. The result of the
query can be restricted by a set of predicates. These operators

should perform as fast as possible by exploiting underlying
an access method (e.g., index methods or in-memory access
methods [8]).

•	 	Architecture parameters: elements of this category contain
the deployment architecture such as: distributed or parallel
database systems, database clusters, or cloud environments.
These category parameters feed the context on the type of the
system architecture (e.g. shared memory, shared disc, etc.)
and their parameters like the number of nodes in parallel en-
vironment.

The view is expressed as a feature tree in SPL. In our feature
model of the DB materialization, we have approximately 151 fea-
tures. By using online automated analysis tool for feature models.
S.P.L.O.T4 computed 4522 possible variants. Since we are not
able to evaluate such a high number of possible variants, we have
to limit our considerations to a selected number of features. We
must reduce of the space of possible variants, because an evalu-
ation of the whole variant space within this work is not feasible.

D.Mapping Rules Elicitation and Formalization
The DBA Standards and recommended practices for database

has been identified by academicians and industrials. In deploy-
ment database (disk, flash, etc.) development domain, engineers
and designers have a great experience, and they can easily iden-
tify the shared concepts between devices, their re- placement
policies, etc. A number of computer science problems such as
selecting optimization structure, storage model choice, document
intelligent retrieval would benefit from the capability to model
the absolute meaning of a given domain. This experience gave
us a motivation to propose a Mapping Repository MRrp for data-
base materialization. The MRrp contains rules which has impact
on performance and help to choose the physical database config-
uration context corresponding to the design model

1)Formalization: We define a mapping rules as ECA type
(Event, Condition - Action). A mapping rules are built on the fol-
lowing pattern: a list of at least one condition (connected by a
Logical Operator if more than one) which, if satisfied, implies
what is defined within the action. Both conditions and the action
are Operations, which are applied on Constrainable Elements,
that is, a feature or an attribute of database materialization:

A rule RxCP is defined by (NRx, SRx, ERx, CRx, ARx) with:
•	 	NRx is the name identifying the rule,
•	 	SRx designates the component kind of the rule. Rules can

be associated with either an attribute value (AVi), either to a
features (Fi), either to a hierarchy (variants, children) (FHj)
of DB materialization.

•	 	ERx is the manipulation operations triggering the rule and
that are applied to the input required (DB, Q, RM) for imple-
menting the database:

31

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

•	

Fig.3. Database Context Metamodel connected to the Database Materialization

Fig.4. User requirements metamodel of DB applications.

ERx=<exclude|require|recommend|recommendnot|Cardinal-
Attribute >. These operations are controlled by guideline, mean-
ing that all mandatory children have to be selected whenever this
parent is selected, at least one feature must be selected, exactly
one of these children has to be selected.

•	 	CRx is a condition defining if the rule is triggered through a
current ERx.

•	 condition1 δ ... δ conditionn → action, with δ∈ {∧, ∨}. Note
that the Abstract Operation is only for modeling purpose, as
a condition is either a Value Operation or a simple Operation.
Each conditioni is defined as: conditioni= Element.attribute
θ Value, with θ ∈ {<;<=; >;>=} and Element of dbCxtDL
<DB, Q, RM>.

•	 	ARx is the sequence of actions triggered. The actions apply
to the components (feature, child-feature, attribute, etc.) of
the database materialization. Actions should be included or
excluded from a database materialization.

•	 In the following, we describe this transformation:
•	 	R1: each concept or class c ∈ dbCxtDL is mapped to a fea-

tures (Fi), either to a hierarchy (variants, children) (FHj) of
DB materialization.

•	 	R2: each attribute a ∈ attributes are mapped to a property
definition (an attribute value (AVi)) of DB materialization,

•	 where their value can be constrained to be in a given range,
greater, lower and/or equal to a given value, or compared
with another value.

•	 	R3: each association between classes c1, c2…, cn of dbCx-
tDL is mapped to either an attribute value (AVi), either to a
features (Fi), either to a hierarchy (variants, children) (FHj)
of DB materialization.

•	 example we define OCL constraints, which represent basic
deployment of database rules. The first one checks that the
server number of a database is always greater than 1, the sec-
ond one verifies that the Types of Non-functional require-
ment are high consistency ∧ availability, and ensures a client
has Application Type is Transaction Profile. In this case, the
relational data model is recommended.

context Goal. NFRequirement -> includesAll (high consis-
tency and availability)

context Resource . Database valid Server : self.
A pplication Server > 1

32

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

context Resource . A pplication Profile -> select (Trans-
action Profile | OLTP)

Listing 1. Textual Constraints

Fig.5. Excerpt of database materialization parameters meta-model: core entities

2)Instantiation of the MR Analysis Repository: We can reuse
the mapping rules of similar works to reduce their total cost of
testing. We propose an analysis repository MRrp, which

is a reorganization of concepts tackled in Section III-D1. So,
for factoring the number of assumptions and to guarantee a good
scalability of the analysis repository, we suggest that the analysis
repository contains also a set of identification rules R. They will
help for identifying correctly the closest database context match-
ing the design model (dbCxtDL) which requests analysis.

Let Sr be a function for specifying database contexts in the
analysis repository. where, Sr(dbCxtDLi) = Rundef ∪ Rtrue ∪
Rfalse= R, such that:

	 Ri
true is a set of rules which have to be satisfied, for every

 ri ∈ Ri
true, dbCxtDL |= ri ;

	 Ri
false is a set of rules whose complements have to be

satisfied, for every ri ∈ Ri
false , dbCxtDL |= (ri) ;̅

	 Ri
undef = R\ (Ri

true ∪ Ri
false)

 	 Database Schema and Query instance
To illustrate the different transformation steps of our frame-
To illustrate the different transformation steps of our frame-

work we introduce as a running example the conceptual schema
presented in Figure 6 representing a simple excerpt of an
application. User can using a Conventional Database Schema
(e.g. TPC-H,SSB benchmark) or import the XMI file gener-

ated
from CASE Tool like PowerAMC. This schema is specified
using the ER notation that describe the SSB schema 5. The
schema contains a fact table Line order, and four dimension
tables: Customer, Supplier, Part and Dates. The OLAP que-

ries
are download file which is stored in a folder. Note that every

query instance has to conform to dbCxtDL design language.

We propose an analysis repository, which is a reorganization

as set of rules: R (NRx, SRx, ERx, CRx, ARx). In this section,
we surround some capabilities of the MRrp Repository by instan-
tiating its elements, we have formalized this problem as follow:
Cxt =< DB, W, RM > where: Cxt characterized by the DB, the
workload consists of a set of queries W = q1... qm and the set of
the element of requirements DB applications. MRrp is a mapping
rules repository characterized by the set of Rules. Then, MRrp =
< NRx, SRx, ERx, CRx, ARx > where:

X the context that represents all assumptions related to the
nature of the application.
As we have presented earlier in this paper, our goal is to orient

designers to choose the appropriate cost model. Thus, the diffi-
culty for database designers is to choose the most suitable DBMS
and database platform which matches the characteristics of the
designed system. Once features have been identified, not all pos-
sible combinations of them correspond to feasible SPL instances.
Thanks to the ContextMappingRelation class (see Figure 4).

	 Case studies: proof of concepts
To stress our approach and to proof how it is useful and help-

ful, this section is devoted to present a global usage scenario of
our framework. In parallel, technical implementations are high-
lighted.

A.Database Schema and Query instance
To illustrate the different transformation steps of our frame-
To illustrate the different transformation steps of our frame-

work we introduce as a running example the conceptual schema
presented in Figure 6 representing a simple excerpt of an
application. User can using a Conventional Database Schema
(e.g. TPC-H,SSB benchmark) or import the XMI file gener-

ated

33

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

from CASE Tool like PowerAMC. This schema is specified
using the ER notation that describe the SSB schema 5. The
schema contains a fact table Line order, and four dimension
tables: Customer, Supplier, Part and Dates. The OLAP que-

ries
are download file which is stored in a folder. Note that every
query instance has to conform to dbCxtDL design language.

Fig.6. Import Database Schema and Query instance

B.	 Specifying Database Application Requirements
We assume that a design office of a company comes up with

a database application with its components (database schema,
workload, requirement of database application) and looks for a
relevant DBMS that fulfills its requirements. This need has to
be expressed via the seeker interface by using the meta-model.
An instance of the meta-model dedicated to express this need
is called a Manifest. Therefore, the engineers of this company
may access our mapping repository to get the most appropriate
DBMS that corresponds their manifest. To clarify the utility
of the Manifest concept, Figure 7 represents an example of the
DB application requirements instance, where Application Server
configuration are missing.

Fig.7. Example of the DB application requirements

C.Instantiation of the identification rules
Every identification rule is specified through its properties in

particular the description property. For instance, the proposition”
‘the hardware storage device is HDD”’ is represented by the iden-
tification rule StorageDeviceHDD. The description of this latter
means that if the evaluation result is true, hence the hardware

architecture is HDD. Otherwise, the hardware architecture is not
HDD. Figure 8 shows the identification rules that we have created
in the repository. They correspond to the following propositions:

•	 The database schema is SQL
•	 	The Deployment Architectures is Centralized
•	 	The Processing Device is CPU
•	 	The Optimization Structures is Index
•	 	The Primary Storage is RAM
•	 	The Storage Device is HDD
•	 	The Integrated Persistent Buffer is SSD
•	 	The Storage Model is RowStore
•	 	The Processing Model is Tuple-at-a-time
•	 	The deployment architecture is Sharednothing Infrastructure;
•	 	The Optimization Structure Mode selection is Combined
•	 	The DBMS Licensing Type is Open Source
•	 The rules DBMSKind is available or Undefined because Un-

known information in requirement model instance or reposi-
tory content. In this case user can choose a Product Configu-
ration Option:” ‘Manually customize”’or”‘Set by default”’.

D.Design tool for instantiating of database materialization
To facilitate the identification of database materialization pa-

rameters, we based on the description of three models: schema
description model and query description model and architecture
parameters (see Figure 9). We present in Figure 9

Fig.8. Identification rules and their properties

an excerpt of the database materialization instance generated
by a set of identification rules.

Figure 9 shows the instantiation of some parameters of the
database materialization corresponding to a manifest of Figure7.
These parameters is done by using dbCxtDL language. These pa-
rameters are described by several characteristics related to the
Deployment Platform, Storage Device, and Deployment Archi-
tecture.

34

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

E.Generating Script
The last step in MDE processes is a PSM-to-code trans- for-

mation, which generates the target database structures (e.g. da-
tabase schema, index, materialized view, configuration files...).
Thanks to the interoperability facilitated by model- driven en-
gineering, we have developed a user-friendly tool to exploit the
parameters of materialization related of database, query, physical
structure, device and storage layout as XMI files to a script by us-
ing Acceleo language. Listing 2 presents an excerpt of the DDL
statement generated from the database materialization for each
physical structure (e.g. Index, Materialized view) and database
system properties (e.g. parallel max servers, memory target, sga
max size) require for ACID databases.

Listing 2. Script of Physical Structure and DB system prop-
erties

IV.	 Related work

The BD research community has proposed model-driven
approaches to DB development process that support automatic
code generation (see [4] for survey). Many practitioners have no
formal education in DB design and are unfamiliar with query op-
timization techniques and database deployment. By examining
the current BD design life-cycle, we found that works consider
dependencies between 3-phase design: conceptual (CD), logical
(LD) and physical (PD) and other focusing only on a part of the
BD design process. For instance, In et al. [14] proposed a proto-
type of a DBMS product line, focusing only on PD ,LD schemas
normalized. The automatic design process via a code generator
consider dependencies between 3- phase design [9] and increases
the interdependencies between phases of the life cycle [17], [16].
Several solutions (e.g. [11], [13], [7]) provide transformations
from ER and UML models to relational DB then translated to an
SQL definition before generating a server-side API (e.g. CASE
Tools Rational Rose,

Fig.9. Excerpt of the database materialization instance

35

Models & Optimisation and Mathematical Analysis Journal Vol.08 Issue 01 (2020)

PowerAMC). More specific to NoSQL DB with different data
models, such as key-values and document stores [1], the

NoSQL
Schema Evaluator [10] generates query implementation plans
from a conceptual schema and workload definition. In [3], au-

thor focus on generating NoSQL DB (including key-value stores
and document databases) from UML models. Gwendal Dan-

iel
et al. propose the UMLtoGraphDB framework [5]. There

have
been very interesting industrial and commercial solutions of
code generation from CD. However, this solution does not

take
into account constraints specified in the deployment model.
Moreover, the conceptual/logical models are independent of
underlying DB materialization (e.g. hardware, disk-layout,

DB
size). According to the known literature, this is the first frame-

work that improve the way designers select DB deployment
architecture

V.	 Conclusion

The main objective of this work is to reduce the gap between
the model and practical systems. We propose approach for
conceptual Model to DB materialization to improve the way
designers evaluate their system design. In this paper, we have
presented the MR Analysis Repository. Each instantiation of
the MR Analysis Repository offers a repository based on a set
of identification rules, their evaluation can lead to the data-

base
context of the design model. Moreover, the meta-model of the
MR Analysis Repository is flexible and can be enriched by
analysts in order to add other characteristics. In the next pa-

per,
we link the MR analysis repository with the dbCxtDL design
language in order to obtain a complete design framework.

This
enables the design at the same time as to orient designers
(especially modelers) to choose the most suitable database
physical configuration. We have presented an example show-

ing
the instantiation of the MR analysis repository. At this stage,
the identification rules have been presented in an informal

way.
The core of identification rules and how they check the design
model. Yet, how model transformation through the analysis
repository instance generate the script of database physical
design. As for future work, we intend to perform case studies
in real scenarios and to provide formal descriptions for the
solution proposed.

References

[1] [1] A. Benelallam, A. G´omez, G. Suny´e, M. Tisi, and D. Launay.Neo4emf,
a scalable persistence layer for emf models. In European Conference on
Modelling Foundations and Applications, pages 230–241. Springer, 2014.

[2] J. Browne. Brewer’s cap theorem. J. Browne blog, 2009.
[3] F. Bugiotti and Other. Database design for nosql systems. InInternational

Conference on Conceptual Modeling, pages 223–231. Springer, 2014.

[4] A. R. Da Silva. Model-driven engineering: A survey supportedby the
unified conceptual model. Computer Languages, Systems& Structures,
43:139–155, 2015.

[5] G. Daniel, G. Suny´e, and J. Cabot. Umltographdb: mappingconceptual
schemas to graph databases. In International Conference on Conceptual
Modeling, pages 430–444. Springer, 2016.

[6] D. W. Embley, S. W. Liddle, and O. Pastor. Conceptualmodel programming:
a manifesto. In Handbook of ConceptualModeling, pages 3–16. Springer,
2011.

[7] J.-L. Hainaut. The transformational approach to databaseengineering.
In International Summer School on Generative andTransformational
Techniques in Software Engineering, pages143. Springer, 2005.

[8] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizingdatabase
architecture for the new bottleneck: memory accessvolume 9, pages 231–
246, 2000.

[9] E. Marcos and v. n. p. y. p. Other, journal=Software andSystems Modeling.
A methodological approach for objectrelational database design using uml.

[10] M. J. Mior and Other. Nose: Schema design for nosql applications. IEEE
Transactions on Knowledge and Data Engineering,29(10):2275–2289,
2017.

[11] A. Murolo, S. Ehrensberger, Z. Asani, and M. C. Norrie.Scaffolding
relational schemas and apis from content in webmockups. In International
Conference on Conceptual Modeling,pages 149–163. Springer, 2017.

[12] A. Ouared et al. Costdl: a cost models description language forperformance
metrics in database. In Proceedings of the 21STIEEE ICECCS. IEEE, 2016.

[13] A. Rosa, I. Gon¸calves, and C. E. Pantoja. A mda approachfor database
modeling. Lecture Notes on Software Engineering,1(1):26, 2013.

[14] M. Rosenm¨uller, N. Siegmund, H. Schirmeier, J. Sincero,S. Apel, T. Leich,
O. Spinczyk, and G. Saake. Fame-dbms:tailor-made data management
solutions for embedded systems.In Proceedings of the 2008 EDBT
workshop on Software engineering for tailor-made data management,
pages 1–6. ACM,2008.

[15] T. Z¨aschke, S. Leone, T. Gm¨under, and M. C. Norrie. Optimising
conceptual data models through profiling in objectdatabases. In ER, pages
284–297, 2013.

[16] T. Z¨aschke, S. Leone, T. Gm¨under, and M. C. Norrie. Optimising
conceptual data models through profiling in objectdatabases. In International
Conference on Conceptual Modeling, pages 284–297. Springer, 2013.

[17] T. Z¨aschke, S. Leone, T. Gm¨under, and M. C. Norrie. Improvingconceptual
data models through iterative development. DataKnowl. Eng., 98:54–73,
2015.

