
6

Models & Optimisation and Mathematical Analysis Journal Vol.07 Issue 01 (2019)

Abstract—In recently published works, a novel artificial
bee colony programming algorithm (ABCP) is proposed to solve
symbolic regression problem which is a very important practical
issue. Symbolic regression is a process of obtaining a mathematical
model using given finite sampling of values of independent variables
and associated values of dependent variables. This paper addresses
the analysis of the computational performance of ABCP strategy
with respect to two key control parameters. Considering typical
benchmark problems, general rules are deduced through various
simulations performed under different settings.

Keywords— Artificial bee colony programming; symbolic
regression; swarm optimization; automatic programming.

I.	Introduction
Symbolic regression aims to find a mathematical model ex-

pressed in a symbolic form that best fits a set of data samples.
Traditional linear and nonlinear regression methods fit param-
eters to an equation of a given form. On the other hand, sym-
bolic regression method constructs mathematical equations by
composing both parameters and equational forms. Equivalent-
ly, it searches nonlinear equations through the manipulation of
equational forms and parameters simultaneously while solving a
given modeling problem. Symbolic regression method attempts
to find the best combination of variables (inputs and outputs),
symbols, and coefficients to develop an optimal model satisfying
a set of fitness cases.

To solve the problem of symbolic regression, evolutionary
programming techniques are extensively used. Evolving models
and evolutionary operators are manipulated in evolutionary com-
puting (EC) based techniques, such as evolutionary program-
ming [1], evolution strategies, genetic algorithms [2], differential
evolution [3], genetic programming [4], as well as swarm based
algorithms such as artificial immune system [5], particle swarm
optimization [6], ant colony optimization [7], honey-bees optimi-
zation [8], and artificial bee colony optimization [9].

Invented by Cramer in 1985 [10], genetic programming
(GP) is the most popular technique used in symbolic regression.
GP can be defined as an extended version of genetic algorithms
(GAs), where the main difference relies on the structure and the
meaning of the representation [4, 11]. GP and GAs have com-
mon operators which are the crossover, the mutation, and the
permutation operators, while the main difference between GAs
and GP consists in individuals used by GAs which are linear
strings of fixed length (chromosomes). Alternatively, the indi-
viduals manipulated by GP are nonlinear entities of different siz-
es and shapes (parse trees) [11].

In [12], a new technique for constructing programs through
Ant Colony Optimization (ACO) using the tree adjunct grammar
(TAG) formalism is presented and the results are very promising.
Immune programming uses artificial immune system, as optimal
search engine as reported in [13].

Swarm intelligence is an artificial intelligence concept which
involves studies of collective behaviors in decentralized natural
or artificial systems. Swarm based algorithms have shown good
results in many important applications, such as optimization [14,
15], pattern recognition [16], machine learning [17], clustering
[18-20], data mining [21], and function approximation [13].

Artificial bee colony algorithm, introduced by Karaboga in
[22], simulates the foraging behavior of honey bee swarms. The
ABC algorithm was tested on a wide range of real-world prob-
lems and compared to other well-known evolutionary computing
such as particle swarm optimization, genetic algorithm, and dif-
ferential evolution. The comparison results demonstrated clearly
the performance of ABC algorithm which shows considerable
improvements on most population-based algorithms.

For practical implementation of population-based methods,
there is always a need to carefully address the problem of setting
the number of function evaluations (FEs). The number of FEs,
which is the size of the population by the number of iterations,
impacts directly the solution quality as well as the running time.
For computational performance, it is desired to deal efficient-
ly with this compromise in a way to minimize the number of
FEs without having to deteriorate the quality of the solution.
Throughout this work, an analysis study on the computational
performance of artificial bee colony programming (ABCP) al-
gorithm is presented. The ABCP was originally introduced by
Karaboga in [23] and shows important features that might need
further assessment, in particular the control parameter settings.
Here, ABCP’s performance with respect to evaluations number
is studied in order to make general rules on control parameters
setting which is a challenging issue in the analysis of the perfor-
mance of meta-heuristic optimization methods. The results might
help to set wisely the ABC control parameters to obtain the best
results by means of a minimal number of function evaluations,
i.e. a short running time.

Briefly, this article is organized as follows. Section II intro-
duces the concept of artificial bee colony (ABC) optimization.
Section III describes the artificial bee colony programming
(ABCP) concept. The computational performance of the ABCP
is analyzed through simulations by considering different bench-
mark problems in Section IV. Concluding remarks are finally giv-
en in Section V.

II.	 Artificial bee colony optimization
Artificial bee colony (ABC) optimization is a swarm in-

telligence based technique which was originally proposed by
Karaboga [22, 24] to solve numerical function optimization.
ABC algorithm simulates the foraging behavior of honey bees
that are categorized into three main groups: employed bees, on-
looker bees and scout bees. Based on two essential leading modes
of honey bee colony which are recruitment to a food source and
abandonment of a source, the process of bees seeking for sources

On the computational performance of artificial bee
colony programming strategy

Yassine BOUDOUAOUI
 Applied Automation Laboratory, F.H.C., University of Boumerdès

Av. de l’indépendance, 35000 Boumerdès, Algeria
tahayac@yahoo.fr,

Hacene HABBI
Applied Automation Laboratory, F.H.C., University of Boumerdès

Av. de l’indépendance, 35000 Boumerdès, Algeria
habbi_hacene@hotmail.com.

Boudouaoui Y
Habbi H

7

Models & Optimisation and Mathematical Analysis Journal Vol.07 Issue 01 (2019)

with high amount of nectar is the one applied to find the optimal
solution for a given optimization problem.

In ABC model, three main phases are considered: employed
bee phase, onlooker phase and scout phase. Employed bees in-
vestigate their food sources and share the nectar and the posi-
tion information of these sources with onlooker bees. Based
on a greedy selection, onlooker bees will have to choose food
sources with high profitability. The employed bee whose food
source has been abandoned by the bees becomes a scout bee. The
algorithmic structure of ABC concept defines the position of a
food source as a possible solution to the optimization problem.
The nectar amount of that source represents the fitness of the as-
sociated solution. Food source positions are generated using the
following equation:

Each solution xi, (i=1,2,…,SN), is a D-dimensional vector of
optimization parameters, where SN is the size of the colony. In
the employed phase, an employed bee produces a modification
on the position of the food source in her memory and finds a
neighboring food source according to the following expression:

where is a random number in the interval [-1, 1] and
k {1,2,…,SN} with k≠i and j {1,2,...,D} are randomly
chosen indexes, D is the dimension of the problem. Greedy
selection between the old and the updated food source posi-
tion is performed by the employed bee based on fitness value
evaluation. This valuable information about the position and the
quality of the food sources are shared with the onlooker bees.

In the onlooker phase, an onlooker bee evaluates the infor-
mation provided by the employed bees and selects a food source
depending on its probability value Pi. The probability of a food
source being selected by the onlooker bees increases as the
fitness value of a food source increases. After selecting the food
source, an onlooker bee produces a modification on the position
of that site using the same mechanism as in (2). Greedy selec-
tion is also applied by onlooker bees so that new food sources
with high nectar are memorized. During scout phase, any solu-
tion that cannot be improved through a predefined number of
generations will be abandoned and replaced by a new position
that is randomly determined by a scout bee according to (1).

III.	 Artificial bee colony programming
Similarly to GP and associated GA concepts, artificial bee

colony programming (ABCP) is an adaptation of artificial
bee colony algorithm that deals with the problem of symbolic
regression. The representation of a food source defined in ABC
as a string with a fixed length cannot simply be used in ABCP
because of the complex structure of the solutions. Alternatively,
a parse tree representation is used as proposed in [4]. The food
source position is composed of terminals and functions such
as arithmetic operations, mathematical functions and logical
functions.

The quality of each food source called fitness measurement
is measured by evaluating the performance of each individual,
and shows how much the result of obtained function fits with
the target one. The success rate, desired to be close to 100%, is
used in fitness measurement procedure, as defined in [12]. The
success rate is chosen to indicate the success ratio of finding the

exact solution by ABCP and is given as:

The steps of ABCP are described as follows. After initial
colony generation using Ramped half-and-half method (to avoid
duplicate individuals as suggested by Koza in [4]), the optimi-
zation process starts with the employed bee phase where new
functions are generated and evaluated subsequently. This step is
followed by the onlooker bee phase, which consists in produc-
ing and evaluating new functions depending on their quality.
After employed and onlooker bee phases, the algorithm checks
the unimproved functions for which the number of fail trials
exceeds the limit value. Any solution that cannot be improved
will be replaced by a scout bee which generates a new function
by using the grow method with considering duplications. These
steps are iteratively executed until the termination criterion has
been satisfied.

The adaptation of the ABC to the problem of automatic
programming consists in the mechanism of producing candidate
solutions, called information sharing mechanism. The solutions’
structures in ABCP are tree based, different than those used in
ABC. Therefore, the search processes used in ABC cannot be
used directly. The information sharing mechanism consists in
choosing randomly a tree node from a neighborhood solution
(xk) either a function in the probability of Pip (set to 0.9) or a
terminal in the probability of 1-Pip. Then, a tree node in the
current solution (xi) is also randomly chosen in Pip probability
distribution. Then, the node from the neighborhood solution (xk)
will replace the node from the current solution (xi) to obtain the
candidate solution (vi).

The pseudo-code of the ABCP is defined as follows.
1: Generate initial functions (xi) with Ramped half-and-half

method
2: Evaluate the initial functions
3: repeat
4: FOR each employed bee {
Produce new function (vi) by using information sharing

mechanism
Evaluate the functions
Apply greedy selection process between (xi) and (vi)}
5: Calculate the probability values pi for the functions
6: FOR each onlooker bee {
Select a function xi depending on pi probabilistically
Produce new function (vi) by using information sharing

mechanism
Evaluate the functions
Apply greedy selection process between (xi)and (vi)}
7: If there is an abandoned function then replace it with a new

function generated by grow method by a scout using the grow
method

8: Memorize the best solution so far
9: cycle = cycle + 1
10: until maxcycle

IV.	 Experiments and results
In this Section, the computational performance of the auto-

matic programming ABCP strategy is analyzed through different

8

Models & Optimisation and Mathematical Analysis Journal Vol.07 Issue 01 (2019)

simulations with respect to two control parameters which are
the colony size and the number of iterations. To this end, four
symbolic regression benchmark problems are considered. These
problems, which are described in Table I, are taken from the
literature [23, 25]. For fair comparison, same parameter values
are set for all the considered problems, except the colony size
and the number of iterations which are managed in a way to
maintain the number of function evaluations constant. This im-
plies that the number of function evaluations which is equal to
the size of the colony by the number of iterations is taken almost
same for all tests. The aim is to study the impact of the number
of function evaluations on ABCP’s performance by considering
different colony sizes and iterations with different experiments
conducted on a a same running period. Table II shows the
control parameters used for ABCP in this study.

In each experiment, 50 runs were conducted. Table III shows
the success rate for 100 different runs with same parameter
settings. Case 1, case 2 and case 3 represent respectively exper-
iments conducted with population size of 250 and 30 iterations,
population of 150 individuals and 50 iterations, and 100 individ-
uals and 75 iterations. Those parameters are set to get the same
number of function evaluations which is fixed at the value 7500.
The success rate is computed according to (3).

TABLE I.	 Symbolic regression benchmark problems

Functions Fitcases

F1=x2+x 20 uniformly points [-1,1]

F2=x3+x2+x

F3=x4+x3+x2+x

F4=x5+x4+x3+x^2+x

F5=cos(2x)

TABLE II.	 control parameters for ABCP

Parameter Value

Initial max. depth 6

Max depth 15

Terminal set The variable x and the constant 1.0

Function set F = {+,−,*,/,sin}

Successful run An individual hits on all fitness cases

Of runs 100 Independent runs

TABLE III.	 the success rate of ABCP

Case 1 Case 2 Case 3

F1 94% 92% 90%

F2 56% 46% 42%

F3 46% 26% 26%

F4 14% 18% 18%

The performance of the ABCP strategy obtained for different
colony sizes and different number of iterations is shown in Table
III. For function F1, the three experiments found the exact
solution almost all the time. This is due to the slight structural
complexity of the target function. For functions F2 and F3, the
experiments with high colony size outperform the remaining
experiments. However, this does not hold for function F4 where
it can be seen that employing high colony size induced bad rate
success, and for the same number of evaluations, the result gets
better with the increase of the number of iterations.

As a result, one might notice that when the number of itera-
tions increases, i.e. the size of the colony decreases, the success
rate gets worst. We can then conclude that high colony size can

give better results for functions with small complexity, while
functions with high complexity need to be processed with high
number of iterations for concluding results.

Fig.1. Evolution of success rate for test function F1.

Fig.2. Evolution of success rate for test function F2.

Fig.3. Evolution of success rate for test function F3.

Fig.4. Evolution of success rate for test function F4.

Figures 1-4 depict the evolution of success rate for each test
case with regard to the number of function evaluations. It is clear
that ABCP with high population size (case 1) achieves the best
success rate except for function F4 where high population size
shows the worst results, which strength the conclusion deducted
from the result of successful rate.

V.	 Conclusion
This paper presents an analysis study on the computational

performance of artificial bee colony programming (ABCP) strat-
egy with respect to some control parameters setting. The ABCP
is a newly introduced swarm-based approach to evolve programs
using the artificial bee colony optimization algorithm. In this
study, we have shown the results of some experiments conduct-
ed on four symbolic regression benchmark problems. More pre-
cisely, we have evaluated the influence of two different control
parameters on solution quality, namely the population size and

9

Models & Optimisation and Mathematical Analysis Journal Vol.07 Issue 01 (2019)

the number of iterations. The population size and the number of
iterations determine the evaluation number which impacts the
run time. The run time of evolutionary computing algorithm is
a major problem. So the wise choice of the population size and
the number of iterations to get the better results with the small
evaluation number is always desirable

 The obtained results for different test cases might serve as a
basement to set general rules on the setting of control parameters
of the ABCP algorithm for a given automatic modeling problem.
Future works may focus on applications to high-dimensional sci-
entific and engineering problems solving using ABCP strategy.

References

[4] U. K. Chakraborty, “Genetic and evolutionary computing,” ed: Elsevier,
2008.

[5] D. P. Searson, “GPTIPS 2: an open-source software platform for symbolic
data mining,” in Handbook of genetic programming applications, ed:
Springer, 2015, pp. 551-573.

[6] R. Funaki, H. Takano, and J. Murata, “Tree structure based differential
evolution for optimization of trees and interactive evolutionary
computation,” in Society of Instrument and Control Engineers of Japan
(SICE), 2015 54th Annual Conference of the, 2015, pp. 331-336.

[7] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection vol. 1: MIT press, 1992.

[8] [5]	 L. N. De Castro and F. J. Von Zuben, “Artificial immune systems:
Part I–basic theory and applications,” Universidade Estadual de Campinas,
Dezembro de, Tech. Rep, vol. 210, 1999.

[9] J. Sun, C.-H. Lai, and X.-J. Wu, Particle swarm optimisation: classical and
quantum perspectives: CRC Press, 2016.

[10] [7]	 M. Boryczka, “Ant Colony Programming: Application of Ant Colony
System,” Intelligent Systems for Automated Learning and Adaptation:
Emerging Trends and Applications: Emerging Trends and Applications, p.
248, 2009.

[11] H. A. Abbass, “MBO: Marriage in honey bees optimization-A haplometrosis
polygynous swarming approach,” in Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, 2001, pp. 207-214.

[12] F. Harfouchi, H. Habbi, C. Ozturk, and D. Karaboga, “Modified multiple
search cooperative foraging strategy for improved artificial bee colony
optimization with robustness analysis,” Soft Computing, vol. 22, pp. 6371-
6394, 2018.

[13] [10]	 N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs,” in Proceedings of the first international conference
on genetic algorithms, 1985, pp. 183-187.

[14] Z. Gan, T. W. Chow, and W. N. Chau, “Clone selection programming and
its application to symbolic regression,” Expert Systems with Applications,
vol. 36, pp. 3996-4005, 2009.

[15] H. A. Abbass, X. Hoai, and R. I. Mckay, “AntTAG: A new method to
compose computer programs using colonies of ants,” in Evolutionary
Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, 2002,
pp. 1654-1659.

[16] P. Musilek, A. Lau, M. Reformat, and L. Wyard-Scott, “Immune
programming,” Information Sciences, vol. 176, pp. 972-1002, 2006.

[17] D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive
survey: artificial bee colony (ABC) algorithm and applications,” Artificial
Intelligence Review, vol. 42, pp. 21-57, 2014.

[18] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper optimisation algorithm:
theory and application,” Advances in Engineering Software, vol. 105, pp.
30-47, 2017.

[19] O. Lamraoui and H. Habbi, “H-infinity fuzzy emulator design for
multivariable control of drum boiler-turbine unit,” in Soft Computing
and Pattern Recognition (SoCPaR), 2014 6th International Conference of,
2014, pp. 428-433.

[20] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of machine
learning, ed: Springer, 2011, pp. 760-766.

[21] O. Lamraoui, Y. Boudouaoui, and H. Habbi, “Heat transfer dynamics
modelling by means of clustering and swarm methods,” International
Journal of Intelligent Engineering Informatics, vol. 7, pp. 346-365, 2019.

[22] [Y. Boudouaoui, H. Habbi, and F. Harfouchi, “Swarm Bee Colony

Optimization for Heat Exchanger Distributed Dynamics Approximation
With Application to Leak Detection,” in Handbook of Research on
Emergent Applications of Optimization Algorithms, ed: IGI Global, 2018,
pp. 557-578.

[23] H. Habbi, Y. Boudouaoui, D. Karaboga, and C. Ozturk, “Self-generated
fuzzy systems design using artificial bee colony optimization,” Information
Sciences, vol. 295, pp. 145-159, 2015.

[24] A. A. Esmin, R. A. Coelho, and S. Matwin, “A review on particle swarm
optimization algorithm and its variants to clustering high-dimensional
data,” Artificial Intelligence Review, vol. 44, pp. 23-45, 2015.

[25] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Technical report-tr06, Erciyes university, engineering
faculty, computer engineering department2005.

[26] D. Karaboga, C. Ozturk, N. Karaboga, and B. Gorkemli, “Artificial bee
colony programming for symbolic regression,” Information Sciences, vol.
209, pp. 1-15, 2012.

[27] D. Karaboga and B. Basturk, “On the performance of artificial bee colony
(ABC) algorithm,” Applied soft computing, vol. 8, pp. 687-697, 2008.

[28] S. Shirakawa, S. Ogino, and T. Nagao, “Automatic construction of
programs using dynamic ant programming,” in Ant Colony Optimization-
Methods and Applications, ed: InTech, 2011.

	_GoBack
	PointTmp
	PointTmp1
	result_box33
	result_box29
	result_box24
	result_box26
	__DdeLink__66_640446720
	result_box
	result_box1
	result_box2
	result_box3
	result_box4
	result_box6
	result_box35
	_GoBack
	OLE_LINK1
	OLE_LINK2
	OLE_LINK3
	_Hlk483291754
	_Hlk483291761
	_Hlk483291769
	Bennabi R
	Boudouaoui Y
	Chakir M
	Debakla M
	Elberrichi Z
	Guerti M
	Habbi H
	Horkous H
	Meftah B
	Rebbah M
	Yermes M
	Message of MOMA Journal Editor-In-Chief
	On the computational performance of artificial bee colony programming strategy
	Yassine BOUDOUAOUI
	Hacene HABBI
	Automatic Control of Multiple Pseudo-Relevance Feedback Pass
	Chakir Mokhtari
	Mohammed Debakla
	Boudjelal Meftah
	Measurement and Social Network Analysis With Parallel Frequent Pattern Mining
	Mohammed REBBAH
	YERMES Mohammed EL Amine
	Use of differents Classifiers for Recognition of Fear Emotions in speech
	Horkous Houari
	Guerti Mhania
	An Empirical Study on the effect of weighting schemes and Machine Learning algorithms on the Arabic text Classification
	Rim Sakina BENNABI
	Zakaria ELBERRICHI

