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Abstract 

 

“How far can we proceed with the axiomatization of some theory? Complete 

elimination of intuition, i.e. full reduction to a list of axioms and rules of inference, 

is this possible?” 

The work by Bertrand Russell showed how this could be achieved even with the 

most complicated mathematical theories. All theories can be reduced to axioms and rules 

of inference without any admixture of intuition.  

The work of Bertrand Russel inspires Kurt Godel to prove the opposite!! 

In this context I suggest to re-read Gödel's first incompleteness theorem published 

in 1931.  
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ON FORMALLY UNDECIDABLE PROPOSITIONS 

OF PRINCIPIA MATHEMATICA AND RELATED 

SYSTEMS I1 

 

by Kurt Gödel Vienna 

 

The development of mathematics in the 

direction of greater exactness has—as is well 

known—led to large tracts of it becoming 

formalized, so that proofs can be carried out 

according to a few mechanical rules. The most 

comprehensive formal systems yet set up are, on the 

one hand, the system of Principia Mathematica 

(PM)2 and, on the other, the axiom system for set 

theory of Zermelo-Fraenkel (later extended by J. v. 

Neumann).3 These two systems are so extensive 

that all methods of proof used in mathematics today 

have been formalized in them, i.e. reduced to a few 

axioms and rules of inference. It may therefore be 

surmised that these axioms and rules of inference 

are also sufficient 

 

1 Cf. the summary of the results of this 

work, published in Anzeiger der Akad. d. Wiss. in 

Wien (math.- naturw. Kl.) 1930, No. 19. 

2 A. Whitehead and B. Russell, Principia 

Mathematica, 2nd edition, Cambridge 1925. In 

particular, we also reckon among the axioms of PM 

the axiom of infinity (in the form: there exist 

denumerably many individuals), and the axioms of 

reducibility and of choice (for all types). 

3 Cf. A. Fraenkel, ‘Zehn Vorlesungen über 

die Grundlegung der Mengenlehre’, Wissensch. u. 

Hyp., Vol. XXXI; J. v. Neumann, ‘Die 

Axiomatisierung der Mengenlehre’, Math. 

Zeitschr. 27, 1928, Journ. f. reine u. angew. Math. 

154 (1925), 160 (1929). We may note that in order 

to complete the formalization, the axioms and rules 

of inference of the logical calculus must be added 

to the axioms of set-theory given in the above-

mentioned papers. The remarks that follow also 

apply to the formal systems presented in recent 

years by D. Hilbert and his colleagues (so far as 

these have yet been published). Cf. D. Hilbert, 

Math. Ann. 88, Abh. aus d. math. Sem. der Univ. 

Hamburg I (1922), VI (1928), P. Bernays, Math. 

Ann. 90; J. v. Neumann, Math. Zeitschr. 26 (1927), 

W. Ackermann, Math. Ann. 93.37.38 

 

to decide all mathematical questions which can 

in any way at all be expressed formally in the 

systems concerned. It is shown below that this is 

not the case, and that in both the systems mentioned 

there are in fact relatively simple problems in the 

theory of ordinary whole numbers4 which [174] 

cannot be decided from the axioms. This situation 

is not due in some way to the special nature of the 

systems set up, but holds for a very extensive class 

of formal systems, including, in particular, all those 

arising from the addition of a finite number of 

axioms to the two systems mentioned,5 provided 

that thereby no false propositions of the kind 

described in footnote 4 become provable. 

Before going into details, we shall first indicate 

the main lines of the proof, naturally without laying 

claim to exactness. The formulae of a formal 

system—we restrict ourselves here to the system 

PM—are, looked at from outside, finite series of 

basic signs (variables, logical constants and 

brackets or separation points), and it is easy to state 

precisely just which series of basic signs are 

meaningful formulae and which are not.6 Proofs, 

from the formal standpoint, are likewise nothing 

but finite series of formulae (with certain 

specifiable characteristics). For metamathematical 

purposes it is naturally immaterial what objects are 

taken as basic signs, and we propose to use natural 

numbers7 for them. Accordingly, then, a formula is 

a finite 

 

4 I.e., more precisely, there are undecidable 

propositions in which, besides the logical constants 

− (not), ∨ (or), (x) (for all) and = (identical with), 

there are no other concepts beyond + (addition) and 

⋅ (multiplication), both referred to natural numbers, 

and where the prefixes (x) can also refer only to 

natural numbers. 

 

5 In this connection, only such axioms in 

PM are counted as distinct as do not arise from each 

otherpurely by change of type. 

6 Here and in what follows, we shall always 

understand the term “formula of PM” to mean a 

formulawritten without abbreviations (i.e. without 

use of definitions). Definitions serve only to 

abridge the written text and are therefore in 

principle superfluous. 

7 I.e. we map the basic signs in one-to-one 

fashion on the natural numbers (as is actually done 

on p.45). 

translated by B. MELTZER 

University of Edinburgh 

January, 1962 
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series of natural numbers,8 and a particular 

proof-schema is a finite series of finite series of 

natural numbers. Metamathematical concepts and 

propositions thereby become concepts and 

propositions concerning natural numbers, or series 

of them,9 and therefore at least partially expressible 

in the symbols of the system PM itself. In 

particular, it can be shown that the concepts, 

“formula”, “proof-schema”, “provable formula” 

are definable in the system PM, i.e. one can give10 

a formula F(v) of PM—for example—with one free 

variable v (of the type of a series of numbers), such 

that F(v)—interpreted as to content—states: v is a 

provable formula. We now obtain an undecidable 

proposition of the system PM, i.e. a proposition A, 

for which neither A nor not-A are provable, in the 

following manner: 

 

A formula of PM with just one free variable, and 

that of [175] the type of the natural numbers (class 

of classes), we shall designate a class-sign. We 

think of the class-signs as being somehow arranged 

in a series,11 and denote the n-th one by R(n); and 

we note that the concept “class-sign” as well as the 

ordering relation R are definable in the system PM. 

Let α be any class-sign; by [α; n] we designate that 

formula which is derived on replacing the free 

variable in the class sign α by the sign for the 

natural number n. The three term relation x = [y; z] 

also proves to be definable in PM. We now define 

a class K of natural numbers, as follows: 

8 i.e. a covering of a section of the number 

series by natural numbers. (Numbers cannot in fact 

be putinto a spatial order.) 

9 In other words, the above-described 

procedure provides an isomorphic image of the 

system PM inthe domain of arithmetic and all 

metamathematical arguments can equally well be 

conducted in this isomorphic image. This occurs in 

the following outline proof, i.e. “formula”, 

“proposition”, “variable”, etc. are always to be 

under stood as the corresponding objects of the 

isomorphic image. 

10 It would be very simple (though rather 

laborious) actually to write out this formula. 

11 Perhaps according to the increasing sums 

of their terms and, for equal sums, in alphabetical 

order. 

 

n ε K ≡ Bew [R(n) ; n] 11a  (1) 

(where Bew x means: x is a provable formula). 

 

 Since the concepts which appear in the 

definiens are all definable in PM, so too is the 

concept K which is constituted from them, i.e. there 

is a class-sign S,12 such that the formula [S; n]—

interpreted as to its content—states that the natural 

number n belongs to K. S, being a class-sign, is 

identical with some determinate R(q), i.e. 

S = R(q) 

holds for some determinate natural number q. 

We now show that the proposition [R(q); q]13 is 

undecidable in PM. For: supposing the proposition 

[R(q); q] were provable, it would also be 

 

correct; but that means, as has been said, that q 

would belong to K, i.e. according to (1), Bew [R(q); 

q] would hold good, in contradiction to our initial 

assumption. If, on the contrary, the 

 

negation of [R(q); q] were provable, then n ε K 

, i.e. Bew [R(q); q] would hold good. [R(q); q] 

would thus be provable at the same time as its 

negation, which again is impossible. 

 

The analogy between this result and Richard’s 

antinomy leaps to the eye; there is also a close 

relationship with the “liar” antinomy,14 since the 

undecidable proposition [R(q); q] states precisely 

that q belongs to K, i.e. according to (1), that [R(q); 

q] is not provable. We are therefore confronted with 

a proposition which asserts its own 

11a The bar-sign indicates negation. 

12 Again there is not the slightest difficulty in 

actually writing out the formula S. 

13 Note that “[R(q); q]” (or—what comes to 

the same thing—“[S; q]”) is merely a 

metamathematical description of the undecidable 

proposition. But as soon as one has ascertained the 

formula S, one can naturally also determine the 

number q, and thereby effectively write out the 

undecidable proposition itself. 

14 Every epistemological antinomy can 

likewise be used for a similar undecidability proof. 

unprovability.15 The method of proof just 

exhibited can clearly be applied to every formal 

system having the following [176] features: firstly, 

interpreted as to content, it disposes of sufficient 

means of expression to define the concepts 

occurring in the above argument (in particular the 

concept “provable formula”); secondly, every 

provable formula in it is also correct as regards 

content. The exact statement of the above proof, 

which now follows, will have among others the task 

of substituting for the second of these assumptions 

a purely formal and much weaker one. 

 

From the remark that [R(q); q] asserts its own 

unprovability, it follows at once that [R(q); q] is 

correct, since [R(q); q] is certainly unprovable 

(because undecidable). So the proposition which is 

undecidable in the system PM yet turns out to be 
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decided by metamathematical considerations. The 

close analysis of this remarkable circumstance 

leads to surprising results concerning proofs of 

consistency of formal systems, which are dealt with 

in more detail in Section 4 (Proposition XI). 

 

We proceed now to the rigorous development of 

the proof sketched above, and begin by giving an 

exact description of the formal system P, for which 

we seek to demonstrate the existence of 

undecidable propositions. P is essentially the 

system obtained by superimposing on the Peano 

axioms the logic of PM16 (numbers as individuals, 

relation of successor as undefined basic concept). 

 

15 In spite of appearances, there is nothing 

circular about such a proposition, since it begins 

byasserting the unprovability of a wholly 

determinate formula (namely the q-th in the 

alphabetical arrangement with a definite 

substitution), and only subsequently (and in some 

way by accident) does it emerge that this formula is 

precisely that by which the proposition was itself 

expressed. 

 

16 The addition of the Peano axioms, like all 

the other changes made in the system PM, serves 

onlyto simplify the proof and can in principle be 

dispensed with. 

The basic signs of the system P are the 

following: 

I. Constants: “~” (not), “∨” (or), “Π” (for 

all), “0” (nought), “f” (the successor of), “(”, “)” 

(brackets). 

II. Variables of first type (for individuals, i.e. 

natural numbers including 0): “x1”, “y1”, 

“z1”, … 

Variables of second type (for classes of 

individuals): “x2”, “y2”, “z2”, … 

 

Variables of third type (for classes of classes of 

individuals): “x3”, “y3”, “z3”, … and so on for every 

natural number as type.17 

 

Note: Variables for two-termed and many-

termed functions (relations) are superfluous as 

basic signs, since relations can be defined as classes 

of ordered pairs and ordered pairs again as classes 

of classes, e.g. the ordered pair a, b by ((a), (a, b)), 

where (x, y) means the class whose only elements 

are x and y, and (x) the class whose only element is 

x.18 [177] By a sign of first type we understand a 

combination of signs of the form:  a, fa, ffa, fffa . . . 

etc. 

where a is either 0 or a variable of first type. In 

the former case we call such a sign a number-sign. 

For n > 1 we under stand by a sign of n-th type the 

same as variable of n-th type. Combinations of 

signs of the form a(b), where b is a sign of n-th and 

a a sign of (n + 

1)-th type, we call elementary 

17 It is presupposed that for every variable 

type denumerably many signs are available. 

18 Unhomogeneous relations could also be 

defined in this manner, e.g. a relation between 

individualsand classes as a class of elements of the 

form: ((x2), ((x1), x2)). As a simple consideration 

shows, all the provable propositions about relations 

in PM are also provable in this fashion. 

19  

formulae. The class of formulae we define as 

the smallest class19 containing all elementary 

formulae and, also, along with any a and b the 

following: ~(a), (a) ∨ (b), xΠ(a) (where x is any 

given variable).18a We term (a) ∨ (b) the disjunction 

of a and b, ~(a) the negation and xΠ(a) a 

generalization of a. A formula in which there is no 

free variable is called a propositional formula (free 

variable being defined in the usual way). A formula 

with just n free individual variables (and otherwise 

no free variables) we call an n-place relation-sign 

and for n = 1 also a class-sign. 

 

 (where a stands for a 

formula,  

 

v a variable and b a sign of the same By Subst a 

type as v) we understand the formula derived from 

a, when we replace v in it, wherever it is free, by 

b.20 We say that a formula a is a type-lift of another 

one b, if a derives from b, when we increase by the 

same amount the type of all variables appearing in 

b. 

The following formulae (I-V) are called axioms 

(they are set out with the help of the customarily 

defined abbreviations: ., ⊃, (Ex), =,21 and subject to 

the usual conventions about omission of 

brackets)22: 

 

18a Thus x Π (a) is also a formula if x does not 

occur, or does not occur free, in a. In that case x Π 

(a) naturally means the same as a. 

 

19 With regard to this definition (and others 

like it occurring later), cf. J. Lukasiewicz and A. 

Tarski,‘Untersuchungen über den 

Aussagenkalkül’, Comptes Rendus des séances de 

la Societe des Sciences et des Lettres de Varsovie 

XXIII, 1930, C1 III. 

 



Models & Optimisation and Mathematical Analysis Journal Vol.05 Issue 01 (2017) 

 

15 

 

 

20 Where v does not occur in a as  

 

21 a free variable, we must put  

Subst . Note that “Subst” is a sign 

belonging to metamathematics. 

 

22 As in PM I, *13, x1 = y1 is to be thought of 

as defined by x2Π (x2(x1) ⊃ x2(y1)) (and similarly for 

higher types.) 

23 To obtain the axioms from the schemata 

presented (and in the cases of II, III and IV, after 

carryingout the permitted substitutions), one must 

therefore still 

 

1. eliminate the abbreviations 

2. add the suppressed brackets. 

 

Note that the resultant expressions must be 

“formulae” in the above sense. (Cf. also the exact 

definitions of the metamathematical concepts on 

pp. 49ff.) 

  1. ~ (fx1 =  0) 

2. fx1 = fy1 ⊃ x1 = y1 

3. x2(0) . x1 Π (x2(x1) ⊃ x2(fx1)) ⊃ x1  Π 

(x2(x1)) 

[178] II. Every formula derived from the 

following schemata by substitution of any formulae 

for p, q and r. 

1. p ∨ p ⊃ p  3. p ∨ q ⊃ q ∨ p 

2. p ⊃ p ∨ q  4. (p ⊃ q ) ⊃ (r ∨ p ⊃ r 

∨ q) 

III. Every formula derived from the two 

schemata 

 

by making the following substitutions for a, v, 

b, c (and carrying out in 1 the operation denoted by 

“Subst”): for a any given formula, for v any 

variable, for b any formula in which v does not 

appear free, for c a sign of the same type as v, 

provided that c contains no variable which is bound 

in a at a place where v is free.23 

 

IV. Every formula derived from the schema 

1 . (Eu) (v Π (u(v) Π (a) 

 

on substituting for v or u any variables of types 

n or n + 1 respectively, and for a a formula which 

does not contain u free. This axiom represents the 

axiom of reducibility (the axiom of comprehension 

of set theory). 

V. Every formula derived from the following 

by type-lift (and this formula itself): 

1. x1 Π (x2(x1) ≡ y2(x1)) ⊃ x2 = y2. 

23 c is therefore either a variable or 0 or a sign 

of the form f . . . fu where u is either 0 or a variable 

of type 1. With regard to the concept “free (bound) 

at a place in a” cf. section I A5 of the work cited in 

footnote 24. 

This axiom states that a class is completely 

determined by its elements. 

A formula c is called an immediate consequence 

of a and b, if a is the formula (~(b)) ∨ (c), and an 

immediate consequence of a, if c is the formula v Π 

(a), where v denotes any given variable. The class 

of provable formulae is defined as the smallest class 

of formulae which contains the axioms and is 

closed with respect to the relation “immediate 

consequence of”.24 

The basic signs of the system P are now ordered 

in one-to-one correspondence with natural 

numbers, as follows: 

 “0” … 1  “v” … 7  “(“ … [179] 

“f ” … 3 “~” … 5 “Π” …  9  “)” … 

 

Furthermore, variables of type n are given 

numbers of the form pn (where p is a prime number 

> 13). Hence, to every finite series of basic signs 

(and so also to every formula) there corresponds, 

one-to-one, a finite series of natural numbers. These 

finite series of natural numbers we now map (again 

in one-to-one correspondence) on to natural 

numbers, by letting the number 2n1, 3n2 . . . pk
nk 

correspond to the series n1, n2, . . . nk, where pk 

denotes the k-th prime number in order of 

magnitude. A natural number is thereby assigned in 

one-to-one correspondence, not only to every basic 

sign, but also to every finite series of such signs. 

We denote by Φ(a) the number corresponding to 

the basic sign or series of basic signs a. Suppose 

now one is given a class or relation R (a1, a2, . . . an) 

of basic signs or series of such. We assign to it that 

class (or relation) 

 

24 The rule of substitution becomes 

superfluous, since we have already dealt with all 

possiblesubstitutions in the axioms themselves (as 

is also done in J. v. Neumann, ‘Zur Hilbertschen 

Beweistheorie’, Math. Zeitschr. 26, 1927). 

 

R'(x1, x2, . . . xn) of natural numbers, which holds 

for x1, x2, . . . xn when and only when there exist a1, 

a2, . . . an such that xi = Φ,(ai) ( i = 1, 2, . . . n) and 

R (a2, a2, . . . an) holds. We represent by the same 

words in italics those classes and relations of 

natural numbers which have been assigned in this 

fashion to such previously defined 

metamathematical concepts as “variable”, 
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“formula”, “propositional formula”, “axiom”, 

“provable formula”, etc. The proposition that there 

are undecidable problems in the system P would 

therefore read, for example, as follows: There exist 

propositional formulae a such that neither a nor the 

negation of a are provable formulae. 

 

We now introduce a parenthetic consideration 

having no immediate connection with the formal 

system P, and first put forward the following 

definition: A number-theoretic function25 φ (x1, x2, 

. . . xn) is said to be recursively defined by the 

number-theoretic functions ψ (x1, x2, . . . xn - 1) and 

µ (x1, x2, . . . xn + 1), if for all x2, . . . xn, k 26 the 

following hold: φ (0, x2, . . . xn) = ψ (x2 . . . xn) 

 

φ (k + 1, x2, . . . xn) = µ (k, φ (k, x2, . . . xn), x2, . 

. . xn). (2) 

 

A number-theoretic function φ is called 

recursive, if there exists a finite series of number-

theoretic functions φ1, φ2, . . . φn, which ends in φ 

and has the property that every function φk of the 

series is either recursively defined [180] by two of 

the earlier ones, or is derived from any of the earlier 

ones by substitution,27 or, finally, is a constant or 

25 I.e. its field of definition is the class of 

non-negative whole numbers (or n-tuples of such), 

respectively, and its values are non-negative whole 

numbers. 

26 In what follows, small italic letters (with 

or without indices) are always variables for non-

negativewhole numbers (failing an express 

statement to the contrary). 

 

27 More precisely, by substitution of certain 

of the foregoing functions in the emptyplaces of the 

preceding, e.g. φk (x1, x2) = φp [ φ (x1, x2), φr (x2)] 

(p, q, r  < k). Not all the variables on the left-hand 

side must also occur on the right (and similarly in 

the recursion schema (2)). 

the successor function x + 1. The length of the 

shortest series of φi, which belongs to a recursive 

function φ, is termed its degree. A relation R (x1 . . 

. xn) among natural numbers is called recursive,28 if 

there exists a recursive function φ (x1 . . . xn) such 

that for all x1, x2, . . . xn 

R (x1 . . . xn) ~ [φ (x1 . . . xn) = 0] 29 The following 

propositions hold: 

I. Every function (or relation) derived from 

recursive functions (or relations) by the 

substitution of recursive functions in place of 

variables is recursive; so also is every function 

                                                 
1 L ucida Blackletter. 

derived front recursive functions by recursive 

definition according to schema (2). 

 

II. If R and S are recursive relations, then so 

also are R , R ∨ S (and therefore also R & S). 

III. If the functions φ(x) and ψ(n) are 

recursive, so also is the relation: φ(x) = ψ(n).30; 

IV. If the function φ(x) and the relation R (x, 

n) are recursive, so also then are the relations S,T 

S (x, n) ~ (Ex) [x ≤ f (x) & R (x, n)] 

T (x, n) ~ (x) [x ≤ f (x) → R (x, n)] 

 

28 We include classes among relations (one-

place relations). Recursive relations R naturally 

have the property that for every specific n-tuple of 

numbers it can be decided whether R (x1, . . . xn) 

holds or not. 

29 For all considerations as to content (more 

especially also of a metamathematical kind) 

theHilbertian symbolism is used, cf. Hilbert-

Ackermann, Crundzüge der theoretischen Logik, 

Berlin 1928. 

30 We use gothic 1  letters x, n, as 

abbreviations for given n-tuple sets of variables, 

e.g. x1, x2 . . . xn. 

and likewise the function ψ 

ψ (x, n) = ε x [x ≤ φ (x) & R (x, n))], 

where ε x F(x) means: the smallest number x for 

which F(x) holds and 0 if there is no such number. 

Proposition I follows immediately from the 

definition of “recursive”. Propositions II and III are 

based on the readily ascertainable fact that the 

number-theoretic functions 

 

corresponding to the logical concepts  , ∨, = 

α (x), β (x, y), γ(x, y) 

namely α (0) = 1; α (x) = 0 for x ≠ 0 

β (0, x) = β(x, 0) = 0; β (x, y) = 1, if x, y both ≠ 

0 

[181] γ(x, y) = 0, if x = y; γ(x, y) = 1,if x ≠ y 

are recursive. The proof of Proposition 1V is 

briefly as follows: According to the assumption 

there exists a recursive p (x, n) such that 

R (x, n) ~ [ρ (x, n) = 0]. 

We now define, according to the recursion 

schema (2), a function χ (x, n) in the following 

manner: 

χ (0, n) = 0 

χ (n+ 1, n) = (n + 1) ⋅ a + χ (n, n) ⋅ α (a) 31 

where 
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a = α [α (ρ (0, n)] ⋅ α [ρ (n + l, n] ⋅ α [χ (n, n]. 

χ (n+ 1, n) is therefore either = n + 1 (if a = 1) 

or = χ (n, n) (if a = 0).32 The first case 

 

clearly arises if and only if all the constituent 

factors of a are 1, i.e. if 

31 We take it to be recognized that the 

functions x + y (addition) and x ⋅ y (multiplication) 

are recursive. 

32 a cannot take values other than 0 and 1, as 

is evident from the definition of α. 

 

R (0, n) & R (n + 1, n) & [χ (n, n) = 0]. 

From this it follows that the function χ (n, n) 

(considered as a function of n) remains 0 up to the 

smallest value of n for which R (n, n) holds, and 

from then on is equal to this value (if R (0, n) is 

already the case, the corresponding χ (n, n) is 

constant and = 0). Therefore: ψ (x, n) = χ (φ (x), n) 

S(x, n) ~ R [ψ (x, n)), n]. 

The relation T can be reduced by negation to a 

case analogous to S. so that Proposition IV is 

proved. 

 

The functions x + y, x ⋅ y, xy, and also the 

relations x < y, x = y are readily found to be 

recursive; starting from these concepts, we now 

define a series of functions (and relations) 1-45, of 

which each is defined from the earlier ones by 

means of the operations named in Propositions I to 

IV. This procedure, generally speaking, puts 

together many of the definition steps permitted by 

Propositions I to IV. Each of the functions 

(relations) 1-45, containing, for example, the 

concepts “formula”, “axiom”, and “immediate 

consequence”, is therefore recursive. 

 1. x/y ≡ (E z) [z ≤ x & x = y ⋅ z] 2 

 [182] 

x is divisible by y.3 

 

3. 0 Pr x ≡ 0 

(n+ 1) Pr x ≡ ε y[y ≤  x & Prim (y) & x/y & y > 

n Pr x] n Pr x is the n-th (in order of magnitude) 

prime number contained in x.34a 

4. 0! ≡ 1 

(n + 1)! ≡ (n + 1) ⋅ n! 

                                                 
2 The sign ≡ is used to mean “equivalence 

by definition”, and therefore does duty in 

definitions either for = or for ~ (otherwise the 

symbolism is Hilbertian). 

3  Wherever in the following definitions 

one of the signs (x), (E x), ε  x occurs, it is followed 

5. Pr (0) ≡ 0 

Pr (n + 1) ≡ ε y [y ≤ {Pr (n)}! + 1 & Prim (y) & 

y >Pr (n)] Pr (n) is the n-th prime number (in order 

of magnitude). 

 

6. n Gl x ≡ ε y [y ≤  x & x |(n Pr x)y & x/(n Pr 

x)y + 1 ] 

n Gl x is the n-th term of the series of numbers 

assigned to the number x (for n > 0 and n not greater 

than the length of this series). 

7. l (x) ≡ ε y [y ≤ x & y Pr x > 0 & (y + 1) Pr 

x = 0] l (x) is the length of the series of numbers 

assigned to x. 

8. x * y ≡ ε z [z ≤ [Pr {l (x) + l (y)}]x + y 

& (n) [n ≤ l (x) → n Gl z = n Gl x] 

& (n) [0 < n ≤ l (y) → {n + l (x)} Gl z = n Gl y]] 

x * y corresponds to the operation of “joining 

together” two finite series of 

numbers. 

9. R (x) ≡ 2x 

R (x) corresponds to the number-series 

consisting only of the number x (for x > 0). 

10. E (x) ≡ R (11) * x * R(13) 

E (x) corresponds to the operation of 

“bracketing” [11 and 13 are assigned to the basic 

signs “(” and “)”]. 

34a For 0 < n ≤ z, where z is the number of 

distinct prime numbers dividing into x. Note that for 

n = z + 1, n Pr x = 0. 

 

11. n Var x  (E z) [13 < z ≤ x & Prim (z) & x = 

zn] & n ≠ 0 x is a variable of n-th type. 

12. Var (x) ≡ (E n) [n ≤ x & n Var x] x is a 

variable. 

13. Neg (x) ≡ R (5) * E (x) 

Neg (x) is the negation of x. 

14. x Dis y ≡ E (x) * R (7) * E (y) [183] x Dis 

y is the disjunction of x and y. 

15. x Gen y ≡  R (x) *R (9) * E (y) x Gen y is 

the generalization of y by means of the variable x 

(assuming x is a 

variable). 

16. 0 N x ≡ x 

by a limitation on the value of x. This limitation 

merely serves to ensure the recursive nature of the 

concept defined. (Cf. Proposition IV.) On the other 

hand, the range of the defined concept would 

almost always remain unaffected by its omission. 
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(n + 1) N x ≡ R(3) * n N x n N x corresponds to 

the operation: “n-fold prefixing of the sign ‘f ’   

before x.” 

17. Z (n) ≡ n N [R(1)] 

Z (n) is the number-sign for the number n. 

18. Typ1' (x) ≡ (E m, n) {m, n ≤ x & [m = 1 ∨ 

1 Var m] & x = n N [R(m)]} 34b x is a sign of first 

type. 

19. Typn  (X) ≡ [n = 1 & Typ1' (x)] ∨ [n > 1 & 

(E v) {v ≤ x & n Var v & x = R(v)}] x is a sign of n-

th type. 

20. Elf (x) ≡ (E y,  z, n) [y , z, n ≤ x & Typn (y) 

& Typn + 1 (z) & x = z * E (y)] x is an elementary 

formula. 

34b m, n ≤ x stands for: m ≤ x & n ≤ x (and 

similarly for more than two variables). 

21. Op (x, y, z) ≡ x = Neg (y) ∨ x = y Dis z ∨ 

(E v) [v ≤ x 

& Var (v) & x = v Gen y] 

22. FR (x) ≡ (n) {0 < n ≤ l (x) → Elf (n Gl x) ∨ 

(E p, q) 

[0 < p, q < n & Op (n Gl x, p Gl x, q Gl x)]} 

& l (x) > 0 

x is a series of formulae of which each is either 

an elementary formula or arises from those 

preceding by the operations of negation, 

disjunction and generalization. 

≡ (En) {n ≤ (Pr [l (x)2])x ⋅ [l (x)]2 

23. Form (x)  

& FR (n) & x = [l (n)] Gl n}35 x is a formula (i.e. 

last term of a series of formulae n). 

24. v Geb n, x ≡  Var (v) & Form (x) & (Ea, b 

,c) [a, b, c ≤ x 

& x = a * (v Gen b) * c & Form (b) 

& l (a) + 1 ≤ n ≤ l (a) + l (v Gen b)] 

The variable v is bound at the n-th place in x. 

[184] 25. v Fr n, x ≡ Var (v) & Form (x) & v = n    

Gl x 

 

& n ≤ l (x) & v Geb n, x 

The variable v is free at the n-th place in x. 

26. v Fr x ≡ (En) [n ≤ l (x) & v Fr n, x] v occurs 

in x as a free variable. 

27. Su x (y) ≡ ε z {z ≤ [Pr (l (x) + l (y))] x + y 

& [(E u, v) u, v ≤ x & x = u * R (n Gl x) * v 

& z = u * y * v & n = l (u) + 1 ]} 

Su  derives from x on substituting y in  

 

place of the n-th term of x (it being assumed that 

0 < n ≤ l (x)). 

35 The limitation n ≤ (Pr [l (x)]2) x t`(x)]2 

means roughly this: The length of the shortest series 

of formulae belonging to x can at most be equal to 

the number of constituent formulae of x. There are 

however at most l(x) constituent formulae of length 

1, at most l (x) − 1 of length 2, etc. and in all, 

therefore, at most  [l 

(x) {l (x) + 1 }] < [l (x)]2. The prime numbers in 

n can therefore all be assumed smaller than Pr {[l 

(x)]2}, their number ≤ [l (x)]2 and their exponents 

(which are constituent formulae of x) ≤ x. 

28. 0 St v, x  ε n {n ≤ 1 (x) & v Fr n, x & (E p) 

[n < p < l (x) 

& v Fr p, x]} 

(k + 1) St v, x ≡ ε n {n < k St v, x 

& v Fr n, x & (E p) [n < p < k St v, x & v Fr p, 

x]} k St v, x is the (k + 1)th place in x (numbering 

from the end of the formula x) at 

which v is free in x (and 0, if there is no such 

place). 

29. A (v, x) _ ε n {n _ I(x) & n St v, x = 0} 

A (v, x) is the number of places at which v is free 

in x. 

30.  

 

 

31.  

32. x Imp y ≡ [Neg (x)] Dis y x Con y ≡ Neg 

{[Neg (x)] Dis [Neg (y)]} x Aeq y ≡ (x Imp y) Con 

(y Imp x) v Ex y ≡ Neg {v Gen [Neg (y)]} 

33. n Th x ≡ ε y {y ≤  x(xn) & (k) [k < l (x) → (k 

Gl x ≤ 13 

& k Gl y = k Gl x) ∨ (k Gl x > 13 & k Gl y = k 

Gl x. [1 Pr(k Gl x)]n)]} n Th x is the n-th type-lift of 

x (in the case when x and n Th x are formulae). 

To the axioms I, 1 to 3, there correspond three 

determinate numbers, which we denote by z1, z2, z3, 

and we define:  

34. Z − A x (x) ≡ (x = z1 ∨ x = z2 ∨ x = z3) 

36 Where v is not a variable or x not a 

formula, then  

 

 

37 Instead of  

 

[185] 35.  A1 − Ax (x) ≡ (Ey) [y ≤ x & Form (y) 

& x = (y Dis y) Imp y] x is a formula derived by 

substitution in the axiom-schema II, 1. Similarly A2 

− Ax, A3 − Ax, A4 − Ax are defined in accordance 

with the axioms II, 2 to 4. 
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36. A − A x (x) ≡ A1 − A x (x) ∨ A2 - A x (x) ∨ 

A3 − A x (x) ∨ A4 − A x (x) x is a formula derived by 

substitution in an axiom of the sentential calculus. 

37. Q (z, y, v) ≡ (En, m, w) [n ≤ l (y) & m ≤ l 

(z) & w ≤ z & w = m Gl x & w Geb n, y & v Fr n, y] 

z contains no variable bound in y at a position 

where v is free. 

38. L1 − A x (x) ≡ (Ev, y, z, n) {v, y, z, n ≤ x & 

n Var v 

& Typn (z) & Form (y) & Q (z, y, v) & x = (v 

Gen y) Imp   

 

x is a formula derived from the axiom-schema 

III, I by substitution. 

39. L2 - A x (x) ≡ (Ev, q, p) {v, q, p ≤ x & Var 

(v) & Form (p) & v Fr p & Form (q) 

& x = [v Gen (p Dis q)] Imp [p Dis (v Gen q)] } 

x is a formula derived from the axiom-schema III, 

2 by substitution. 

40. R − A x (x) ≡ (Eu, v, y, n) [u, v, y, n < x & 

n Var v & (n + 1) Var u & u Fr y & Form (y) 

& x = u Ex {v Gen [[R (u) * E (R (v))] Aeq y] }] 

x is a formula derived from the axiom-schema IV, I 

by substitution. 

To the axiom V, I there corresponds a 

determinate number Z4  and we define: 

41. M − A x (x) ≡ (En) [n ≤ x & x = n Th z4 ] 

42. A x (x)  Z − A x (x) ∨ A − A x (x) ∨ L1 − A 

x (x) ∨ L2 − A x (x) ∨ R − A x (x) ∨ 

M − A x (x) 

x is an axiom. 

43. Fl (x y z) ≡ y = z Imp x ∨ (E v) [v ≤ x & Var 

(v) & x = v Gen y] x is an immediate consequence 

of y and z. 

44. Bw (x) ≡ (n) {0 < n ≤ l (x) → A x (n Gl x) 

 [186] 

∨ (E p, q) [0 < p, q < n & Fl (n Gl x, p Gl x, q 

Gl x)]} 

& l (x) > 0 

x is a proof-schema (a finite series of formulae, 

of which each is either an 

axiom or an immediate consequence of two 

previous ones). 

45. x B y ≡ Bw (x) & [l (x)] Gl x = y x is a proof 

of the formula y. 

46. Bew (x) = (E y) y B x x is a provable 

formula. [Bew (x) is the only one of the concepts 1-

46 of which 

it cannot be asserted that it is recursive.] 

The following proposition is an exact 

expression of a fact which can be vaguely 

formulated in this way: every recursive relation is 

definable in the system P (interpreted as to content), 

regardless of what interpretation is given to the 

formulae of P: 

Proposition V: To every recursive relation R (x1, 

. . . xn) there corresponds an n-place relation-sign r 

(with the free variables 38 u1, u2, . . . un) such that 

for every n-tuple of numbers (x1 . . . xn) the 

following hold: 

38 The variables u1 . . . un could be arbitrarily 

allotted. There is always e.g., an r with the free 

variables 17, 19, 23 . . . etc., for which (3) and (4) 

hold. 

  

 

We content ourselves here with indicating the 

proof of this proposition in outline, since it offers 

no difficulties of principle and is somewhat 

involved.39 We prove the proposition for all 

relations R (x1 . . . xn)  of the form: x1  = φ (x2 . . . 

xn) 40 (where φ is a recursive function) and apply 

mathematical induction on the degree of φ. For 

functions of the first degree (i.e. constants and the 

function x + 1 ) the proposition is trivial. Let φ then 

be of degree m. It derives from functions of lower 

degree φ1 . . . φk by the operations of substitution 

or recursive definition. Since, by the inductive 

assumption, everything is already proved for φ1 . . 

. φk, there exist corresponding relation-signs r1 . . . 

rk such that (3) and (4) hold. The processes of 

definition whereby φ is derived from φ1 . . . φk  

(substitution and [187] recursive definition) can all 

be formally mapped in the system P. If this is done, 

we obtain from r1 . . . rk a new relation sign r41, for 

which we can readily prove the validity of (3) and 

(4) by use of the inductive assumption. A relation-

sign r, assigned in this fashion to a recursive 

relation,42 will be called recursive. 

We now come to the object of our exercises: 

39 Proposition V naturally is based on the fact 

that for any recursive relation R. it is decidable, for 

every n-tuple of numbers, from the axioms of the 

system P. whether the relation R holds or not. 

40 From this there follows immediately its 

validity for every recursive relation, since any 

suchrelation is equivalent to 0 = φ (x1 . . . xn), where 

φ is recursive. 

41 In the precise development of this proof, r 

is naturally defined, not by the roundabout route of 

indicating its content, but by its purely formal 

constitution. 

42 Which thus, as regards content, expresses 

the existence of this relation. 
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Let c be any class of formulae. We denote by 

Flg (c) (set of consequences of c) the smallest set of 

formulae which contains all the formulae of c and 

all axioms, and which is closed with respect to the 

relation “immediate consequence of”. c is termed 

ω-consistent, if there is no class-sign a such that: 

 

where v is the free variable of the class-sign a. 

Every ω-consistent system is naturally also 

consistent. The converse, however, is not the case, 

as will be shown later. 

The general result as to the existence of 

undecidable propositions reads: 

Proposition VI: To every ω-consistent recursive 

class c of formulae there correspond recursive 

class-signs r, such that neither v Gen r nor Neg (v 

Gen r) belongs to Flg (c) (where v is the free 

variable of r). 

Proof: Let c be any given recursive ω-consistent 

class of formulae. We define: 

Bwc (x) ≡ (n) [n ≤ l (x) → A x (n Gl x) ∨ (n Gl x) 

ε c ∨ 

(Ep, q) {0 < p, q < n & Fl (n Gl x, p Gl x, q Gl 

x)}] 

& l (x) > 0  

(cf. the analogous concept 44) 

(5) 

x Bcy ≡ Bwc (x) & [l (x)] Gl x = y  (6) 

Bewc (x) ≡ (Ey) y Bcx (cf. the 

analogous concepts 45, 46) The 

following clearly hold: 

(6.1 ) 

(x) [Bewc (x) ~ x ε Flg (c)]  (7) 

(x) [Bew (x) → Bewc (x)]  (8) 

 [188] We now define the relation: 

 

  

 (8.1 ) 

 

Since x Bc y [according to (6), (5)1 and Sb are 

recursive, so also is Q (x, y). According to 

Proposition V and (8) there is therefore a relation-

sign q (with the free variables 17, 19) such that 

 

 

 

43 r is derived in fact, from the recursive 

relation-sign q on replacement of a variable by a 

determinate number (p). 

44 The operations Gen and Sb are naturally 

always commutative, wherever they refer to 

different variables. 

[because of (11) and (12)] and furthermore: 

 

 Hence:  [189] 

1. 17 Gen r is not c-provable.45 For if that were 

so, there would (according to 6.1 ) be an n such that 

n Bc (17 Gen r). By (16) it would therefore be the 

case that: 

 

 

 

while—on the other hand—from the c-

provability of 17 Gen r there follows also 

that of  

 

 

 

c would therefore be inconsistent (and, a 

fortiori, ω-inconsistent). 

2. Neg (17Gen r) is not c-provable. Proof: As 

shown above, 17 Gen r is not c-provable, i.e. 

(according to 6.1) the following holds: (n) n Bc (17 

Gen r). Whence it follows, 
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which 

together with Bewc [Neg(17Gen r)] would conflict 

by (15), that (n) Bew  

with the ω-consistency of c. 

17 Gen r is therefore undecidable in c, so that 

Proposition Vl is proved. 

45 “x is c-provable” signifies: x ε Flg (c), which, 

by (7), states the same as Bewc (x). 

 

One can easily convince oneself that the above 

proof is constructive,45a i.e. that the following is 

demonstrated in an intuitionistically 

unobjectionable way: Given any recursively 

defined class c of formulae: If then a formal 

decision (in c) be given for the (effectively 

demonstrable) propositional formula 17 Gen r, we 

can effectively state: 

1. A proof for Neg (17 Gen r). 

2. For any given n ,a proof for  

 

i.e. a formal decision of 

Gen r would 2. For any given n, a 

proof for Sb  

lead to the effective demonstrability of an ω-

inconsistency. 

We shall call a relation (class) of natural 

numbers R (x1 . . . xn) calculable 

[entscheidungsdefinit], if there is an n-place 

relation-sign r such that (3) and (4) hold (cf. Pro 

position V). In particulars therefore, by Proposition 

V, every recursive relation is calculable. Similarly, 

a relation-sign will be called calculable, if it be 

assigned in this manner to a calculable relation. It 

is, then, sufficient for the existence of undecidable 

propositions, to assume of the class c that it is ω-

consistent and calculable. For the property of being 

calculable carries over from c to x Bcy (cf. (5), (6)) 

[190] and to Q (x, y) (cf. 8.1), and only these are 

applied in the above proof. The undecidable 

proposition has in this case the form v Gen r, where 

r is a calculable class-sign (it is in fact enough that 

c should be calculable in the system extended by 

adding c). 

 

If, instead of ω-consistency, mere consistency 

as such is assumed for c, then there follows, indeed, 

not the existence of an undecidable proposition, but 

rather the existence of a property (r) for which it is 

possible neither to provide a counter-example nor 

to prove that it holds for all numbers. 

45a Since all existential assertions occurring in 

the proof are based on Proposition V, which, as can 

easily be seen, is intuitionistically unobjectionable. 

For, in proving that 17 Gen r is not c-provable, 

only the consistency of c is employed (cf. p. 

 

59) and from Bewc (17 Gen r) it follows, 

according to (15), that for every number x, Sb 

 

 is c-provable, and hence that 

Neg  

 

 is not c-provable for any 

number. 

 

By adding Neg (17Gen r) to c, we obtain a 

consistent but not ω-consistent class of formulae c'. 

c' is consistent, since otherwise 17 Gen r would be 

c-provable. c' is not how ever 

 

ω-consistent, since in virtue of Bewc (17 Gen r) 

and 

 

 

 

(15) we have: (x) Bewc Sb  

 

and so a fortiori: 

 

 

and on the other hand, 

naturally: Bewc [Neg (17 Gen r)].  

A special case of Proposition VI is that in which 

the class c consists of a finite number of formulae 

(with or without those derived therefrom by type-

lift). Every finite class a is naturally recursive. Let 

a be the largest number contained in a. Then in this 

case the following holds for c: x ε c ~ (Em, n) [m ≤ 

x & n ≤ a & n ε a & x = m Th n] 

c is therefore recursive. This allows one, for 

example, to conclude that even with the help of the 

axiom of choice (for all types), or the generalized 

continuum hypothesis, not all propositions are 

decidable, it being assumed that these hypotheses 

are ω-consistent. 

In the proof of Proposition VI the only 

properties of the system P employed were the 

following: 

46 Thus the existence of consistent and not ω-

consistent c’s can naturally be proved only on the 

assumption that, in general, consistent c’s do exist 

(i.e. that P is consistent). 

1. The class of axioms and the rules of 

inference (i.e. the relation “immediateconsequence 

of”) are recursively definable (as soon as the basic 

signs are replaced in any fashion by natural 

numbers). 
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2. Every recursive relation is definable in the 

system P (in the sense of Proposition V). 

 

Hence in every formal system that satisfies 

assumptions 1 and 2 and is ω-consistent, 

undecidable propositions exist of the form (x) F(x), 

where F is a recursively defined property of natural 

numbers, and so too in every extension of such 

[191] a system made by adding a recursively 

definable Inconsistent class of axioms. As can be 

easily confirmed, the systems which satisfy 

assumptions I and 2 include the Zermelo-Fraenkel 

and the v. Neumann axiom systems of set theory,47 

and also the axiom system of number theory which 

consists of the Peano axioms, the operation of 

recursive definition [according to schema (2)3] and 

the logical rules.48 Assumption 1 is in general 

satisfied by every system whose rules of inference 

are the usual ones and whose axioms (like those of 

P) are derived by substitution from a finite number 

of schemata.48a 

47 The proof of assumption 1 is here even 

simpler than that for the system P, since there is 

only onekind of basic variable (or two for J. v. 

Neumann). 

48 Cf. Problem III in D. Hilbert’s lecture: 

‘Probleme der Grundlegung der Mathematik’, 

Math. Ann. 102. 

48a The true source of the incompleteness 

attaching to all formal systems of mathematics, is 

to be found—as will be shown in Part II of this 

essay—in the fact that the formation of ever higher 

types can be continued into the transfinite (cf. D. 

Hilbert, ‘Über das Unendliche’ Math. Ann. 95, p. 

184), whereas in every formal system at most 

denumerably many types occur. It can be shown, 

that is, that the undecidable propositions here 

presented always become decidable by the 

adjunction of suitable higher types (e.g. of type ω 

for the system P). A similar result also holds for the 

axiom system of set theory. 

3 From Proposition VI we now obtain further 

consequences and for this purpose give the 

following definition: 

A relation (class) is called arithmetical, if it can 

be defined solely by means of the concepts +, ⋅ 
[addition and multiplication, applied to natural 

numbers]49 and the logical 

 

constants ∨, , (x), =, where (x) and = are to relate 

only to natural numbers.50 The concept of 

“arithmetical proposition” is defined in a 

corresponding way. In particular the relations 

“greater” and “congruent to a modulus” are 

arithmetical, since 

 

x > y ~  ( Ez ) [y = x + z] 

x ≡ y (mod n) ~ (Ez) [x = y + z ⋅ n ∨ y = x + z⋅ n] 

We now have: 

Proposition VII: Every recursive relation is 

arithmetical. 

We prove this proposition in the form: Every 

relation of the form x0 = φ (x1 . . . xn), where φ is 

recursive, is arithmetical, and apply mathematical 

induction on the degree of φ. Let 

φ be of degree s (s > 1). Then either 

 1.  φ (x1 . . . xn) = ρ [χ1 (x1 . . . xn),  

χ2 (x1 . . . xn) . . . χm (x1 . . . xn)] 

 

(where ρ and all the χ’s have degrees smaller 

than s) or 

 2.  φ (0, x2 . . . xn) = ψ [χ1 (x2 . . . xn) 

φ (k + 1, x2 . . . xn) = µ [k, φ (k, x2 . . . xn), x2 . . . 

xn] (where ψ, µ are of lower degree than s). 

49 Here, and in what follows, zero is always 

included among the natural numbers. 

 

50 The definiens of such a concept must 

therefore be constructed solely by means of the 

signs stated,variables for natural numbers x, y . . . 

and the signs 0 and 1 (function and set variables 

must not occur). (Any other number-variable may 

naturally occur in the prefixes in place of x.) 

It is not of course necessary that all x1 . . . xn 

should actually occur in xi [cf. the example in 

footnote 27]. 

 

In the first case we have: 

x0 = φ (x1 . . . xn) ~ (Ey1 . . . ym) [R (x0 y1 . . . ym) 

& S1 (y1, x1 . . . xn) & . . . & Sm (ym, x1 . . . xn)], 

 

where R and S; are respectively the arithmetical 

relations which by the inductive assumption exist, 

equivalent to x0 = ρ (y1 . . . ym) and y = χi (x1 . . . xn). 

In this case, therefore, x0  = φ (x1 . . . xn) is 

arithmetical. 

 

In the second case we apply the following 

procedure: The relation x0  = φ (x1 . . . xn) can be 

expressed with the help of the concept “series of 

numbers” ( f )52 as follows: 

x0  = φ (x1 . . . xn) ~ (Ef) {f0  = ψ (x2 . . . xn) 

& (k) [k < x1 → fk + 1  ~ = ~ (k, fk, x2 . . . xn)] 

& x0 = fx1} 

If S(y, x2 . . . xn) and T(z, x1 . . . xn + 1) are 

respectively the arithmetical relations— which by 

the inductive assumption exist—equivalent to 

y = ψ (x2 . . . xn) and z = µ (x1 . . . xn + 1), 

the following then holds: 
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x0  = φ (x1 . . . xn) ~ (Ef)  {S (f0, x2 . . . xn) & (k) 

[k < x1 → T(fk + 1, k, fk, x2 . . . xn)] 

& x0 = fx1} (17) 

We now replace the concept “series of 

numbers” by “pair of numbers”, by assigning to the 

number pair n, d the number series f (n, d) (f (n, d) = 

[n]1 + (k + 1)d ), where [n]p denotes the smallest non-

negative residue of n modulo p. 

 

f signifies here a variable, whose domain of 

values consists of series of natural numbers. fk 

denotes the k + 1-th term of a series f (f0 being the 

first). 

We then have the following: 

Lemma 1: If f is any series of natural numbers 

and k any natural number, then there exists a pair of 

natural numbers n, d, such that f (n, d) end f agree in 

the first k terms. 

 

 

 

 

Proof: Let I be the largest of the numbers k, f0, 

f1 . . .fk− 1. 

Let n be so determined that 

n = fi (mod (1 + (i + 1)l!)] for i = 0, 1 . . . k − 1 

which is possible, since every two of the 

numbers 1 + (i + 1)l!  [193] 

 

( 0, 1 . . . k − 1) are relatively prime. For a prime 

number contained in two of these numbers would 

also be contained in the difference (i1 − i2) l! and 

therefore, because [i1 − i2] < l, in l!, which is 

impossible. The number pair n, l! thus 

accomplishes what is required. 

Since the relation x = [n]p is defined by x ≡ n 

(mod p) & x < p and is therefore arithmetical, so 

also is the relation P (x0, x1 . . . xn) defined as 

follows: 

 

P (x1 . . . xn) ≡ (En, d) {S ([n]d + 1, x2 . . . xn) 

& (k) [k < x1  → T ([n]1 +  d(k + 2), k, [n]1 + d 

(k + 1), x2 . . . xn)] & x0 = [n]l + d (x1 + 1)} 

 

which, according to (17) and Lemma 1, is 

equivalent to x0  = φ (x1 . . . xn)  (we are concerned 

with the series f in (17) only in its course up to the 

x1  + 1-th term). Thereby Proposition VII is proved. 

According to Proposition VII there corresponds 

to every problem of the form (x) F(x) (F recursive) 

an equivalent arithmetical problem, and since the 

whole proof of Proposition VII can be formalized 

(for every specific F) within the system P, this 

equivalence is provable in P. Hence: 

Proposition VIII: In every one of the formal 

systems53 referred to in Proposition VI there are 

undecidable arithmetical propositions. 

These are the ω-consistent systems derived 

from P by addition of a recursively definable class 

of axioms. 

The same holds (in virtue of the remarks at the 

end of Section 3) for the axiom system of set theory 

and its extensions by ω-consistent recursive classes 

of axioms. 

We shall finally demonstrate the following 

result also: 

Proposition IX: In all the formal systems 

referred to in Proposition VI53 there are undecidable 

problems of the restricted predicate calculus54 (i.e. 

formulae of the restricted predicate calculus for 

which neither universal validity nor the existence of 

a counter-example is provable).55 

[194]This is based onProposition X: Every 

problem of the form (x) F(x) (F recursive) can be 

reduced to the question of the satisfiability of a 

formula of the restricted predicate calculus (i.e. for 

every recursive F one can give a formula of the 

restricted predicate calculus, the satisfiability of 

which is equivalent to the validity of (x) F (x)). 

We regard the restricted predicate calculus 

(r.p.c.) as consisting of those formulae 

 

which are constructed out of the basic signs:  , 

∨, (x), =; x, y . . . (individual variables) and F 

(x), G (x, y), H (x, y, z) . . . (property and relation 

variables)56 where (x) and = may relate only to 

individuals. To these signs we add yet a third kind 

of variables φ (x), ψ (x y), χ (x y z) etc. which 

represent object functions; i.e. 

 

54 Cf. Hilbert-Ackermann, Grundzüge der 

theoretischen Logik. In the system P, formulae of 

the restricted predicate calculus are to be 

understood as those derived from the formulae of 

the restricted predicate calculus of PM on 

replacement of relations by classes of higher type, 

as indicated on p. 42. 

55 In my article ‘Die Vollständigkeit der 

Axiome des logischen Funktionenkalküls’, 

Monatsh. F. Math. u. Phys. XXXVII, 2, I have 

shown of every formula of the restricted predicate 

calculus that it is either demonstrable as universally 

valid or else that a counter-example exists, but in 

virtue of Proposition IX the existence of this 

counter-example is not always demonstrable (in the 

formal systems in question). 

 

 

56 D. Hilbert and W. Ackermann, in the work 

already cited, do not include the sign = in 
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therestricted predicate calculus. But for every 

formula in which the sign = occurs, there exists a 

formula without this sign, which is satisfiable 

simultaneously with the original one (cf. the article 

cited in footnote 55). 

57  

67 φ (x), ψ (x y), etc. denote one-valued 

functions whose arguments and values are 

individuals.57 A formula which, besides the first 

mentioned signs of the r.p.c., also contains 

variables of the third kind, will be called a formula 

in the wider sense (i.w.s.).58 The concepts of 

“satisfiable” and “universally valid” transfer 

immediately to formulae i.w.s. and we have the 

proposition that for every formula i.w.s. A we can 

give an ordinary formula of the r.p.c. B such that 

the satisfiability of A is equivalent to that of B. We 

obtain B from A, by replacing the variables of the 

third kind φ (x), ψ (x y) . . . appearing in A by 

expressions of the form (ι z) F (z x), (ι z) G (z, x y) . 

. ., by eliminating the “descriptive” functions on the 

lines of PM I * 14, and by logically multiplying59 

the resultant formula by an expression, which states 

that all the F. G . . . substituted for the φ, ψ . . . are 

strictly one-valued with respect to the first empty 

place. 

 

We now show, that for every problem of the 

form (x) F (x) (F recursive) there is an equivalent 

concerning the satisfiability of a formula i.w.s., 

from which Proposition X follows in accordance 

with what has just been said. 

Since F is recursive, there is a recursive 

function Φ (x) such that F(x) ~ [Φ (x) = 0], and for 

Φ there is a series of functions Φ1 Φ2 . . . Φn, such 

that In = 4', All (X) = X+ I and for every 4:,k (I < k 

_ n) either 

1. (x2  . . . xm) [Φk (0, x2  . . . xm) = Φp (x2  . . . xm)] 

(x, x2  . . . xm) {Φk [Φ1 (x) x2  . . . xm] 

= Φp [x1 (Φk (x, x2  . . . xm), x2  . . . xm]}  (18) p, 

q < k 

58 And of course the domain of the definition 

must always be the whole domain of individuals. 

59 Variables of the third kind may therefore 

occur at all empty places instead of individual 

variables,e.g. y = φ (x), F(x, φ (y)), G [ ψ (x, φ (y)), 

x] etc. 

60 i.e. forming the conjunction. 

 

  

[195] or 

2. (x1  . . . xm) [Φk (x1  . . . xm) = Φr (Φi1(x1)  . 

. . φis (xs)]  (19) 

r < k, iv < k (for v = 1, 2 . . . s) 

or 

3. (x1  . . . xm) [Φk (x1  . . . xm) = Φ1 (Φ1 . . . Φ1 

(0))] (20) In addition, we form the propositions: 

 

(x) Φ1 (x) = 0 & (x y) [Φ1 (x) = Φ1 (y) → x = y] 

 (21) 

 (x) [(Φn (x) = 0]  (22) 

In all the formulae (18), (19), (20) (for k = 2, 3, 

. . . n) and in (21), (22), we now replace the 

functions Φi by the function variable φi, the number 

0 by an otherwise absent individual variable x0 and 

form the conjunction C of all the formulae so 

obtained. 

The formula (E x0) C then has the required 

property, i.e. 

1. If (x) [Φ (x) = 0] is the case, then (E x0) C 

is satisfiable, since when the functions Φ1, Φ2, . . . 

Φn are substituted for φ1, φ2, . . . φn in (E x0) C they 

obviously yield a correct proposition. 

2. If (E x0) C is satisfiable, then (x) [Φ (x) = 

0] is the case. 

Proof: Let Ψ1, Ψ2, . . . Ψn be the functions 

presumed to exist, which yield a correct proposition 

when substituted for φ1, φ2, . . . φn in (E x0) C. Let 

its domain of individuals be I. In view of the 

correctness of (E x0) C for all functions Ψi, there is 

an individual a (in I) such that all the formulae (18) 

to (22) transform into correct propositions (18') to 

(22') on replacement of the Φi by Ψi and of 0 by a. 

We now form the smallest sub-class of I, which 

contains a and is closed with respect to the 

operation Ψ1 (x). This subclass (I') has the property 

that every one of the functions 

 

61 xi (i = 1 . . . s) represents any complex of 

the variables x1, x2 . . . xm, e.g. x1 x3 x2. 

 

Ψi, when applied to elements of I', again yields 

elements of I'. For this holds of Ψ1  in virtue of the 

definition of I'; and by reason of (18'), (19'), (20') 

this property carries over from Ψi lower index to 

those of higher. The functions derived from Ψi by 

restriction to the domain of individuals I', we shall 

call Ψi'. For these functions also the formulae (18) 

to (22) all hold (on replacement of 0 by a and Φi  by 

Ψi') 

Owing to the correctness of (21) for Ψi' and a, 

we can map the individuals of I' in one-to-one 

correspondence on the natural numbers, and this in 

such a manner that a transforms into 0 and the 

function Ψi' into the successor function Φ1. But, by 

this mapping, all the functions Ψi' transform into the 

functions Φi and owing to the correctness of (22) 

for Ψ'n and a, we get (x) [Φn (x) = 0] or [196] (x) [Φ 

(x) = 0], which was to be proved.61 
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Since the considerations leading to Proposition 

X (for every specific F) can also be restated within 

the system P, the equivalence between a 

proposition of the form (x) F(x) (F recursive) and 

the satisfiability of the corresponding formula of 

the r.p.c. is therefore provable in P, and hence the 

undecidability of the one follows from that of the 

other, whereby Proposition IX is proved.62 

From the conclusions of Section 2 there follows 

a remark able result with regard to a consistency 

proof of the system 

 

61 From Proposition X it follows, for 

example, that the Fermat and Goldbach problems 

would besoluble, if one had solved the decision 

problem for the r.p.c 

62 Proposition IX naturally holds also for the 

axiom system of set theory and its extensions 

byrecursively definable ω-consistent classes of 

axioms, since in these systems also there certainly 

exist undecidable theorems of the form (x) F(x) (F 

recursive). 

P (and its extensions), which is expressed in the 

following proposition: 

Proposition XI: If c be a given recursive, 

consistent class 4  of formulae, then the 

propositional formula which states that c is 

consistent is not c-provable; in particular, the 

consistency of P is unprovable in P, 5  it being 

assumed that P is consistent (if not, of course, every 

statement is provable). 

 

The proof (sketched in outline) is as follows: 

Let c be any given recursive class of formulae, 

selected once and for all for purposes of the 

following argument (in the simplest ease it may be 

the null class). For proof of the fact that 17 Gen r is 

not c-provable,6 only the consistency of c was made 

use of, as appears from 1, page 59; i.e. 

 

Wid (c) → Bewc (17 Gen r) (23) i.e. by (6.1): 

 

Wid (c) → (x) x Bc (17 Gen r) 

By (13), 17 Gen r = Sb p Z(19p)  and 

hence: 

 

[197] Wid (c) → (x) x Bc Sb p Z(19p)  

i.e. by (8.1): 

                                                 
4 c is consistent (abbreviated as Wid (c)) 

is defined as follows: Wid (c) = (E x) [Form (x) & 

Bewc (x)]. 

5 This follows if c is replaced by the null 

class of formulae. 

 Wid (c) → (x) Q (x, p)  (24) 

We now establish the following: All the 

concepts defined (or assertions proved) in 

Sections 2 7  and 4 are also expressible (or 

provable) in P. For we have employed throughout  

only the normal methods of definition and proof 

accepted in classical mathematics, as formalized in 

the system P. In particular c (like any recursive 

class) is definable in P. Let w be the propositional 

formula expressing Wid (c) in P. The relation Q (x, 

y) is expressed, in accordance with (8.1), (9) and 

(10), by the relation-sign q, and Q (x, p), therefore, 

by r  

 

In virtue of (24) w Imp (17 Gen r) is therefore 

provable in P67 (and a fortiori c-provable). Now if 

w were c-provable, 17 Gen r would also be c-

provable and hence it would follow, by (23), that c 

is not consistent. 

It may be noted that this proof is also 

constructive, i.e. it permits, if a proof from c is 

produced for w, the effective derivation from c of a 

contradiction. The whole proof of Proposition XI 

can also be carried over word for word to the 

axiom-system of set theory M, and to that of 

classical mathematics A,68 and here too it yields the 

result that there is no consistency proof for M or for 

A which could be formalized in M or A 

respectively, it being assumed that M and A are 

consistent. It must be expressly noted that 

Proposition XI (and the corresponding results for M 

and A) represent no contradiction of the formalistic 

standpoint of Hilbert. For this standpoint 

presupposes only the existence of a consistency 

proof effected by finite means, and there might 

conceivably be finite proofs which cannot be stated 

in P (or in M or in A). 

Since, for every consistent class c, w is not c-

provable, there will always be propositions which 

are undecidable 

67 That the correctness of w Imp (17 Gen r) 

can be concluded from (23), is simply based on the 

fact that—as was remarked at the outset— the 

undecidable proposition 17 Gen r asserts its own 

unprovability. 

 

6 r naturally depends on c (just as p does). 

7 From the definition of “recursive” on p. 

46 up to the proof of Proposition VI 

inclusive. 
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68 Cf. J. v. Neumann, ‘Zur Hilbertschen 

Beweistheorie’. Math. Zeitschr. 26, 1927. 

 (from c), namely at, so long as Neg (w) is not 

c-provable; in [198] other words, one can replace 

the assumption of ω-consistency in Proposition VI 

by the following: The statement “c is inconsistent” 

is not c-provable. (Note that there are consistent c’s 

for which this statement is c-provable.) 

 

Throughout this work we have virtually 

confined ourselves to the system P, and have 

merely indicated the applications to other systems. 

The results will be stated and proved in fuller 

generality in a forthcoming sequel. There too, the 

mere outline proof we have given of Proposition XI 

will be presented in detail. 
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