
MODELS & OPTIMISATION AND MATHEMATICAL ANALYSIS JOURNAL VOL.03 ISSUE 01 (2015) 4

Second Order Impulsive Functional
Differential Equations with Variable Times

and State-Dependent Delay
Mouffak Benchohra, Laboratoire de Mathématiques, Université de Sidi Bel Abbès
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I. INTRODUCTION

THIS paper deals with the existence of solutions
to the initial value problems (IVP for short) for

the second differential equations with variable times
and state dependent delay of the form,

y′′(t) = f(t, yρ(t,yt)), a.e. t ∈ J = [0, b], (1)

t 6= τk(y(t)), k = 1, . . . ,m, y(t+) = Ik(y(t)),
(2)

t = τk(y(t)), k = 1, . . . ,m, (3)

y′(t+) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m,
(4)

y(t) = φ(t), t ∈ (−∞, 0], (5)
y′(0) = η, (6)

where f : J × B → IR, ρ : J × B → (−∞, b],
Ik, Ik : IR → IR, k = 1, . . . ,m are given continuous
functions, φ ∈ B, y(t+) = lim

h→0+
y(t + h) and

y(t−) = lim
h→0−

y(t + h) represent the right and left

hand limits of y(t) at t and B is a phase space
to be specified later. For any function y and any
t ∈ J , we denote by yt the element of B defined
by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. We assume
that the histories yt belong to B.

The notion of the phase space B plays an important
role in the study of both qualitative and quantitative
theory. A usual choice is a semi-normed space satis-
fying suitable axioms, which was introduced by Hale
and Kato [15] (see also Kappel and Schappacher
[20] and Schumacher [30]. For a detailed discussion
on this topic we refer the reader to the book by
Hino et al. [18]. For the case where the impulses
are absent, an extensive theory has been developed
for the problem (1)-(6). We refer to Hale and Kato
[15], Corduneanu and Lakshmikantham [9], Hino et
al. [18], Lakshmikantham et al [25].

Impulsive differential equations have become more
important in recent years in some mathematical
models of real processes and phenomena studied
in control, physics, chemistry, population dynamics,
biotechnology and economics. There has been a
significant development in impulse theory, in recent
years, especially in the area of impulsive differential
equations with fixed moments, see the monographs of
Benchohra et al. [5], Lakshmikantham et al. [25] and
Samoilenko and Perestyuk [29] and the references
therein. The theory of impulsive differential equa-
tions with variable times is relatively less developed
due to the difficulties created by the state-dependent
impulses. Some interesting results have been done
by Bajo and Liz [1], Benchohra et al. [3], [7] and
Benchohra and Ouahab [8], Frigon and O’Regan
[10], [11], [12], Graef and Ouahab [13], Kaul et al.
[21], Kaul and Liu [22], [23], Lakshmikantham et
al. [26], [27] and Liu and Ballinger [28]. The results
of the present paper extend those considered in the
above cite literature for constant delay. Our approach
here is based on the nonlinear alternative of Leray-
Schauder type [14].
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II. PRELIMINARIES

In this section, we introduce notations, definitions,
and preliminary facts which are used throughout this
paper. By C(J, IR) we denote the Banach space of all
continuous functions from J into IR with the norm

‖y‖ := sup{|y(t)| : t ∈ J}.

In this paper, we will employ an axiomatic defini-
tion of the phase space B introduced by Hale and
Kato in [15] and follow the terminology used in
[19], but we will add some transformations. Thus
(B, ‖ · ‖B) will be a seminormed linear space of
functions mapping (−∞, 0] into IR.
L1(J, IR) denotes the Banach space of measurable

functions y : J −→ IR which are Lesbegue integrable
normed by

‖y‖L1 =

∫ b

0

|y(t)|dt.

AC1(J, IR) denote the space for all differentiable
functions whose first derivative is absolutely contin-
uous.

Definition II.1. The map f : J × B → IR is said to
be Carathéodory if:
(i) The function t 7−→ f(t, u) is measurable for

each u ∈ B
(ii) The function u 7−→ f(t, u) is continuous for a.e.

t ∈ J.

Consider the sets

PC =
{
y : [0, b]→ IR : y which there exist

0 < t1 < t2 < ... < tm+1 = b such that

tk = τk(y(t−k ))

and

y(t+k ), y(t−k )

exists with,

y(t−k ) = y(tk) k = 1, . . . ,m, yk ∈ C(Jk, IR)
}
,

where yk is the restriction of y to Jk = (tk, tk+1],
k = 1, . . . ,m,
and

Bb = {y : (−∞, b] : y|(−∞,0] ∈ B and y|J ∈ PC}.

Let ‖.‖b the seminorm in Bb defined by

‖y‖b = ‖y0‖B + sup{|y(t)| : 0 ≤ t ≤ b}, y ∈ Bb.

For the definition of the phase space B we intro-
duce the following axioms.
(A1) If y : (−∞, b) → IR, b > 0, y0 ∈ B, the

following conditions hold :
(i) yt ∈ B ,
(ii) There exists a positive constant H such that
|y(t)| ≤ H‖yt‖B ,
(iii) There exist two functions K(·),M(·) :
J → IR+, independent of y, with K continuous
and M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖B.

(A2) The space B is complete.
Denote Kb = sup{K(t) : t ∈ J} and Mb =
sup{M(t) : t ∈ J}.
B = {y : (−∞, 0] →

IR, y is continuous every where except for a finite
number of points t at which y(t

+
), y(t

−
) exist and

y(t
−

) = y(t)}

Definition II.2. A function y ∈
Bb
⋂⋃m

i=1 AC1((ti, ti+1), IR) is to be a solution
of (1)-(6) if y satisfies y′′(t) = f(t, yρ(t,yt)) a.e t ∈
J = [0, b], t 6= τk(y(t)), k = 1, . . . ,m, the
conditions y(t+) = Ik(y(t)), y′(t+) = Ik(y(t))
t = τk(y(t)), k = 1, . . . ,m, and
y(t) = φ(t), t ∈ (−∞, 0], y′(0) = η.

We are now in a position to state and prove our
result for the problem (1)− (6).

III. EXISTENCE OF SOLUTIONS

In this section we will present an existence result
for the problem (1)-(6). First, we introduce the fol-
lowing hypotheses.

(Hφ) The function t → φt is continuous from
R(ρ−) = {ρ(s, ϕ) : (s, ϕ) ∈ J × B, ρ(s, ϕ) ≤
0} into B and there exists a continuous and
bounded function Lφ : R(ρ−) → (0,∞) such
that ‖φt‖B ≤ Lφ(t)‖φ‖B for every t ∈ R(ρ−).

(H1) The function f : J × B → IR is Carathéodory,
(H2) There exists p ∈ L1(J, IR+) and ψ : [0,∞) →

(0,∞) continuous and nondecreasing such that

|f(t, u)| ≤ p(t)ψ(‖u‖B) for each t ∈ J and all u ∈ B,

with

Kb

∫ b

0

p(s)ds <

∫ ∞
C

dx

ψ(x)
,

where C = Mb‖φ‖B +Kb|φ(0)|.
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(H3) The functions τk ∈ C1(IR, IR) for k =
1, . . . ,m. Moreover

0 < τ1(x) < . . . < τm(x) < b for all x ∈ IR.

(H4) For all x ∈ IR

τk(Ik(x)) ≤ τk(x) < τk+1(Ik(x))

for k = 1, . . . ,m.

(H5) For all a ∈ J fixed, y ∈ Bb and for a.e. t ∈ J
we have

τ ′k(y(t))

∫ t

a

(t− s)f(s, yρ(t,yt))ds 6= 1

for k = 1, . . . ,m.

(H6) The functions Ik, Ik, k = 1, 2, . . . ,m are
continuous.

The next result is consequence of the phase space
axioms.

Lemma III.1. If y : (−∞, b]→ IR is a function such
that y0 = φ and y|J ∈ PC(J, IR), then

‖ys‖B ≤ (Mb + Lφ)‖φ‖B
+Kb sup{‖y(θ)‖; θ ∈ [0, max{0, s}]}
, s ∈ R(ρ−) ∪ J,

where
Lφ = sup

t∈R(ρ−)

Lφ(t).

Remark III.1. We remark that condition (Hφ) is
satisfied by functions which are continuous and
bounded. In fact, if the space B satisfies axiom C2

in [19] then there exists a constant L > 0 such that
‖φ‖B ≤ L sup{‖φ(θ)‖ : θ ∈ [−∞, 0]} for every
φ ∈ B that is continuous and bounded (see [19]
Proposition 7.1.1) for details. Consequently,

‖φt‖B ≤ L
sup
θ≤0
‖φ(θ)‖

‖φ‖B
‖φ‖B, for every φ ∈ B\{0}.

Theorem III.1. Assume that hypotheses (Hφ), (H1)-
(H6). Then the problem (1)-(6) has at least one
solution on (−∞, b].

Proof. The proof will be given in a couple of steps.
Step 1: Consider the initial value problem

y′′(t) = f(t, yρ(t,yt)), a.e. t ∈ J, (7)
y(t) = φ(t), t ∈ (−∞, 0], (8)

y′(0) = η. (9)

Set

C̃ = {y : (−∞, b] : y|(−∞,0] ∈ B and y ∈ C(J, IR)}.

Define the operator N : C̃ → C̃ by:

N(y)(t) =
φ(t),
if t ∈ (−∞, 0],

φ(0) + tη +

∫ t

0

(t− s)f(s, yρ(s,ys))ds

if t ∈ [0, b].

Clearly the fixed point of N are solutions to (7)–(9).
Let x(.) : (−∞, b]→ IR be the function defined by:

x(t) =

{
φ(t), if t ∈ (−∞, 0],

φ(0) + tη, if t ∈ [0, b].

Then x0 = φ. For each z ∈ Bb with z0 = 0, we
denote by z the function defined by

z(t) =

{
0, if t ∈ (−∞, 0],

z(t), if t ∈ [0, b].

If y(·) satisfies the integral equation

y(t) = φ(0) + tη +

∫ t

0

(t− s)f(s, yρ(s,ys))ds.

We can decompose y(.) into y(t) = z(t) + x(t),
0 ≤ t ≤ b, which implies yt = zt + xt, for every
t ∈ [0, b], and the function z(·) satisfies

z(t) =

∫ t

0

(t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Let
C0 = {z ∈ C̃ : z0 = 0}.

Let ‖.‖0 be the norm in C0 defined by

‖z‖0 = ‖z0‖B + sup{|z(s)| : 0 ≤ s ≤ b}
= sup{|z(s)| : 0 ≤ s ≤ b} = ‖z‖b.

We define the operator P : C0 → C0 by

P (z)(t) =

∫ t

0

(t−s)f(s, zρ(s,zs+xs)+xρ(s,zs+xs))ds.

Obviously the operator N has a fixed point is equiv-
alent to P has one, so we need to prove that P
has a fixed point. We shall show that P satisfies
the assumptions of Leray-Schauder alternative. The
proof will be given in several Claims.

Claim 1: P is continuous.
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Let {yn} be a sequence such that yn0 = 0 and
yn → y in C0. Then for each t ∈ J ,

|(Pyn)(t)− (Py)(t)| ≤
∫ t

0

|(t− s)f(s, ynρ(s,yn(s))

− f(s, yρ(s,ys))|ds

≤
∫ b

0

|t− s||f(s, ynρ(s,yq(s))

− f(s, yρ(s,ys))|.

Since f is Carathéodory we have f(s, ynρ(s,yq(s)))→
f(s, yρ(s,ys)) as n → ∞, for every s ∈ J . Now
a standard application of the Lebesgue dominated
convergence theorem implies that

‖Pyn − Py‖0 → 0 as n→∞.

and then P is continuous.

Claim 2: P maps bounded set into a bounded set
of C0.

Indeed it is enough to show that for any q > 0,
there exists a positive constant ` such that for each
z ∈ Bq = {z ∈ C0 : ‖z‖0 ≤ q}, one has ‖P (z)‖0 ≤
`.
Let z ∈ Bq by (H2) we have for each t ∈ J,

|P (z)(t)| ≤
∫ t

0

|t− s|‖f(s, zρ(s,zs+xs)

+ xρ(s,zs+xs))‖ds

≤
∫ t

0

|t− s|p(s)ψ(‖zρ(s,zs+xs)

+ xρ(s,zs+xs)‖)ds
≤ ψ(Kbq

+Kb|φ(0)|+Mb‖φ‖B))

∫ t

0

|t− s|p(s)ds

≤ ψ(Kbq +Kb|φ(0)|

+Mb‖φ‖B))

∫ b

0

|t− s|p(s)ds

= l.

Claim 3: P maps bounded sets into equicontinuous
sets of C0.

Let τ1, τ2 ∈ [0, b], τ1 < τ2, let Bq a bounded set
of C0 as in Claim 2, and let z ∈ Bq ,
then

|(Pz)(τ2)− (Pz)(τ1)| ≤ |
∫ τ2

0

(τ2 − s)f(s, yρ(s,ys))ds

−
∫ τ1

0

(τ2 − s)f(s, yρ(s,ys))ds|

≤ |
∫ τ2

0

(τ2 − s)f(s, yρ(s,ys))ds

−
∫ τ2

0

(τ1 − s)f(s, yρ(s,ys))ds|

+ |
∫ τ2

0

(τ1 − s)f(s, yρ(s,ys))ds

−
∫ τ1

0

(τ1 − s)f(s, yρ(s,ys))ds|

≤ |
∫ τ2

0

(τ2 − τ1)f(s, yρ(s,ys))ds|

+ |
∫ τ2

τ1

(τ1 − s)f(s, yρ(s,ys))ds|

≤ ψ(‖yρ(s,ys)‖)(|
∫ τ2

0

p(s)(τ2 − τ1)ds|

+ |
∫ τ2

τ1

p(s)(τ1 − s)ds|)

≤ ψ(q∗)(|
∫ τ2

0

p(s)(τ2 − τ1)ds|

+ |
∫ τ2

τ1

p(s)(τ1 − s)ds|).

Where

q∗ = Kbq +Kb|φ(0)|+Mb‖φ‖B

We see that |(Pz)(τ2)− (Pz)(τ1)| tend to zero inde-
pendently of z ∈ Bq as τ2 → τ1. As a consequence
of claims 1 to 3 together with the Ascoli-Arzela
theorem we can conclude that P is continuous and
completely continuous.

Claim 4: A priori bounds.

Now it remains to show that the set

E = {z ∈ C0 : z = λP (z) for some 0 < λ < 1}

is bounded. Let z ∈ E , then z = λP (z) for some
0 < λ < 1. Thus, for each t ∈ J,

z(t) = λ

t∫
0

f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Then for each t ∈ J, we have

|z(t)| ≤ λ
t∫

0

p(s)ψ(‖zρ(s,zs+xs)+xρ(s,zs+xs)‖B)ds,

(10)
but

‖zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ ‖zρ(s,zs+xs)‖B
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+ ‖xρ(s,zs+xs)‖B

≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t}
+M(t)‖z0‖B +K(t) sup{|x(s)|
: 0 ≤ s ≤ t}+M(t)‖x0‖B

≤ Kb sup{|z(s)| : 0 ≤ s ≤ t}
+Mb‖φ‖B +Kb|φ(0)|,

and then

‖zρ(s,zs+xs)+xρ(s,zs+xs)‖B ≤ Kb sup{|z(s)| (11)
: 0 ≤ s ≤ t}+Mb‖φ‖B +Kb|φ(0)|.

(12)

If we name w(t) the right hand side of (11), then
we have

‖|zρ(s,zs+xs) + xρ(s,zs+xs)‖B ≤ w(t).

Therefore (10) becomes

|z(t)| ≤
∫ t

0

p(s)ψ(w(s))ds. (13)

Using (13) in the definition of w, we have

w(t) ≤ Kb

∫ t

0

p(s)ψ(w(s))ds+Mb‖φ‖B+Kb|φ(0)|.

Let us take the right hand-side of the last inequality
as v(t). Then we have

w(t) ≤ v(t) for all t ∈ J,

v(0) = Kb|φ(0)|+Mb‖φ‖B,

and

v′(t) = Kbp(t)ψ(w(t)), a.e. t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ Kbp(t)ψ(v(t)), a.e. t ∈ J.

That is
v′(t)

ψ(v(t))
≤ Kbp (t) , a.e. t ∈ J.

Integrating from 0 to t we get∫ t

0

v′(s)

ψ(v(s))
ds ≤ Kb

∫ t

0

p (s) ds.

By a change of variable and using (H2) we get∫ v(t)

v(0)

du

ψ(u)
≤ Kb

∫ b

0

p (s) ds <

∫ ∞
C

du

ψ(u)
.

Hence there exists a constant K∗ such that

v(t) ≤ K∗ for all t ∈ J.

and hence ‖zt + xt‖C ≤ w(t) ≤ K∗, t ∈ J . From
(13) we have that

‖z‖0 ≤ ψ(K∗)

∫ b

0

p(s)ds := K1.

Set

U = {y ∈ C0 : sup{|z(t)|, 0 ≤ t ≤ b} ≤ K1 + 1.

From the choice of U , there is no y ∈ ∂U such
that y = λP (y) for some λ ∈ [0, 1]. The nonlinear
alternative of Leray-Schauder type [14] implies that
P has a fixed point, hence N has a fixed point which
is a solution of problem (7)-(9). Denote this solution
by y1.

Define the function

rk,1(t) = τk(y1(t))− t for t ≥ 0.

(H3) implies that

rk,1(0) 6= 0 for k = 1, . . . ,m.

If
rk,1(t) 6= 0 on J for k = 1, . . . ,m,

i.e
t 6= τk(y1(t)) on J for k = 1, . . . ,m,

then y1 is solution of the problem (1)-(6).
Now we consider the case when r1,1(t) = 0 for

some t ∈ J. Since r1,1(0) 6= 0 and r1,1 is continuous,
there exists t1 > 0 such that

r1,1(t1) = 0 and r1,1(t) 6= 0 for all t ∈ [0, t1).

Thus by (H3) we have

rk,1(t) 6= 0 for all t ∈ [0, t1) and k = 1, . . . ,m.

Step 2: Consider the following problem

y′′(t) = f(t, yρ(t,yt)), for a.e., t ∈ [t1, b] (14)

y(t+1 ) = I1(y1(t−1 )) (15)

y′(t+1 ) = I1(y1(t−1 )), (16)

y(t) = y∗(t), t ∈ (−∞, t1]. (17)

Where

y∗(t) =

{
y1(t), if t ∈ [0, t1]
φ(t), if t ∈ (−∞, 0]
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Let

C1 = {y ∈ C((t1, b], IR), y(t+1 ) exist},

and

C∗ = {y : (−∞, b]→ IR : y ∈ C((−∞, t1], IR)∩C1}.

Consider the operator N1 : C∗ → C∗ defined by:

N(y)(t) =



y∗(t),
if t ∈ (−∞, t1],
I1(y1(t1)) + (t− t1)

(
I1(y1(t1))

)
if t ∈ [t1, b]

+

∫ t

t1

(t− s)f(s, yρ(s,ys))ds.

Let x(.) : (−∞, b] → IR be the function defined
by

x(t) =


I1 (y1(t1)) + (t− t1)

(
I1(y1(t1))

)
,

if t ∈ (t1, b],
y∗(t),

if t ∈ (−∞, t1].

Then xt1 = y1. For each z ∈ C∗ with zt1 = 0, we
denote by z the function defined by

z(t) =

{
0, if t ∈ (−∞, t1],

z(t), if t ∈ [t1, b].

If y(·) satisfies the integral equation

y(t) =I1(y1(t1)) + (t− t1)
(
I1(y1(t1))

)
+

∫ t

t1

(t− s)f(s, yρ(s,ys))ds.

We can decompose y(.) into y(t) = z(t) + x(t),
t1 ≤ t ≤ b, which implies yt = zt + xt, for every
t ∈ [t1, b], and the function z(·) satisfies

z(t) =

∫ t

t1

(t− s)f(s, zρ(s,zs+xs) + xρ(s,zs+xs))ds.

Let
Ct1 = {z ∈ C∗, z(t1) = 0}.

Let the operator P : Ct1 → Ct1 by

P1(z)(t) =

∫ t

t1

(t−s)f(s, zρ(s,zs+xs)+xρ(s,zs+xs))ds.

As in Step 1 we can show that P1 is continuous
and completely continuous and if z is a solution for
the equation z = λP1(z) , for some λ ∈ (0, 1) there
exist K1∗ > 0 such that

‖z‖∞ ≤ K1∗ > 0.

Set

U1 = {y ∈ Ct1 : sup{‖z(t)‖ : t1 ≤ t ≤ b} ≤ K1∗+1.

As a consequence of Leray-Schauder’s nonlinear
alternative type we deduce that P has a fixed point
z in U1. Thus N1 has a fixed point y which is a
solution of problem (14)-(17), denote this solution
by y2.

Define

rk,2(t) = τk(y2(t))− t for t ≥ t1.

If

rk,2(t) 6= 0 on (t1, b] for k = 1, . . . ,m,

then

y(t) =

{
y1(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, b],

is solution of the problem (1)-(6). It remains to
consider the case when

r2,2(t) = 0, for some t ∈ (t1, b].

By (H4) we have

r2,2(t+1 ) = τ2(y2(t+1 ))− t1
= τ2(I1(y1(t−1 )))− t1
> τ1(y1(t−1 ))− t1
= r1,1(t1) = 0.

Since r2,2 is continuous, there exists t2 > t1 such
that r2,2(t2) = 0 and r2,2(t) 6= 0 for all t ∈ (t1, t2).
By (H3) we have :

rk,2 6= 0 for all t ∈ (t1, t2) and k = 2, . . . ,m.

Suppose now that there exists s ∈ (t1, t2] such that
r1,1(s) = 0. From (H4) it follows that

r1,2(t+1 ) = τ1(y2(t+1 ))− t1
= τ1(I1(y1(t−1 )))− t1
≤ τ1(y1(t1))− t1
= r1,1(t1) = 0.

Thus the function r1,2 attains a nonnegative maxi-
mum at some point s1 ∈ (t1, b]. Since

y′2(t) =

∫ t

t1

f(s, y2ρ(s,y2s )
)ds

then

r′1,2(s1) = τ ′1(y2(s1)y′2(s1)− 1 = 0.

Therefore

τ ′1(y2(s1))

∫ s1

t1

f(s, y2ρ(s,y2s )
)ds = 1,
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which contradicts (H5)

Step 3: We continue this process and taking into
account that ym+1 := y|[tm,b] is a solution to the
problem

y′′(t) = f(t, yρ(t,yt)), for a.e., t ∈ (tm, b], (18)

y(t+m) = Im(ym(t−m)), (19)

y′(t+m) = Im(ym(t−m)). (20)

The solution y of the problem (1)-(6) is then defined
by

y(t) =


y1(t), if t ∈ (−∞, t1],
y2(t), if t ∈ (t1, b],
. . .
ym+1(t), if t ∈ (tm, b].

IV. EXAMPLE

To apply our results, we consider the functional
differential equation with variables times and state-
dependent delay of the form :

y′′(t) =
(y(t− σ(y(t))))2

(t2 + 1)(t+ 2)(1 + (y(t− σ(y(t))))2)
a.e,

(21)
t ∈ [0, 1], t 6= τk(y(t)), k = 1, . . . ,m, (22)
∆y|t=τk(y(t)) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m,

(23)

∆y′|t=τk(y(t)) = Ik(y(t)), t = τk(y(t)), k = 1, . . . ,m,
(24)

y(t) = φ(t), t ∈ (−∞, 0], (25)
y′(0) = η, (26)

where σ ∈ C(IR, [0,∞)). Set γ > 0. For the phase
space, we choose B to be defined by

Bγ = {y ∈ PC((−∞, 0], IR) : lim
θ→−∞

eγθy(θ) exists}

with the norm

‖y‖γ = sup
θ∈(−∞,0]

eγθ|y(θ)|,

where

PC((−∞, 0], IR) =
{
y : (−∞, 0]→ IR : y

is continuous at t 6= t̃k, y(t̃−k ) = y(t̃k) and

y(t̃+k ) exists for all k = 1, . . . ,m
}
.

Let y : (−∞, b]→ IR be such that y0 ∈ Bγ . Then

lim
θ→−∞

eγθy(θ) = lim
θ→−∞

eγθy(t+ θ)

= lim
θ→−∞

eγ(θ−t)y(θ)

= eγ t lim
θ→−∞

eγθy0(θ).

Hence yt ∈ Bγ . Finally we prove that

‖yt‖γ ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t}+M(t)‖y0‖γ ,

where K = M = H = 1. We have y(t) = y(t+ φ).
If t+ θ ≤ 0 we get

‖yt(θ)‖ ≤ sup{ |y(s)| : −∞ ≤ s ≤ 0}.

For t+ θ ≥ 0 we have

‖yt(θ)‖ ≤ sup{ |y(s)| : 0 ≤ s ≤ t}.

Thus for all t+ θ ∈ [0, 1], we get

‖yt(θ)‖ ≤ sup{ |y(s)| : −∞ ≤ s ≤ 0}
+ sup{ |y(s)| : 0 ≤ s ≤ t}.

Thus

‖yt‖γ ≤ ‖y‖0 + sup{ |y(s)| : 0 ≤ s ≤ t}.

It is clear that (Bγ , ‖y‖γ) is a Banach space. We can
conclude that Bγ is a phase space.

Set

f(t, u) =
(u(0))2

(t2 + 1)(t+ 2)(1 + (u(0)2)
,

(t, u) ∈ [0, 1]× Bγ ,

ρ(t, u) = t− σ(u(0)), (t, u) ∈ [0, 1]× B,

τk(x) = 2k − 1

2k+1(1 + x2)
,

Ik(x) = dkx,

Ik(x) = dkx.

From the the definition of τk we have τk(x) 6= 0 and

τk+1(x)− τk(x) = 2 +
1

2k+2(1 + x2)
> 0 for all x ∈ IR

and k = 1, . . . ,m.

So

0 < τ1(x) < τ2(x) < τ3(x) < . . . < τk(x) for all x ∈ IR.

Also

τk(Ik(x))− τk(x) =
(b2k − 1)x2

2k+1(1 + x2)(1 + b2kx
2)
≤ 0

and
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τk+1(Ik(x))− τk(x) =

2k+3(1 + x2)(1 + b2kx
2) + 1 + (2b2k − 1)x2

2k+1(1 + x2)(1 + b2kx
2)

> 0

for all x ∈ IR and k = 1, . . . ,m. Thus

τk(Ik(x)) ≤ τk(x) ≤τk+1(Ik(x)) for all x ∈ IR
and k = 1, . . . ,m.

We can easily show that

|τ ′k(x)

∫ t

a

f(s, yρ(s,ys))ds| ≤ |τ
′
k(x)

· |
∫ t

a

|f(s, yρ(s,ys))|ds

≤ 1

2
|t− a|

< 1.

Assume that p(t) = 1
t2+1 and ψ(x) = 1.Then

|f(t, u)| ≤ 1

t2 + 1
ψ(‖u‖b) for all (t, u) ∈ [0, 1]×Bb∫ +∞

c

du

ψ(u)
= +∞

It is clear that all conditions of Theorem III.1 are
satisfied. Hence problem (20)-(26) has at least one
solution defined on ]−∞, b].

REFERENCES

[1] I. Bajo and E. Liz, Periodic boundary value problem for
first order differential equations with impulses at variable
times, J. Math. Anal. Appl. 204 (1996), 65-73.

[2] M. Benchohra, J.R. Graef, S.K. Ntouyas, and A. Ouahab,
Upper and lower solutions method for impulsive differential
inclusions with nonlinear boundary conditions and variable
times. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math.
Anal. 12 (2005), 383-396.

[3] M. Benchohra, J. Henderson and S.K. Ntouyas, An
existence result for first order impulsive functional
differential equations in Banach spaces, Comput. Math.
Appl. 42 (2001), 1303-1310.

[4] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive
neutral functional differential equations in Banach spaces,
Appl. Anal. 80 (2001), 353-365.

[5] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive
Differential Equations and Inclusions, Hindawi Publishing
Corporation, Vol 2, New York, 2006.

[6] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab,
Impulsive functional differential equations with variable
times, Comput. Math. Appl. 47 (2004), 1659-1665.

[7] M. Benchohra, J. Henderson, S.K. Ntouyas, and A. Ouahab,
Impulsive functional differential equations with variable
times and infinite delay. Int. J. Appl. Math. Sci. 2 (2005),
130-148.

[8] M. Benchohra, A. Ouahab, Impulsive neutral functional
differential equations with variable times, Nonlinear Anal.
55 (2003), 679-693.

[9] C. Corduneanu and V. Lakshmikantham, Equations with
unbounded delay, Nonlinear Anal. 4 (1980), 831-877.

[10] M. Frigon and D. O’Regan, Impulsive differential equations
with variable times, Nonlinear Anal. 26 (1996), 1913-1922.

[11] M. Frigon and D. O’Regan, First order impulsive initial and
periodic problems with variable moments, J. Math. Anal.
Appl. 233 (1999), 730-739.

[12] M. Frigon and D. O’Regan, Second order Sturm-Liouville
BVP’s with im- pulses at variable moments, Dynam. Contin.
Discrete Impuls. Systems 8 (2001), 149-159.

[13] J.R. Graef and A. Ouahab, Global existence and uniqueness
results for impulsive functional differential equations with
variabke times and multiple delays, Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal. 16 (2009), 27-40.

[14] A. Granas and J. Dugundji, Fixed Point Theory, Springer-
Verlag, New York, 2003.

[15] J. Hale and J. Kato, Phase space for retarded equations with
infinite delay, Funkcia. Ekvac. 21 (1978), 11-41.

[16] J.K. Hale and S.M. Verduyn Lunel, Introduction to
Functional Differential Equations, Appl. Math. Sci. 99,
Springer-Verlag, New York, 1993.

[17] E. Hernández, A. Prokopczyk and L. Ladeira, A note on
partial functional differential equations with state-dependent
delay. Nonlinear Anal. Real World Appl. 7 (2006), 510-519.

[18] Y. Hino, S. Murakani, T. Naito, Functional Differential
Equations with Infinite Delay, Lecture Notes in Mathematics,
1473, Springer-Verlag, Berlin, 1991.

[19] Y. Hino, S. Murakami, and T. Naito, Functional Differential
Equations with Unbounded Delay, Springer-Verlag, Berlin,
1991.

[20] F. Kappel and W. Schappacher, Some Considerations to
the fundamental theory of infinite delay equations, J.
Differential Equations 37, (1980), 141-183.

[21] S.K. Kaul, V. Lakshmikantham and S. Leela, Extremal
solutions, comparison principle and stability criteria
for impulsive differential equations with variable times,
Nonlinear Anal. 22 (1994), 1263-1270.

[22] S.K. Kaul and X.Z. Liu, Vector Lyapunov functions for
impulsive differential systems with variable times, Dynam.
Contin. Discrete Impuls. Systems 6 (1999), 25-38.

[23] S.K. Kaul and X.Z. Liu, Impulsive integro-differential
equations with variable times, Nonlinear Stud. 8 (2001),
21-32.

HP
Rectangle

HP
Rectangle

HP
Typewriter
MODELS & OPTIMISATION AND MATHEMATICAL ANALYSIS JOURNAL VOL.03 ISSUE 01 (2015)

HP
Typewriter
15



MODELS & OPTIMISATION AND MATHEMATICAL ANALYSIS JOURNAL VOL.03 ISSUE 01 (2015) 12

[24] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov,
Theory of Impulsive Differntial Equations, Worlds Scientific,
Singapore, 1989.

[25] V. Lakshmikantham, L. Wen and B. Zhang, Theory of
Differential Equations with Unbounded Delay, Mathematics
and its Applications, Kluwer Academic Publishers,
Dordrecht, 1994.

[26] V. Lakshmikantham, S. Leela and S.K. Kaul, Comparaison
principle for impulsive differential equations with variable
times and stability theory, Nonlinear Anal. 22 (1994),
499-503.

[27] V. Lakshmikantham, N.S. Papageorgiou and J. Vasundhara,
The method of upper and lower solutions and monotone
technique for impulsive differential equations with variable
moments, Appl. Anal. 15 (1993), 41-58.

[28] X. Liu and G. Ballinger, Existence and continuability of
solutions for dif- ferential equations with delays and state-
dependent impulses, Nonlinear Anal. 51 (2002), 633-647.

[29] A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential
Equations, World Scientific, Singapore, 1995.

[30] K. Schumacher, Existence and continuous dependence for
differential equations with unbounded delay, Arch. Rational
Mech. Anal. 64 (1978), 315-335.

HP
Rectangle

HP
Rectangle

HP
Typewriter
MODELS & OPTIMISATION AND MATHEMATICAL ANALYSIS JOURNAL VOL.03 ISSUE 01 (2015)

HP
Typewriter
16




