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Abstract-Support vector machines (SVM) are excellent 

tools for classification and regression. They seek the 

optimal separating hyperplan and maximal margin. 

The modeling results often lead to solving a quadratic 

programming problem. In this paper, we present a 

simple method to determine the hyperplan H that sepa-

rates two classes of examples so that the distance be-

tween these two classes is maximal. This method is 

based on the geometric interpretation of the norm of a 

linear mapping. The result model of our algorithm 

modeling is a maximization of a concave quadratic 

program. This quadratic program is resolved by pro-

jection method. Example illustrates the method. 
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1 Introduction 

     Learning to rank is an important problem in 

web page ranking information retrieval and other 

applications. Support Vector Machines (SVMs) 

are a powerful machine learning technique. Vap-

nik [7] showed how training a support vector 

machine for the pattern recognition problem leads 

to quadratic optimization problem (QP). The size 

of the optimization problem depends on the num-

ber of training examples. With 10000 training 

examples and more it becomes impossible to 

keep matrix data in memory. SVM
Light

 uses the 

decomposition idea of  Osuna and al. ([7]) and 

decompose the problem into a series of smaller 

tasks. This decomposition splits the initial prob-

lem in an inactive and en active part. These algo-

rithms may need a long training time. To tackle 

this problem, T. Joachims [5], uses a method for 

selecting the working set, successive “shrinking” 

of the optimization problem and incremental 

updates of the gradient (Joachims [6]). Burges 

form AT&T [1], has even developed a QP solver 

specifically for training SVM.  

In this paper we introduce new support vector 

machines method in order to define a decision 

surface separating two opposing classes of a 

training set of vectors.  

This method associates a distance parameter 

with each vector of the SVM‟s training set. The 

distance parameter is calculating as the shortest 

of distances from each vector of one class to the 

opposite class. The method determines initial 

separating hyperplan and its maximum margin, 

where the margin is defined as the shortest dis-

tances of the hyperplan from the closest points of 

the two classes.  The optimal vectors to preselect 

as potential support vectors are those closest to 

the decision hyperplan. The vectors with the 

smallest distance are then selected as pivots.  

To determine the optimal hyperplan, we will 

use the well-known result:  

 if f is a linear map from
nR into R defined by 

  nRaxaxf  ,, .  

Then  Hda ,0 where H is the hyperplan 

defined by  1,:  xaRxH n
. 

The optimal hyperplan will be a boundary point 

of the set of feasible solutions which can be an 

extreme point. 

2  Partition of examples X
~

 and 

X
~

 
Suppose that separating hyperplan with maxi-

mum margin be written as 0bax . 

2.1 Formulation of the optimization 

problem 

The inequalities 1bax  and 1bax  

become  
2

1

22


b
x

a and 
2

1

22


b
x

a
, and the 

hyperplan is 
2

1

22


b
x

a ; i.e. 0bax . As the 

couple  ba,  is set to a multiplicative coefficient, 
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the separating problem becomes then 
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
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


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inf 2

bax

bax

a  

Suppose that x  is support vector, 
2

1
 bxa  

 xab
2

1
.  

Then
2

1
 bax 

  0
2

1

2

1



xxaxaax

  0  xxa  and   

  1
2

1

2

1

2

1



xxaxaaxbax .   

Then  

 

 
 

 



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
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


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0

inf 22

xxa

xxa

aMax

xxa
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and consequently, the separating problem  

becomes

 

 
 

 




























Xxxxa

Xxxxa

aMax

P

,1

,0

2

,   

  2

1

2 aaaf
n

i

i 


 is concave, defined on 

closed bounded convex of 
nR , then the local 

maximum is global, but   0



a

a

f

i

for all ,i

,02  ia 0*  ii aa  . 

The critical point
nRa  0*

is not feasible 

solution, then the solution of the problem is the 

projection of 0* a  on   . This is a particular 

case of general optimization problem of concave 

quadratic programming, where

0
2

,1,0 * 
i

i
ii a




 .  

This problem of maximizing concave quadratic 

function under linear constraints has solved by 

Chikhaoui and all. [3]. It is noted that 

   .00 
xxaP  

 This was made possible through the form




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





2

1

22

2

1

22

b
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a

, this minimize the computing 

time. 

Increase in a margin.  
  

Let (H) the separating hyperplan of wide mar-

gin of equation 0bax .  

We know that for all   XxXx , , we 

have   


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   
2

1
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1

2

1
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1




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
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







 





baxbax

bax

bax

 ; from where  

    XxXxxxa ,,1 .  

By the inequality of Cauchy Schwartz,  

  XxXxxx
a

,,
1

,  

by passing to the lower bound, we obtain 







xx
a XxXx

inf
,

1 . 

Whence important proposal:  

Let  0:
~

  xaaxRxH n
,

 0:
~

  xaaxRxH n
. 

Proposal: 
   

The width of the strip is increased by the con-

stant ,inf
,







xxK
XxXx

 and this is 

best constant.  

 

Proof:   Indeed, suppose  xx , are two sup-

port vectors, i.e.   HxHx
~

,
~

; 

 
aa

bax
Hxd

1
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2

1~
, 
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
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1
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1~
, 
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
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   
a

HxdHxd
1~

,
~

,  
, and 

Kxx
a XxXx

 
 

inf
,

1
. 

This is the best ever because in cases where 

   xX
~

and    xX
~

, then 

Kxx
a XxXx

 
 

inf
,

1
;   this com-

pletes the proof. 

We see that the margin width does not exceed 

  xx .  

This leads us to consider the separating hyper-

plan with the widest possible margin H
~

.  

2.2 Partition of X and X  

Let 





xxxx
XxXx

inf
,

,  

  xxa~ ,  

 0~~:
~

  xaxaRxH n
, 

 0~~:
~

  xaxaRxH n
, 

 
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
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



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

 











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0
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~~
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:
~

22
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          x  

 

                                 x  

H
~

 

         H
~

                H
~

 

 

The existence of optimal separating hyperplan 

H , and construction of H
~

 define a partition of 

X  and a partition of  X : 









 
2

1
:

~
xaaxXxX ,        

   XXXX
~

/
~

 









 
2

1
:

~
xaaxXxX ,     

   XXXX
~

/
~

 

If the hyperplans H and H
~

separate the sets 

 XX
~

/ and  XX
~

/  and H
~

 is optimal. 

  XX
~~

 then  HH
~

 . Stop. 

3 Finding Optimal separating 

hyperplan H :  case HH
~

  

The maximum margin separating X
~

 and X
~

  

is greater than or equal to the maximum margin 

separating X  and X because the optimal 

separating hyperplan H separates X
~

and X
~

. 

Suppose that the maximum margin between 

X
~

 and X
~

is strictly greater than that between 

X  and X , then this separating hyperplan is 

between H and H
~

and hence it separates 

 XX
~

/ and  XX
~

/ . So this separating hy-

perplan separates X  and X with a wider 

margin than strictly greater than that to H . Con-

tradiction, because H is optimal. 

Proposition:  

The optimal separating hyperplan of sets X
~

 

and X
~

is optimal separating hyperplan for sets 

X and X . 

Proof:      Denote by
*H optimal separating 

hyperplan of X
~

 and X
~

 whose normal is 
*a .   

There positive !1 and !2  such that 

aaa ~
21

*   .  

In fact, 
















cos.~,~

cos.,

**

**

aaaa

aaaa
 

 cos.~, *

21 aaaaa    

 cos.~,, *

21 aaaaaa     

 cos.~, *

2

2

1 aaaaa  .   

As well  

 cos.~~,~ *

21 aaaaa   

 cos.~~,~,~ *

21 aaaaaa    
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 cos~~,~ *2

21 aaaaa  .  Then
















cos.~~,~

cos.~,

*2

21

*

2

2

1

aaaaa

aaaaa

  

Where  is the angle formed between hyper-

plans H and H
~

, as HH
~

 , 0 ; 

then 1cos  , and 

 222
cos1~  aa .     0    

The system has a unique solution 1 and 2 . 

  Then suppose that the margin of 
*H is strict-

ly greater than that of H , as H and H
~

 sepa-

rate  XX
~

/ and  XX
~

/ . i.e. a and a~ are 

solution of problem  

 

 

 


















































XXx

XXx

xxa

xxa

aMax

~
/

~
/

1

0

'

2

'

      

'  is bounded below convex, then  
'* a . 

 

The separating hyperplan
*H separates then 

X and X  whose margin is strictly greater than 

that of  H . Contradiction, H is optimal by hy-

pothesis. 

 

 

 

 

 

 

Consequence: 

To separate X and X , just separate the sam-

ple X
~

and X
~

. We then have a smaller number 

of constraints.  

Example1.  

   
















 ,1,5,

2

3
,2,0,1X        

      ,2,2,1,2,1,0 X   

 Here,   

      21,00,1inf  








xx

Xx
Xx ;      

   1,0,0,1   xx    

   1,1~   xxa     

     00,01,11,1:
~

 xH  

01:
~

21  xxH   

01:
~

21  xxH 0:
~

21  xxH . 









X
~

2

3
,2 car 

2

1

2

1
1

2

3
2  ,        

  X
~

1,5 car 
2

1
3115   

 

 
















 

2

3
,2,0,1

~
X  

 

   X
~

1,2  because  

2

1
2112  ,  

   X
~

2,2  because    

2

1
3122                 

  1,0
~

 X .  

The constraint set  , of problem becomes

 

    



























10,11,0

0
2

3
,20,1

a

a

  the solution is 








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aa
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














5

2

5

3

12
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a

a

.       H  

has the equation  

    00,1
5

2
,

5

3

2

1
,

5

2
,

5

3
21 

























 xx ,     

0
10

1

5

2

5

3
: 21  xxH . 

4  Projection Method ([2]) 

Consider the problem quadratic result of our 

2
222222

2

2

cos~~,~~,~.
~,~

~
,

aaaaaaaaaa
aaa

aaa

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modeling: 

 

 

 
 























































XxXx
xxa

xxa
Ra

a

P
n

Max

~
,

~
,

1

0
,

2

'

 Since the function   2

1

2 aaxf
n

i

i 


 is con-

cave defined on a closed convex of
nR , then the 

local maximum of f  is global. But   0



a

a

f

i

, 

niai ,...,2,10    

Critical point   niallfora
ii ,...,2,10*   is 

not feasible solution of problem  'P .  

Then the solution of problem  'P  is the pro-

jection of point
nR0 on  . 

This is a particular case of more general prob-

lem of quadratic optimization: 

  



n

i

i

n

ii

n

i

ii
iallforRwithaaaf

i

1

2

1

0, , 

 under linear constraints.  

In classification with SVM we have 

ii

ia 















2

*
with 1,0  ii i  . For more 

details see [3]. We recall that if a concave func-

tion f defined on closed convex and that the 

critical point does not belong to convex, then the 

maximum of f  is reached on a boundary point 

of closed convex. See [3]. 

The projection of point 
nR0 on the hyper-

plan   1  xxa   is given by 

   
 

 



 





xx
xx

P xxa 21

1
00 . 

 

Example1      

          4,3,5.3,3,3,2,4,5.1,3,1X
 

                          

          5.1,5.2,2,2,1,2,1,5.1,5.1,1X
.  

      12,23,2inf  








xx

Xx
Xx

;    

   2,2,3,2   xx   

        1,02,23,2~   xxa     

     
2

1
3,21,0

2

1
,1,0:

~
21 








 xxH

          03:
~

2   xH  

     
2

1
2,21,0

2

1
,1,0:

~
21 








 xxH

           02:
~

2   xH  

   0
2

23
,1,0:

~
21 







 
xxH                              

0
2

5
:

~
2  xH  

Construction of  X
~

 and X
~

 

  X
~

3,1  because 033           

  X
~

4,5.1  because 034      

  X
~

3,2  because 033            

  X
~

5.3,3  because 035.3             

   X
~

4,3  because 034           

  X
~

5.1,1  because 025.1    

   X
~

4,5.1  because 034        

  X
~

3,2  because 033      

  X
~

5.3,3  because 035.3      

  X
~

4,3  because 034              

Then        3,1,3,2
~

X          2,2
~

X   

Constraints are:

    

    











2

1
13,21,2

113,22,2

2

2

aa

aa

 

 

     
4

1
0

2

1
,01,0

1

2

1

00
2

1

2

1
22














 aa

PP  

The solution is  1,0a , because 











2

1
,0a is not feasible solution, and the op-

timal separating hyperplan is: 

        101,01,0
1

1
00

11 22





 aa
PP
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     
2

1
3,21,0

2

1
,1,0: 21 








xxH      

0
2

5
2  x . 

 

Remark:   The feasible solution set of separat-

ing hyperplans is the half-space 12 a and the 

projection of 0 on this half-space is  1,0 .The 

set of feasible solutions do here no extreme point. 

It is interesting to study the nature of the set of 

separating hyperplans. 

Example 2:  

   
















 1,3,3,2,3,2,

2

1
,2,2X       

 
















 3,1,1,

2

1
,0,1X  

    55.0,0,15.0,2,2inf  








xx

Xx
Xx

    5.0,0,1,5.0,2,2   xx  

   0,2,1~   xxa       

   0
2

3
,,0,2,1:

~
321 xxxH            



















2

1
,2,2

~
X  



















2

1
,0,1

~
X . Here, in-

side of band is empty.  So    HH 
~

. 

5 Conclusion 

    In this paper, we gave a geometric interpreta-

tion of the hyperplan that separates two classes 

linearly separable. In fact, the search algorithm to 

the optimum is nothing other than a particular 

case of general optimization problem: 














bAx

withxx iiii

n

i

ii 1,0,2

1


    

The nature of solution (extreme point or not) 

provides to better track the support vectors. 
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