Solving Non Separable Convex Quadratic Programming Problems

${ }^{1}$ A.Chikhaoui, ${ }^{2}$ A. Mokhtari
${ }^{1}$ University of Tiaret Algeria, ${ }^{2}$ University of Laghouat Algeria, ah_chikhaoui@ yahoo.fr, aek_mokhtari@yahoo.fr

Abstract

The aim of this paper is to present a new method for solving non-separable quadratic problems. In a first step we transform the non-separable quadratic problem in a separable quadratic problem equivalent. In a second step we solve the quadratic problem separable by the method of projection. The principle of this method is to calculate the critical point, if it is a feasible solution then this is the optimal solution. Otherwise, we construct a new feasible set by a homographic transformation on which we project the transformed critical point and we give the optimal solution belonging to the feasible set of the original problem. Note that the resolution is done directly on the primal separable quadratic problem and not on the linear problem as do several methods. The method is purely analytical and avoids the thorny problem of the choice of the initial solution.

Keyword: Non Separable Quadratic Programming, Concave maximizing, Eigen values, Projection Method, Homographic Transformation.

I. Introduction

The separable quadratic programming (Stephen B. and V. Lieven , 2004.) is very important in industry and finance. Non separable problems are traditionally solved by linear programming techniques (Hillier and Lieberman , 2001). In some others cases an allocation problem is formulated as a nonlinear constrained optimization problem and solved by a quadratic programming method (Gill et al. , 2002). Other approaches (Friedlander \& all. 2012), prefer the method of semi- interior, and the method can be interpreted as an adjustment to the proximal point of primal-dual problems. The convergence problem has been studied in several articles including (Delbos F. Gilbert and J. Ch , 2003). On the other uses the modified Lagrange method (S. Ketabchi all . \& 2009).

This article describes a new method based on the transformation of a non-separable quadratic programming problem in a separable equivalent problem. This coordinate transformation uses the Gauss pivot method to make the diagonal matrix representing the quadratic term of the
objective function. Once we got equivalent problem, we apply it our quadratic programming algorithm based on the projection method.

Problem Formulation

The Matrix form of our non-separable problem is:

$$
\left(\mathrm{QP}_{\mathrm{z}}\right)\left\{\begin{array}{l}
\max f(z)=c^{\prime} z-z^{\prime} H z \\
A z \leq b \\
0 \leq z \leq u
\end{array}\right.
$$

The following schema shows the steps of resolution:

Before making a change of variables based on the diagonaliza-tion of the matrix H , we recall the basics of the diagonalization.

II. TRANSFORMING NON SEPARABLE PROGRAMMING

Definition (Eigenvalues, eigenvectors)
A scalar λ is an eigenvalue of the matrix H if and only if there exists a vector $v \neq 0_{R^{n}}, H v=\lambda v ; v$ is called an eigenvector of the matrix associated with the eigenvalue λ.

Theorem 1:

1. Let H a matrix $n \times n$. λ is an eigenvalue of H if and only if $\operatorname{det}\left(H-I d_{(n, n)}\right)=0_{R^{n}}$.
2. If λ is an eigenvalue of H then $\begin{array}{ll}\text { solution } \\ \operatorname{det}\left(H-I d_{(n, n)}\right)=0_{R^{n}} \text { is } & v \neq 0_{R^{n}} \\ \text { of } \\ \text { an }\end{array}$ eigenvector associated with λ.

Theorem 2:

Let H a symmetric matrix $n \times n$. Then there exists an orthogonal matrix P which diagonalizes H

We give the theorem which transforms a quadratic form with cross terms (in a quadratic form with only squared terms $P^{\prime} H P=D$).

Theorem 3:

Let $H=\left(q_{i k}\right)_{n \times n} \quad$ a symmetric matrix of eigenvalues $\lambda_{1}, \ldots . \lambda_{n}$ and P an orthogonal matrix that diagonalizes H. Then the change in the coordinate $z=P x \quad$ transforms $\sum_{i, k} q_{i k} Z_{i} Z_{k}$ to $\sum_{i} \lambda_{i} x_{i}^{2}$.
The matrix P is the matrix of passage is the matrix consisting of the orthonormal eigenvectors associated with eigenvalues of H.

$$
\left(\mathrm{QP}_{\mathrm{x}}\right)\left\{\begin{array}{l}
\max g(x)=c P x-x^{\prime} D x \\
A P x \leq b \\
0 \leq P x \leq u \quad x \in X
\end{array}\right.
$$

where,

- $D=P^{\prime} H P$ is a diagonal matrix consisting of positive real eigenvalues of the matrix H.
- $\quad X$ is a finite set of values resulting from the product of the matrix P and the vector u.

We transformed quadratic function f to canonical quadratic function g and then non-separable quadratic problem $\left(\mathrm{QP}_{\mathrm{Z}}\right)$ is transformed to separable quadratic problem $\left(\mathrm{QP}_{\mathrm{x}}\right)$.
The next step solves separable quadratic problem $\left(\mathrm{QP}_{\mathrm{x}}\right)$.
III. SOLVING SEPARABLE QUADRATIC PROGRAMMING
A. Projection Method

For simplicity, we write the canonical separable quadratic problem

$$
\left(\mathrm{QP}_{\mathrm{x}}\right)=\left\{\begin{array}{l}
\max _{x \in \Omega} g(x)=\sum_{i=1}^{n} \alpha_{i} x_{i}+\beta_{i} x_{i}^{2} \\
\alpha_{i} \in R, \quad \beta_{i}<0 \\
\Omega=\left\{x \in R^{n}: 0 \leq x \leq u \text { and } A x \leq b\right.
\end{array}\right\}
$$

Let

$$
x^{*}=\left(x_{i}^{*}\right)_{i}=\left(\frac{-\alpha_{i}}{2 \beta_{i}}\right)_{i}
$$

$$
y^{*}=\left(y_{i}^{*}\right)_{i}=\left(\frac{\alpha_{i}}{2 \sqrt{-\beta_{i}}}\right)_{i}
$$

$$
y=\left(y_{i}\right)_{i}=\left(\sqrt{-\beta_{i}} x_{i}\right)_{i}
$$

and

$$
\operatorname{Max}_{x \in \Omega} g(x)=g(\bar{x}) ; \quad \bar{x}=\left(\bar{x}_{i}\right)_{i} \in \Omega .
$$

The following theorem proves the algorithm of projection method described in this paper.

Theorem 4 : \quad There exists a closed bounded convex set $\quad \Omega^{\prime}$ of R^{n}, and a vector $y_{0}=\left(y_{0 i}\right)_{i} \in \Omega^{\prime}$, such that the following statements are satisfied:

1. $\operatorname{Max}_{x \in \Omega} g(x)=g\left(x^{*}\right)-\left\|y^{*}-y_{0}\right\|^{2} ;$
2. $\left\|y^{*}-y_{0}\right\|=\inf _{y \in \Omega}\left\|y^{*}-y\right\|$;
3. $\bar{x}_{i}=\frac{y_{0 i}}{\sqrt{-\beta_{i}}} \forall i$.

Proof:

For every $\quad x \in \Omega$, let $\Delta g_{i}=\left(\alpha_{i} x_{i}^{*}+\beta_{i} x_{i}^{* 2}\right)-\left(\alpha_{i} x_{i}+\beta_{i} x_{i}^{2}\right)$. Then $\Delta g_{i}=\alpha_{i}\left(\frac{-\alpha_{i}}{2 \beta_{i}}\right)+\beta_{i}\left(\frac{-\alpha_{i}}{2 \beta_{i}}\right)^{2}-\alpha_{i} x_{i}-\beta_{i} x_{i}^{2}$ $=\beta_{i}\left(x_{i}+\frac{\alpha_{i}}{2 \beta_{i}}\right)^{2}=\beta_{i}\left(x_{i}-x_{i}^{*}\right)^{2}$. $g\left(x^{*}\right)-g(x)=\sum_{i=1}^{n} \Delta g_{i}$
$g\left(x^{*}\right)-g(x)=\sum_{i=1}^{n}-\beta_{i}\left(x_{i}-x_{i}^{\bullet}\right)^{2} \quad$ for all $x \in \Omega$,

Therefore,
$\inf _{x \in \Omega}\left(g\left(x^{*}\right)-g(x)\right)=\inf _{x \in \Omega}\left(\sum_{i=1}^{n}-\beta_{i}\left(x_{i}-x_{i}^{\bullet}\right)^{2}\right)$
can be written in the following form:
$g\left(x^{*}\right)-\operatorname{Max}_{x \in \Omega} g(x)=\inf _{x \in \Omega} \sum_{i=1}^{n}\left(\sqrt{-\beta_{i}}\left(x_{i}^{*}-x_{i}\right)\right)^{2}$ $=\inf _{y \in \Omega^{\prime}} \sum_{i=1}^{n}\left(y_{i}^{*}-y_{i}\right)^{2}$.

Let
$\Omega^{\prime}=\left\{y=\left(y_{i}\right)_{i} \in R^{n}: y_{i}=\sqrt{-\beta_{i}} x_{i}, x=\left(x_{i}\right)_{i}\right.$
because
$\inf _{y \in \Omega^{\prime}} \sum_{i=1}^{n}\left(y_{i}^{*}-y_{i}\right)^{2}=\left\|y^{*}-y_{0}\right\|^{2}, y_{0} \in \Omega^{\prime}$.
Thus $\operatorname{Max}_{x \in \Omega} g(x)=g\left(x^{*}\right)-\left\|y^{*}-y_{0}\right\|^{2}$, hence property (1).

Because $\quad \inf _{y \in \Omega^{2}}\left\|y^{*}-y\right\|^{2}=\left\|y^{*}-y_{0}\right\|^{2}$, then $\left\|y^{*}-y_{0}\right\|^{2} \leq\left\|y^{*}-y\right\|^{2}$, for every $y \in \Omega^{\prime}$.
This implies that $\left\|y^{*}-y_{0}\right\| \leq\left\|y^{*}-y\right\|$, for every $y \in \Omega^{\prime}$. We have therefore $\left\|y^{*}-y_{0}\right\| \leq \inf _{y \in \Omega}\left\|y^{*}-y\right\|$.
Because $y \in \Omega^{\prime}$ then $\left\|y^{*}-y_{0}\right\| \geq \inf _{y \in \Omega^{\prime}}\left\|y^{*}-y\right\|$; then $\left\|y^{*}-y_{0}\right\|=\inf _{y \in \Omega}\left\|y^{*}-y\right\|$. Hence property (2).

The vector y_{0} is the projection of the vector y^{*} onto the new convex Ω^{\prime}. We have

$$
\begin{aligned}
& \operatorname{Max}_{x \in \Omega} \varphi(x)=g(\bar{x})=g\left(x^{*}\right)-\left\|y^{*}-y_{0}\right\|^{2} \\
& =g\left(x^{*}\right)-\inf _{x \in \Omega} \sum_{i=1}^{n}\left(y_{i}^{*}-\sqrt{-\beta_{i}} x_{i}\right)^{2} \\
& =g\left(x^{*}\right)-\sum_{i=1}^{n}\left(y_{i}^{*}-\sqrt{-\beta_{i}} \bar{x}_{i}\right)^{2}
\end{aligned}
$$

Hence
property (3).
The transformation $T: \Omega \subset R^{n} \rightarrow \Omega^{\prime} \subset R^{n}$, for each $x \in \Omega$, associating $T(x)=\Lambda x, \Lambda=\left(\sqrt{-\beta_{1}}, \ldots \ldots, \sqrt{-\beta_{n}}\right)$ has as

Jacobean
matrix
$\left[\begin{array}{cccc}\sqrt{-\beta_{1}} & 0 & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 0 & \sqrt{-\beta_{n}}\end{array}\right]$
Its determinant is $\prod_{i=1}^{n} \sqrt{-\beta_{i}} \neq 0$. Then it is conform.

Algorithm of computing the optimal solution of ($\mathrm{QP} \mathrm{P}_{\mathrm{x}}$).

Algorithm

Initialization: matrix A, vectors b, c, alpha and beta.
If all $\beta_{i}=-1$ then $\Omega^{\prime}=\Omega$ else build Ω^{\prime} and
compute the critical point
If $x^{*} \in \Omega$ then x^{*} is the Optimal solution. STOP.
$\frac{\text { else }}{\text { begin }}$
for $\mathrm{i}=1$ to n
begin

$$
\begin{aligned}
& y^{*}=\left(y_{i}^{*}\right)_{i}=\left(\frac{\alpha_{i}}{2 \sqrt{-\beta_{i}}}\right)_{i} \\
& y_{0}=P_{\Omega}\left(y^{*}\right)=y^{*}-\frac{<y^{*}, a>-b}{\|a\|^{2}} a \\
& \text { end } \\
& \bar{x}_{i}=\frac{y_{\mathbf{O} i}}{\sqrt{-\boldsymbol{\beta}_{\boldsymbol{i}}}}
\end{aligned}
$$

If $\bar{x} \in \Omega$ then \bar{x} is the Optimal solution; compute $g(\bar{x})$ STOP.
else
change the supporting hyper plane separator
end.

Example
$\left(\mathrm{Q} P_{z}\right)\left\{\begin{array}{l}\max f(z)=69 z_{1}+71 z_{2}-15 z_{1}^{2}-17 z_{2}^{2}-2 z_{1} z_{2} \\ 81 z_{1}+50 z_{2} \leq 61 \\ 17 z_{1}+2 z_{2} \leq 105 \\ 0 \leq z_{1} \leq 3 \\ 0 \leq z_{2} \leq 2\end{array}\right.$
It can be written as

$$
\begin{gathered}
H=\left[\begin{array}{cc}
-15 & -1 \\
-1 & -17
\end{array}\right]
\end{gathered} \quad \mathrm{c}=\left[\begin{array}{ll}
69 & 71
\end{array}\right]
$$

Begin by transforming the non-separable problem QP_{z} in separable problem $Q \mathrm{P}_{\mathrm{x}}$.

The diagonal matrix is

$$
D=\left[\begin{array}{rr}
-17.4142 & 0 \\
0 & -14.5858
\end{array}\right]
$$

and the transition matrix is
$\mathrm{P}=\left[\begin{array}{rr}0.3827 & -0.9239 \\ 0.9239 & 0.3827\end{array}\right]$
the constraint matrix A is transformed into
$\mathrm{A}^{\prime}=\mathrm{A} * \mathrm{P}=\left[\begin{array}{cc}77.1913 & -55.7001 \\ 8.3534 & -14.9406 \\ 0.3827 & -0.9239 \\ 0.9239 & 0.3827\end{array}\right]$.
The vector c is transformed into $c^{\prime} \mathrm{P}=(92.0006-36.5772)$
$\left(\mathrm{Q} P_{x}\right)\left\{\begin{array}{l}\max g(x)=c^{\prime} P x-x^{\prime} D x \\ A P x \leq b \\ 0 \leq P x \leq u \quad(x \in X)\end{array}\right.$
And so we have to solve a separable quadratic programming

It is therefore necessary to construct Ω^{\prime} transformed Ω by the transformation T.
$\Omega^{\prime}=\left\{\left(x_{1}, x_{2}\right) \in R^{2} / A 2 x \leq b \quad\right.$ avec $\left.\quad A 2=A / \operatorname{sqrt}(-D)\right\}$
$\mathrm{A} 2=\mathrm{A} / \mathrm{sqrt}(-\mathrm{D})=\left[\begin{array}{cc}18.4977 & -14.5845 \\ 2.0018 & -3.9120 \\ 0.0917 & -0.2419 \\ 0.2214 & 0.1002\end{array}\right]$
$\mathrm{Y}^{*}=(11.0232,-4.78867)$
is the transformed of the critical point x^{*}.
We recall the formula projection of a point y^{*} on a hyperplane $a y+b=0$:
$y_{0}=P_{\Omega^{\prime}}\left(y^{*}\right)=y^{*}-\frac{<y^{*}, a>-b}{\|a\|^{2}} a$
Hyperplanes are here constraints of our problem,
therefore $y_{0}=P_{\Omega^{\prime}}\left(y^{*}\right)=\left(\begin{array}{ll}3.9310 & 0.8032\end{array}\right)$.
The transition to \bar{x} the optimal solution of the initial feasible set Ω is:
$\left(\bar{x}_{i}\right)_{i}=\left(\frac{y_{0 i}}{\sqrt{-\beta_{i}}}\right)_{i}=\left(\begin{array}{ll}0.9420 & 0.2103\end{array}\right)$
The value of the optimal solution to our original problem $\quad\left(Q P_{z}\right)$ is:
The critical point is
$x^{*}=\left\{\begin{array}{l}\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)=-1.4905 \\ \frac{\partial f}{\partial x_{2}}\left(x_{1}, x_{2}\right)=2.7617\end{array}, \quad x^{*} \notin \Omega\right.$,
because $x^{*}(1)<0$
$x_{\text {opt }}=\bar{x} \times P^{\prime}=\left(\begin{array}{ll}0.9420 & 0.2103\end{array}\right) \times\left(\begin{array}{cc}0.3827 & 0.9239 \\ -0.9239 & 0.3827\end{array}\right)$
$=\left(\begin{array}{ll}0.1662 & 0.9508\end{array}\right)$

$$
f\left(x_{o p t}\right)=62.8742 \text {. }
$$

REFERENCES

[1] Blakley, Leo. V. and Donald W. Kloth, "Price Alignment and Movements of Class 1 Milk Between Markets", American Journal of Agricultural Economics, 54(1972): 496-502.
[2] Chikhaoui A, Djebbar B., Bellabacci A, Mokhtari A., 2009. Optimization of a quadratic function under its Canonical form Asian Journal of Applied Sciences 2(6):499-510
[3] Chikhaoui A, Djebbar B., and Mekki R., 2010. New Method for Finding an Optimal Solution to Quadratic Programming Problem, Journal of Applied Sciences 10(15):1627-1631-2010. ISSN 18125654.
[4] Chikhaoui A, Djebbar B., Bellabacci A, Mokhtari A.,2011. An Algorithm for calculating optimal Solution of Quadratic Programming problems. Not published yet.
[5] Stephen B. and Lieven V., 2004. Convex Optimization, Cambridge University Press.
[6] HILLIER, F.S., AND LIEBERMAN, G.J., 2001. Introduction to Operations Research, 7th Edition, McCraw-Hill Companies, Inc., New York, NY,
[7] Holland, David W. and John L. Baritelle, "School Consolidation in Sparsely Populated Rural Areas: A Separable Programming Approach", American Journal of Agricultural Economics, 57(1975): 567-575.
[8] GILL, P.E., MURRAY, W., AND SAUNDERS, M.A., 2002. "SNOPT: An SQP Algorithm for Large-scale Constrained Optimization", SIAM J. Optimization, Vol. 19, No. 4, pp. 979-1006.
[9] PADBERG, M., 2000. "Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs", Operations Research Letters, 27 (200), 1-5. S., 1984, Programmation linéaire. Traduction française. Edition MIR. Moscou.

