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Abstract:    The aim of this paper is to present a new 

method for solving non-separable quadratic problems. 

In a first step we transform the non-separable quadratic 

problem in a separable quadratic problem equivalent. 

In a second step we solve the quadratic problem 

separable by the method of projection. The principle of 

this method is to calculate the critical point, if it is a 

feasible solution then this is the optimal solution. 

Otherwise, we construct a new feasible set by a 

homographic transformation on which we project the 

transformed critical point and we give the optimal 

solution belonging to the feasible set of the original 

problem. Note that the resolution is done directly on the 

primal separable quadratic problem and not on the 

linear problem as do several methods. 

The method is purely analytical and avoids the thorny 

problem of the choice of the initial solution.  
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I. INTRODUCTION 

 

The separable quadratic programming 

(Stephen B. and V. Lieven , 2004. ) is very 

important in industry and finance. Non separable 

problems are traditionally solved by linear 

programming techniques ( Hillier and Lieberman , 

2001). In some others cases an allocation problem 

is formulated as a nonlinear constrained 

optimization problem and solved by a quadratic 

programming method (Gill et al. , 2002). Other 

approaches (  Friedlander & all. 2012), prefer the 

method of semi- interior, and the method can be 

interpreted as an adjustment to the proximal point 

of primal-dual problems. The convergence 

problem has been studied in several articles 

including ( Delbos F. Gilbert and J. Ch , 2003). On 

the other uses the modified Lagrange method (S. 

Ketabchi all . & 2009). 

 

This article describes a new method based on the 

transformation of a non-separable quadratic 

programming problem in a separable equivalent 

problem. This coordinate transformation uses the 

Gauss pivot method to make the diagonal matrix 

representing the quadratic term of the  

 

 

objective function. Once we got equivalent 

problem, we apply it our quadratic programming 

algorithm based on the projection method.   

 

Problem Formulation 

 

The Matrix form of our non-separable problem is: 

  

 . 

The following schema shows the steps of 

resolution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before making a change of variables based on the 

diagonaliza-tion of the matrix H, we recall the 

basics of the diagonalization. 

 

II. TRANSFORMING NON SEPARABLE 

PROGRAMMING 

 

 Definition (Eigenvalues , eigenvectors) 

A scalar is an eigenvalue of the matrix  if 

and only if there exists a vector 

 ;  is called an eigenvector 

of the matrix associated with the eigenvalue . 

 

 

Theorem 1: 

 

1. Let a matrix .   is an 

eigenvalue of  if and only if 
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Transforming  non separable problem QPz  

to equivalent separable problem QPx using 

the passage matrix P. 

 QPx  resolved by projection method 

Optimal value of  QPz, using the passage 

matrix P-1. 
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2. If  is an eigenvalue of  then 

solution of 

is an 

eigenvector associated with . 

 

Theorem 2: 

  

 Let  a symmetric matrix .  Then 

there exists an orthogonal matrix which 

diagonalizes   

 

We give the theorem which transforms a quadratic 

form with cross terms (in a quadratic form with 

only squared terms ). 

 

Theorem 3: 

  Let    a symmetric matrix 

of eigenvalues  and  an orthogonal 

matrix that diagonalizes . Then the change in 

the coordinate   transforms   

to  . 

The matrix is the matrix of passage is  the 

matrix consisting of the orthonormal eigenvectors 

associated with eigenvalues of  . 

 

  

where, 

-   is a diagonal matrix consisting of 

positive real eigenvalues of the matrix . 

-   X is a finite set of values resulting from the 

product of the matrix P and the vector . 

 

We transformed quadratic function  to canonical 

quadratic function and then non-separable 

quadratic problem  is transformed to 

separable quadratic problem . 

The next step solves separable quadratic problem 

. 

 

III. SOLVING SEPARABLE QUADRATIC 

PROGRAMMING 

 

A. Projection Method 

For simplicity, we write the canonical separable 

quadratic problem  

 

Let    

 

;    

and  

  

 

The following theorem proves the algorithm of 

projection method described in this paper.   

 

Theorem 4 :   There exists a closed bounded 

convex set of , and a vector

, such that the following 

statements are satisfied: 

1. 
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Therefore, 

 

can be written in the following form:    

  

 

Let

, because 

  

Thus  hence 

property (1). 

 

Because     , then 

for every  .  

This implies that  for 

every . We have therefore

.  

Because  then ; 

then .  Hence property  

(2). 

The vector  is the projection of the vector  

onto the new convex . We have 

 

   

  . Hence 

property  (3). 

  The transformation , 

for each , associating 

 has as 

Jacobean matrix         

 

Its determinant is . Then it is 

conform. 

 

Algorithm of computing the optimal solution of 

. 

 

Algorithm 

 

Initialization:   matrix A, vectors b, c, alpha and 

beta. 

If   all  i = -1 then  ‘=   else build ‘ and 

compute the critical point   

    If  x
*
    then  x

*
 is the Optimal 

solution.  STOP.      

      else            

      begin 

 for   i= 1  to  n 

              begin    

        

   

  

   

  

 

 end  

   If      then   is the Optimal solution ; 

compute   STOP.   

              else    
 change the supporting hyper plane 

separator   

      end. 
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         .   

Begin by transforming the non-separable problem 

 in separable problem .  

The diagonal matrix is   

   

and the transition matrix is 

    

the constraint matrix A is transformed into  

. 

 

The vector  is transformed into 

 

 

  

 

  And so we have to solve a separable quadratic 

programming 

 

The critical point is   

  ,        

because   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is therefore necessary to construct 

transformed by the transformation .  

 

   

 

 
  

is the transformed of the critical point . 

   We recall the formula projection of a point 

on a hyperplane   : 

 

Hyperplanes are here constraints of our problem, 

 

therefore . 

The transition to  the optimal solution of the 

initial feasible set  is:   

 

The value of the optimal solution to our original 

problem  is:
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