
Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

10

IIWMCS 2014

Formal Approach for GPU Architecture

Schedulability

ZOUANEB Imane, BELARBI Mostefa

University of Ibn Khaldoun

Computer Sciences Department

Tiaret, Algeria

LIM Research Laboratory

i_zouaneb@yahoo.fr, belarbimostefa@yahoo.fr

CHOUARFIA Abdellah

University of Sciences and Technology Oran Mohamed Boudiaf

Computer Sciences Department

Oran, Algeria

LIM Research Laboratory

chouarfia@univ-usto.dz

Abstract— Parallel application modelling and

specifying is not an easy task to do because it treats

tasks scheduling and time evolution. Graphics

processing Unit is one of the main architectures that

guaranties parallel execution. Event B is a skilled

formal language based on sets theories. Our goal is

to model and to specify the parallel execution of

programs on GPU using Event B & RODIN

platform. We are interesting to timing and

scheduling of tasks on GPU.

Key-Words : Parallel application, GPU, Formal

specification, Timing, Scheduling, Event B.

I. INTRODUCTION

 Parallel applications are the applications

that can be divided into parts that can be executed

in the same time. These parts do not depend on

each other so they can be run simultaneously.

Many-cores architectures permit to execute parallel

applications thanks to its multiple processors. The

Graphics Processing Unit (GPU) is one of these

architectures and it is a puissant SIMD coprocessor

(Single Instruction Multiple Data). The parallelism

processing is granted by the big number of

processing units on GPU. GPUs are used to

improve applications execution such as multimedia

applications and huge calculation applications. We

call an application that is launched on GPU a

kernel. This kernel is transformed into a grid of

blocs. These blocs are divided into groups of 32

threads. When executing an application on GPU,

we cannot see the different stages and the

scheduling details. Modeling and specifying

parallel applications is not a simple task to do.

There are many tools to model this type of

applications; one of them is formal methods. These

latter are based on mathematic notions which make

it sure and proved specification. Our goal is to

model scheduling of kernel, blocs and threads and

to propose a temporal model of tasks execution on

GPU using Event B. The temporal model permits

to show the time evolution when executing the

tasks on GPU. Event B is a formal tool that allows

us to create models and to validate it using

automatic provers.

Event B does not support timing and scheduling of

GPU tasks representation. Its mathematic bases

permit to represent time evolution and scheduling

process on GPU. Several works have dealt with

time representation with Event B. Joris Rehm [1]

has used Event B to model time constraints of the

final step (root contention) of the distributed

algorithm of the leader election protocol from

IEEE 1394[2]. The proposed work consists of

representing time and timers as additional variables

of the system. They proposed to separate between

the application model and the time constraints

model so they refined the application model in a

new model containing time evolution events. These

events can be observed only when the system

reaches a specific time which was named active

time. This method was applied on several

applications and it was also validated by Rodin in

[3][4]. Another approach [5] was proposed to

represent and to refine discrete time properties in

Event B. They dealt with three main categories of

discrete timing for trigger-response pattern:

deadline, delay and expiry. These three kinds of

timing constraints are used in many categories of

time critical systems. For scheduling representation

a set of works have treated it in Event B in

different filed. The work of [6] proposed an

approach to model concurrent scheduling. They

presented an Event B model that covers the

different interactions and concurrence of the

famous problem of philosophers dinning through

successive refinements. Another work [7] has dealt

with modeling of event driven interaction in multi-

agent systems. They have specified and proved

interaction and scheduling between events using

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

11

IIWMCS 2014

Event B. In this paper, we propose a new approach

to model timing and scheduling of tasks execution

on GPU using Event B.

The present paper carries on in Section 2 by

presenting Event B. Then, in Section 3 we

introduce GPU architecture and scheduling on

GPU. Section 4 shows the proposed formal

specification of task execution on GPU and its

scheduling and timing. Finally we conclude our

work and we propose some perspectives.

II. EVENT B

Event B is an enriched extension of the formal

method B created by J. R Abrial [8] for system

specification, design and coding. It is based on Set

theory and it specifies the system by abstract

machines, operations and successive refinements

which permit to prove, to verify and to validate the

specified system.

Fig.1 Refinements of models and contexts

Event B is based on MODEL notion which

describes the labeled transaction of the system,

named also machine in B method. A MODEL is

composed of a static part which contains the

states, its invariants and its properties and a

dynamic part containing transitions (events). A

MODEL has a name, variants, invariants and

Events. A MODEL is completed by a formalism

called the CONTEXT. It plays an important role in

MODEL parameterization and instantiation. A

CONTEXT has also a name, Sets, Invariants.

[9][10] Each MODEL can reference a CONTEXT

and many refinements which concrete models and

contexts as it is shown in the figure 2. The Event

B method is efficient because it uses tools like

Atelier B
1
 and the platform RODIN (Rigorous

Open Development Environment for Complex

Systems). This platform is a tool to develop and to

prove Event B specification under Eclipse

environment. [9] The main objective of RODIN is

to create a methodology and supporting open tool

platform for cost-effective, rigorous development

of complex dependable software systems and

services. [11]

1 Atelier B is a tool that permits operational use of the

method B : http://www.atelierb.eu

III. GRAPHIC PROCESSING UNIT (GPU)

Graphic Processing Unit (GPU) is a puissant

many core processor. GPU have a high

performance processors dedicated to graphics

processing. Originally, GPUs were oriented to

accelerating graphics rendering functionality.

Lately they are used to perform different kinds of

general purpose computations in a parallel way to

minimize application‘s runtime. [12]

A. GPU Architecture

GPU is a multi-core architecture used to

enhance intensive computing and to discharge the

CPU. A GPU is composed of a global memory

and a set of Streaming Multiprocessor (SM). Each

streaming multiprocessor is constituted of a set of

Streaming Processor (SP) and each streaming

processor is linked to a local memory (Register

memory). And the SPs of a SM are linked to a

shared memory. [13]

Fig.2 Nvidia GPU architecture

In Nvidia architecture, tasks are executed using

SIMD (Single Instruction Multiple data) blocs

written in CUDA. [14] CUDA (Compute Unified

Device Architecture) provides a set of software

libraries, an execution environment and a

multitude drivers for different languages of

programming (C,C++,…). CUDA is an extension

of C language for programming on NVIDIA GPU.

The computations on a GPU are programmed as

kernel functions. A kernel program describes the

execution of a serial thread on a GPU. The kernel

is launched by the host CPU with specified

numbers of blocs and threads, where a bloc

represents a set of a certain number of threads, and

all blocs in that kernel launch have the same

numbers of threads. [13][14] The figure 3 shows

the architecture of CUDA.

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

12

IIWMCS 2014

Fig.3 CUDA Architecture

B. Scheduling on GPU

Programs launched on GPU are called kernels.

One kernel can be executed on a GPU in an

instant. When a kernel is launched, it will be

affected to a GPU and input data will be

transferred from CPU Memory into GPU global

memory. The kernel is represented by a grid

composed of a set of blocs. Each bloc is

constituted of a group of 32 threads. A bloc is

executed on a SM of the GPU. If the number of

available SMs on GPU is insufficient to execute

all blocs in parallel, the blocs will be affected to

free SMs and the reminding blocs will be added

into a FIFO (First In First Out) waitlist. When a

SM is liberated, the first bloc in the waitlist will be

affected to this SM. In a bloc, the threads are

executed in a parallel way in groups of 32 threads.

The concurrence between the running threads of a

bloc impact coherence memory (shared memory,

global memory). In a bloc threads can

communicate with each other using memory and

synchronization barriers but threads of different

blocs cannot be synchronized. When the grid

finishes its execution, the result (output data) will

be transferred to CPU.

IV. PROPOSED EVENT B SPECIFICATION OF TASKS

EXECUTION ON GPU

 In order to specify execution tasks on

GPU, we propose an Event B model of kernel. This

model is successively refined to show execution

details. We have four levels: kernel execution, bloc

scheduling, bloc execution and thread execution. A

GPU context is added to define machines variables.

Fig.4 Elements of GPU executionspecification

A. Basic model structure (kernel machine)

 The GPU kernel is defined by the

variables:

 nb_SM_GPU: represents the number of

SMs in the GPU of execution.

 nb_kernel_threads: represents the total

number of kernel‘s threads.

 Time_start: represents the time of

execution starting.

 Time_end: represents the time of

execution end.

 T_ev: represents the time evolution.

 GPU_OCC: Boolean variable used to

check if the GPU is free or taken.

 K_state: represents the state of kernel.

 affect: number of blocs.

 nbreiter: number of blocs according to

the number of SMs on the GPU.

 blocsArray: a table that represents the

blocs states.

 blocs_start_time: a table that represents

the time of execution beginning of blocs.

 blocs_end_time: a table that represents

the time of execution end of blocs.

The kernel machine has three events: waiting,

execution and Endexecution. While the GPU is not

free, the kernel waits.

WAIT ≙

WHEN

grd1 : GPU_OCC=TRUE

THEN

act1 : k_state≔wating

END

If the GPU_OCC variable is equal to false, the

kernel will starts its execution. The value

GPU_OCC will be changed to True and the kernel

state will be ―executing”. To devise the kernel on

blocs, the total number of threads is divided on 32.

Then, the result is divided on the number of SMs

on the GPU. This value defines the number of

blocs that can be executed in parallel on available

SMs of execution architecture (GPU). The T_ev

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

13

IIWMCS 2014

variable is incremented by c value, the time of

division and affectation of blocs to SMs.

EXECUTION ≙

WHEN

grd1 : k_state=waiting

grd2 : GPU_OCC=FALSE

THEN

act1 : GPU_OCC≔TRUE

act2 : k_state≔executing

act3 : affect≔nb_kernel_threads÷32

act4 : nbreiter≔affect÷nb_SM_GPU

act : T_ev≔Time_start+c

END

The kernel finishes its execution when all the

elements of bloc states are equal to end. So it

liberates the GPU and save the time of execution

end.

ENDEXECUTION ≙

ANY

m

WHERE

grd3 : m∈(0‥nb_kernel_threads)

grd1 : k_state=executing

grd2 : blocsArray(m)=end

THEN

act1 : GPU_OCC≔FALSE

act2 : Time_end≔T_ev

act3 : k_state≔ending

END

B. Scheduling modeling

In the kernel machine, the kernel is divided into

blocs of threads. These blocs must be scheduled to

be executed on the available SMs of the executing

GPU. To represent scheduling interaction in the

kernel we proposed to use bloc state array

(blocsarray). This array is modified in each stage of

execution. Its dimension is the number of blocs

calculated in the kernel machine. The values of the

array‘s elements are initialized with ―wait‖ in the

beginning of execution. When the kernel is

launched and divided into blocs the first 16 blocs

will start there execution and there values in

blocsarray is modified into ―run‖. A table of 32

elements is created representing the threads states

of the bloc, called threadsArray. When a thread is

executing, it will change its state in the

threadsArray table.

Fig.5 Arrays of states of blocs and threads

A bloc cannot liberate a SM until the 32 threads

states are all equal to ―finishing‖. So the bloc state

will be changed to ―end‖ and liberate the SM.

These arrays permit the control and the evolution

of parallel execution process. The kernel ends its

execution when all the blocstates‘ elements are

equal to ―end‖, so it will liberate the GPU.

These arrays permit the control and the check of

parallel execution process of the kernel, the blocs

and the threads.

C. Timing modeling

 To model time evolution, we proposed to

use a variable (T_ev) that will be initialized by 0,

then it will be incremented. To calculate blocs and

threads timing we used tables for saving starting

time execution and ending time execution. T_ev is

incremented in kernel machine by the duration of

kernel decomposition (c). When the kernel is

launched the elements of blocs_start_time array

will be initialized by T-ev (T_ev=c, in the

beginning of bloc execution). blocs_time_end array

also is initialized by T_ev. If a bloc starts its

execution, two tables of 32 elements will be

created called (threads_start_time,

threads_end_time).

Fig.6 Arrays of timing of blocs and threads

The two arrays threads_start_time,

threads_end_time are initialized by the value of

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

14

IIWMCS 2014

bloc_start_time. When a thread starts its execution,

the duration of this latter will be added to

strat_time_thread. If the thread needs access to

global memory and this latter is not accessible, the

time of waiting is added to its runtime until getting

access to memory. When all threads of a bloc

finish there execution, the maximum of the

threads_end_time of the 32 threads is affected to

bloc_time_end of this bloc. The maximum of

end_time_blocs is affected to T_ev and this latter is

the runtime of the kernel.

D. Refinements of the basic model

D.1 Bloc_scheduling machine

When the kernel execution is launched, the first 16

blocs will be affected to the available SMs (16 in

our GPU). So there states will be changed into

―run‖. There states and there starting times are

initialized in the Affectation event.

Affectation ≙

WHEN

grd2 : j<k

 THEN

act4 : current_bloc≔j−(nb_SM_GPU+1)

act1 : blocsArray(j)≔run

act2 : blocs_start_time(j)≔T_ev

act3 : j≔j+1

END

After having launched the sixteen blocs execution,

the rest of blocs are all waiting for an SM to

liberate.

When a bloc is in state run, a table of 32 elements

is created, it is called threadsArray.

D.2 Bloc_execution machine

When a bloc is affected to a SM and its state is

changed to ―run‖, it creates the threads-state and

the timing arrays. These arrays are initialized in the

event bloc_executing. The threadsArray elements

are initialized with ―ready‖.

bloc_executing ≙

ANY

M

WHERE

grd1 : m∈ℕ

grd2 : blocsArray(m)=run

grd3 : pointeur1≤32

THEN

act1 : threadsArray(pointeur1)≔ready

act2 : pointeur1≔pointeur1+1

END

When a bloc is in execution, the threads are

running in parallel. Some threads can finish there

execution and the others can‘t. So there is a

verification event that verifies the execution end

and saves the runtimes of the threads in a Time

Set.

bloc_ending_verification ≙

ANY

m

WHERE

grd1 : m∈ℕ

grd2 : blocsArray(m)=run

grd3 : pointeur2≤32

grd4 : threadsArray(pointeur2)=finishing

THEN

act2

:

TimeSet≔TimeSet∪{threads_end_time

(pointeur2)}

act3 : pointeur2≔pointeur2+1

END

When all the threads of a bloc finish there

execution, its blocsArray value is changed to ―end‖

and the maximum of threads execution is affected

to its bloc_end_time.

bloc_ending ≙

REFINES

verifying_execution_end

ANY

m

WHERE

grd2 : m∈ℕ

grd1 : blocsArray(m)=run

THEN

act1 : blocs_end_time(m)≔max(TimeSet)

act2 : T_ev≔max(TimeSet)

act3 : blocsArray(m)≔end

END

D.3 Thread_execution machine

When a thread is created, it is initialized with the

state ―asleep‖. If its dominant bloc is activated, the

thread state is modified to ―ready‖ state and its

starting time is initialized. This step is represented

by the election event.

Thread_election ≙

ANY

m

WHERE

grd2 : blocsArray(m)=run

grd1 : threadsArray(pos)=asleep

THEN

act1 : threadsArray(pos)≔ready

act2 : threads_start_time(pos)≔T_ev

act3

:

threads_end_time(pos)≔threads_

start_time(pos)

END

When the threads are running, they need access to

global memory. This access could be happen in the

same time, so we propose to use a variable that

controls the access memory. The thread is waiting

while the global memory is inaccessible. This

thread‘s execution time is incremented by the time

of waiting.

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

15

IIWMCS 2014

When the memory becomes accessible, the thread

passes to the ―running‖ state and it will be

executed. The duration of its execution is added to

its thread_end_time value.

Thread_running ≙

WHEN

grd1 : threadsArray(pos)=ready

grd2 : MGA=accessible

THEN

act3 : MGA≔notaccessible

act1 : threadsArray(pos)≔running

act2

 :

threads_end_time(pos)≔threads_en

d_time(pos)+duration

END

When the thread finishes its execution, it liberates

the global memory and modifies its state to

―finishing‖.

Thread_finishing ≙

WHEN

grd1 : threadsArray(pos)=running

THEN

act1 : threadsArray(pos)≔finishing

act2 : MGA≔accessible

END

V. CONCLUSION

In this paper we proposed a formal specification of

GPU tasks execution using Event B language. The

proposed specification models the Nvidia GPU‘s

programming model. The programming model of

a GPU consists of executing kernels in the form of

grids composed of blocs and these blocs are

composed of threads. This organization has been

specified using successive refinements of the basic

model which is the kernel in Event B using Rodin

platform. In our specification, we tried to model

the scheduling on the GPU and the timing of each

component (kernel, bloc, thread). Another aspect

was treated which is the access memory

concurrence. The complexity of our specification

is measured by the number of proof obligations

which are automatically/manually is charged (see

table 1).

Model Total Auto Manual

Kernel 25 15 0

blocks_scheduling 22 12 0

Block_execution 38 18 0

Thread_execution 17 10 0

Total 102 55 0

Tab .1 Summary of proof obligations

We remark that automatic proofs changes from

a model to the other, in the bloc_execution model

there are more proofs that are not handled by

Rodin provers. We didn‘t used the manual proofs

or import hypothesis to discharge obligations

proof to see the correctness of our specification.

As a part of our future works, we aspire to

model specific parallel applications such as matrix

multiplication and image processing on different

GPU‘s architectures by refining our proposed

basic Event B specification. Another perspective

is to generate a valid executable code in CUDA

and OpenCL from the Event B specification of

parallel applications

REFERENCES
[1] Joris Rehm, ―A method to refine time constraints in

event B framework,‖ 6th International workshop on
Automated Verification of Critical Systems (AVoCS

2006), Nancy,France, pp. 173-177, 2006.

[2] J-R. Abrial, D. Cansell and D Méry, ―A mechanically
proved and incremental development of IEEE 1394 tree

identify protocol,‖ Formal Asp. Comput. 14, pp. 215-227,

2003.
[3] Dominique Cansell, Dominique Merey, and Joris Rehm,

―Time constraint patterns for event B development,‖ in

7th International Conference of B Users, Besançon ,
France, pp. 140-154, 2007.

[4] Joris Rehm, ―A duration pattern for event-B method,‖ in

2nd Junior Researcher Workshop on Real-Time
Computing (JRWRTC 2008), Rennes, France,2008.

[5] Mohammad Reza Sarshogh, Michael Butler,

―Specification and refinement of discrete timing
properties in Event-B,‖ in the 46th ECEASST , 2011.

[6] Pontus Boström, Fredrik Degerlund, Kaisa Sere and

Marina Waldén, ―Concurrent Scheduling of Event-B
Models,‖ in EPTCS,Vol.55, pp.166-182, 2011.

[7] Lorina Negreanu and Matei Popovici, ―Modeling and

proof of event-driven interaction in multi agent systems
in Event-B,‖ 19th International Conference on Control

Systems and Computer Science, Bucharest, Romania, pp.

180 – 183, 2013.
[8] J.R Abrial, ―The B-book: Assigning programs to

meanings‖, 1996.

[9] C. Métayer, J.-R. Abrial, L. Voisin, ―Event-B Language‖,
May 2005.

[10] Yamine AIT-Ait-Ameur & all. ―Vérification et validation

formelles de systèmes interactifs fondées sur la preuve :
application aux systèmes multi-modaux,‖ IN Journal

d‘Interaction Personne-Système, Vol. 1, No. 1, Art. 3,

Septembre 2010.
[11] Joey Coleman, Cliff Jones, Ian Oliver, Alexander

Romanovsky, and Elena Troubitsyna, ―RODIN (Rigorous

Open Development Environment for Complex
Systems),‖In 5th European Dependable Computing

Conference: EDCC-5 supplementary volume, April 2005.

[12] Sylvain Collange, Yoginder S. Dandass, Marc Daumas,
and David Defour, ―Using Graphics Processors for

Parallelizing Hash-Based Data Carving,”In HICCS,

Hawaii International Conference on System Sciences, pp
1-10, 2009.

Thread_waiting ≙

WHEN

grd1 : threadsArray(pos)=ready

grd2 : MGA=notaccessible

THEN

act1 :

threads_end_time(pos)≔threads_start_time(po

s)+1

END

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

16

IIWMCS 2014

[13]] Peter N. Glaskowsky. ―NVIDIA‘s Fermi: The First

Complete GPU Computing Architecture‖, 2009. [Online].
Available:http://www.nvidia.com/content/PDF/fermi_whi

te_papers/P.Glaskowsky_NVIDIA'sFermi-

he_First_Complete_GPU_Architecture.pdf
[14] Sylvain Collange, Marc Daumas, David Defour & Régis

Olivés, ―Fonctions élémentaires sur GPU exploitant la

localité de valeurs‖, In SYMPosium en Architectures

nouvelles de machines, Fribourg, Switzerland, pp 1-11,
2008.

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA'sFermi-he_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA'sFermi-he_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA'sFermi-he_First_Complete_GPU_Architecture.pdf

	momaj vol02n01 2014 10
	momaj vol02n01 2014 11
	momaj vol02n01 2014 12
	momaj vol02n01 2014 13
	momaj vol02n01 2014 14
	momaj vol02n01 2014 15
	momaj vol02n01 2014 16

