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Abstract—Recently some special type of mixed alphabet codes
that generalize the standard codes has attracted much attention.
Besides Z2Z4−additive codes, Z2Z2[u]−linear codes are intro-
duced as a new member of such families. In this paper, we are
interested in a new family of such mixed alphabet codes, i.e.,
codes over Z4Z4[u] with u3 = 1, we study the structure of cyclic
codes over the ring Z4R = Z4(Z4+uZ4+u2Z4) with u3 = 1. The
reversible cyclic codes of arbitrary length over Z4R are discussed.
It is worth noting that the Z4−Gray images are Z4−linear codes.

Index Terms—Cyclic codes, Gray map, reversible codes.

I. INTRODUCTION

Recently, inspired by the Z2Z4−additive codes (intro-
duced in [3]), Z2Z2[u]−linear codes have been introduced
in [2]. Though these code families are similar to each other,
Z2Z2[u]−linear codes have some advantages compared to
Z2Z4−additive codes. For example, the Gray image of any
Z2Z2[u]−linear code will always be a linear binary code. This
property does not hold for Z2Z4−additive codes.

In 2007, Siap and Abualrub [1] studied the structure of re-
versible cyclic codes over Z4. In 2015, Srinivasulu and Bhaint-
wal [7] studied reversible cyclic codes over F4 + uF4, u

2 = 0
and their applications to DNA codes, Sehmi et al. [6] studied
reversible and reversible complement cyclic codes over Galois
rings. Motivated by these works, we study reversible cyclic
codes of arbitrary length n over Z4(Z4 + uZ4 + u2Z4)
with u3 = 1. Recall that these codes have applications
in DNA computing which is a field of study that aims at
harnessing individual molecules at the nanoscopic level for
computational purposes. Computation with DNA molecules
possesses an inherent interest for researchers in computer and
biology. At present, many researchers have been interested
in designing a new set of codewords for each experiment
depending on various design constraints in DNA computing.
One can prevent errors by minimizing the similarity between
the sequences under some distance measure. These codes have
many applications in constructing data storage and retrieval
systems.

The paper is organized as follows: In Section 2, we give
some basic definitions. In Section 3, the structure of cyclic
codes of arbitrary length over the ring Z4R is determined. In

Section 4, we study reversible cyclic codes of arbitrary length
over Z4R.

II. PRELIMINARIES.

Let R the commutative, characteristic 4 ring Z4 + uZ4 +
u2Z4 = {a+ ub+ u2c | a, b, c ∈ Z4}, with u3 = 1. This ring
can be written as the quotient ring Z4[u]/〈u3 − 1〉. This ring
is a non finite chain ring.

A linear code C of length n over R is an R−submodule of
Rn. An element of C is called a codeword. A code C is said
to be cyclic, if C is closed under the cyclic shift ρ : Rn → Rn,
defined by ρ(a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2). It is
well known that C is a cyclic code of length n over R if and
only if C is an ideal of the ambient ring Rn = R[x]/〈xn−1〉.

Let l ∈ R. Then l can be expressed in the form l = a +
ub+ u2c, where a, b, c ∈ Z4. Define the following map

η : R→ Z4

r = a+ ub+ u2c 7→ b.
(1)

It is clear that the mapping η is a ring homomorphism.
For any l ∈ R and x ∈ Z4R, we define the following R−

scalar multiplication on Z4R as R × Z4R → Z4R such that
l ? (e | r) = (η(l)e | lr). This is a well-defined multiplication.
It can be extended component-wise over Zα4 ×Rβ as follows:
R× Zα4 ×Rβ → Zα4 ×Rβ where

l ? x = (η(l)e0, η(l)e1, . . . , η(l)eα−1 | lr0, lr1, . . . , lrβ−1).

where x = (e0, e1, . . . , eα−1 | r0, r1, . . . , rβ−1) ∈ Zα4Rβ . By
this multiplication, Zα4Rβ forms an R−module.

Definition 1: A non-empty subset C of Zα4Rβ is called an
Z4R-linear code of length (α, β) if C is an R−submodule of
Zα4Rβ .
Let C be a Z4R-linear code and let Cα (respectively Cβ) be
the canonical projection of C on the first α (respectively on
the last β) coordinates. Since the canonical projection is a
linear map, Cα and Cβ are linear codes over Z4 and over R
of length α and β, respectively. A code C is called separable
if C is the direct product of Cα and Cβ , i.e.,

C = Cα × Cβ .
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We introduce the inner product on Zα4Rβ . For any two vectors

t = (e0, . . . , eα−1 | r0, . . . , rβ−1),

t′ = (e′0, . . . , e
′
α−1 | r′0, . . . , r′β−1) ∈ Zα4 ×Rβ

let

〈t, t′〉 = u2
α−1∑
i=0

eiéi +

β−1∑
j=0

rj ŕj .

Definition 2: Let x = (x0, x1, . . . , xn−1) ∈ Rn

be an n−tupple. The reverse of x is defined as xr =
(xn−1, xn−2, . . . , x1, x0). Than, a linear code Cn of length
n over R is said to be reversible if xr ∈ Cn.
Let f(x) = c0+c1x+· · ·+ctxt with ct 6= 0, and the reciprocal
polynomial of f(x) is defined as f∗(x) = xtf(1/x) = ct +
ct−1x+ · · ·+ c0x

t. The polynomial f(x) is self-reciprocal if
f∗(x) = f(x).

We define a Gray map as Φ : Zα4 ×Rβ 7→ Zα+2β
4 such that

Φ(x) = Φ(e | r) = (e | φ(r)), where φ is a Gray map defined
by

φ : R→ Z2
4

φ(a+ ub+ u2c) = (a+ b+ c, a+ b, a+ c),

The image C = Φ(C) of a Z4Z4[u]−linear code C of length
(α, β) is a linear code of length n = α+ 2β over Z4.

The Lee weight of an element x = (e | r) ∈ Zα4Rβ ,
where (e0, e1, . . . , eα−1) ∈ Zα4 and (r0, r1, . . . , rβ−1) ∈ Rβ

is defined as
wL(x) = wH(Φ(x)),

where wH denotes the Hamming weight and the Lee distance
between two vectors x, y ∈ Zα4 ×Rβ is defined as dL(x, y) =
wL(x− y).

Now, we provide some results which will be useful later
Theorem 1: [1] Let C be a cyclic code in Rα =

Z4[x]/〈xα − 1〉.
(i) If n is odd, then Rα is a principal ideal ring and C =
〈f1(x), 2f2(x)〉 = 〈f1(x) + 2f2(x)〉 such that f2(x) |
f1(x) | (xα − 1) mod 4.

(ii) If α is even number, then
a) C is a free module of generator C = 〈f1(x) +

2p(x)〉, where f1(x) and p(x) are polynomials
with f1(x) | (xα − 1)mod 2, and f1(x) + 2p(x) |
(xα − 1)mod 4,

b) C = 〈f1(x) + 2p(x), 2f2(x)〉, where f1(x), f2(x)
and p(x) are polynomials with f2(x) | f1(x) |
(xα− 1)mod 2, f2(x) | p(x)((xα− 1)/f1(x))mod
2 and deg f1(x) > deg f2(x) > deg p(x).

Abualrub and Siap discussed the reversible cyclic codes of
arbitrary length over Z4 [1]. We summarized these convenient
results for our purposes.

Theorem 2: [1] Let Cα = 〈f1(x), 2f2(x)〉 = 〈f1(x) +
2f2(x)〉 be a linear cyclic code of odd length α over Z4. Then
Cα is reversible cyclic code if and only if f1(x) and f2(x)
are self-reciprocals.

III. CYCLIC CODES OVER Z4R

The purpose of this section is to determine the structure of
cyclic codes over the ring Z4R of arbitrary length.

Definition 3: Let A and B be two linear codes. Then the
operations ⊗ and ⊕ are defined by

A⊗B ⊗ C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}
A⊕B ⊕ C = {a+ b+ c : a ∈ A, b ∈ B, c ∈ C}. (2)

Let Cβ be a linear code over R. Then we define:

Cβ,1 = {x ∈ Zβ4 : ∃y, z ∈ Zβ4 , ε1x+ ε2y + ε3z ∈ Cβ}
Cβ,2 = {y ∈ Zβ4 : ∃x, z ∈ Zβ4 , ε1x+ ε2y + ε3z ∈ Cβ}
Cβ,3 = {z ∈ Zβ4 : ∃x, y ∈ Zβ4 , ε1x+ ε2y + ε3z ∈ Cβ},

(3)
where ε1 = −1 + u + u2, ε2 = 1 − u2 and ε3 = 1 − u. It
is clear that Cβ,1, Cβ,2 and Cβ,3 are linear codes of length β
over Z4 and Cβ can be expressed as

Cβ = (−1 + u+ u2)Cβ,1 + (1− u2)Cβ,2 + (1− u)Cβ,3

Theorem 3: Let Cβ be a linear code of length β over
R. Then Φ(Cβ) = Cβ,1 ⊗ Cβ,2 ⊗ Cβ,3, and |Cβ | =
|Cβ,1||Cβ,2||Cβ,3|.

Proof: Let Cβ = (−1+u+u2)Cβ,1+(1−u2)Cβ,2+(1−
u)Cβ,3 where Cβ,1, Cβ,2, Cβ,3 are as defined in (3). Let d ∈
Φ(Cβ). Then there exists (−1+u+u2)a+(1−u2)b+(1−u)c ∈
Cβ such that d = Φ((−1+u+u2)a+(1−u2)b+(1−u)c) =
Φ((−a + b + c) + (a − c)u + (a − b)u2) = (a, b, c). It gives
d ∈ Cβ,1⊗Cβ,2⊗Cβ,3, and so Φ(Cβ) ⊆ Cβ,1⊗Cβ,2⊗Cβ,3.
Conversely, let (a, b, c) ∈ Cβ,1 ⊗ Cβ,2 ⊗ Cβ,3. Since a ∈
Cβ,1, b ∈ Cβ,2 and c ∈ Cβ,3, we have d = (−1 + u+ u2)a+
(1 − u2)b + (1 − u)c ∈ Cβ . Then Φ(d) = Φ((−1 + u +
u2)a + (1 − u2)b + (1 − u)c) = Φ((−a + b + c) + (a −
c)u+ (a− b)u2) = (a, b, c), gives (a, b, c) = Φ(d) ∈ Φ(Cβ).
Hence Φ(Cβ) = Cβ,1 ⊗ Cβ,2 ⊗ Cβ,3. Also |Cβ | = |Φ(Cβ)|,
so |Cβ | = |Cβ,1||Cβ,2||Cβ,3|.

Theorem 4: Let Cβ = (−1+u+u2)Cβ,1⊕ (1−u2)Cβ,2⊕
(1−u)Cβ,3 be a linear code of length β over R. Then, Cβ is
a cyclic code if and only if Cβ,j is the cyclic code over Z4,
for j = 1, 2, 3.

Proof: Let (c0, c1, . . . , cβ−1) ∈ Cβ , where ci =
(−1+u+u2)si+(1−u2)yi+(1−u)zi, for i = 0, 1, . . . , β−1.
Consider, s = (s0, s1, . . . , sβ−1), y = (y0, y1, . . . , yβ−1) and
z = (z0, z1, . . . , zβ−1). Then s ∈ Cβ,1, y ∈ Cβ,2, z ∈ Cβ,3.
Suppose that Cβ is a cyclic code, then we have
(cβ−1, c0, . . . , cβ−2) ∈ Cβ . Thus, (cβ−1, c0, . . . , cβ−2) =
(−1 + u + u2)(sβ−1, s0, . . . , sβ−2) + (1 −
u2)(yβ−1, y0, . . . , yβ−2)+(1−u)(zβ−1, z0, . . . , zβ−2). There-
fore, (sβ−1, s0, . . . , sβ−2) ∈ Cβ,1, (yβ−1, y0, . . . , yβ−2) ∈
Cβ,2 and (zβ−1, z0, . . . , zβ−2) ∈ Cβ,3, which implies
that Cβ,j is the cyclic code over Z4, for j = 1, 2, 3.
On the other hand, suppose that linear codes Cβ,1, Cβ,2
and Cβ,3 are cyclic codes of length β over Z4. Then,
(sβ−1, s0, . . . , sβ−2) ∈ Cβ,1, (yβ−1, y0, . . . , yβ−2) ∈
Cβ,2 and (zβ−1, z0, . . . , zβ−2) ∈ Cβ,3. Now,
ci = (−1 + u + u2)(sβ−1, s0, . . . , sβ−2) + (1 −
u2)(yβ−1, y0, . . . , yβ−2) + (1 − u)(zβ−1, z0, . . . , zβ−2) ∈
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(−1 + u + u2)Cβ,1 ⊕ (1 − u2)Cβ,2 ⊕ (1 − u)Cβ,3 = Cβ ,
which implies that Cβ is a cyclic code of length β over R.
As similar to Propositions 18 and 19 of [4] we have the
following proposition.

Proposition 1: Let Cβ = (−1+u+u2)Cβ,1⊕(1−u2)Cβ,2⊕
(1− u)Cβ,3 be a cyclic code of length β over R. Then there
exists a polynomial g(x) ∈ R[x] with g(x)|(xβ − 1) such that
C = 〈g(x)〉, where

g(x) = (−1 + u+ u2)g1(x) + (1− u2)g2(x) + (1− u)g3(x)

and g1(x), g2(x) and g3(x) are the generator polynomials of
cyclic code Cβ,1, cyclic code Cβ,2 and cyclic code Cβ,3,
respectively.

Proof: Consider Cβ,1, Cβ,2 and Cβ,3 are cyclic codes of
length β over Z4 respectively, then we can assume that the
generator polynomials of Cβ,1, Cβ,2 and Cβ,3 are g1(x), g2(x)
and g3(x), respectively. Therefore,

(−1 + u + u2)g1(x) ∈
(−1 + u+ u2)Cβ,1 ⊆ Cβ ,

(1− u2)g2(x) ∈ (1− u2)Cβ,2 ⊆ Cβ
and

(1− u)g3(x) ∈ (1− u)Cβ,3 ⊆ Cβ ,

Thus, (−1+u+u2)g1(x)+(1−u2)g2(x)+(1−u)g3(x) ∈
Cβ . On the other hand, let f(x) ∈ Cβ . Since, Cβ = (−1 +
u+ u2)Cβ,1 ⊕ (1− u2)Cβ,2 + (1− u)Cβ,3, then there exists
s(x)g1(x) ∈ Cβ,1, v(x)g2(x) ∈ Cβ,2 and t(x)g3(x) ∈ Cβ,3
such that f(x) = (−1+u+u2)s(x)g1(x)+(1−u2)v(x)g2(x)+
(1 − u)t(x)g3(x), where s(x), v(x), t(x) ∈ Z4[x]. Therefore,
f(x) ∈ 〈(−1 +u+u2)g1(x) + (1−u2)g2(x) + (1−u)g3(x)〉.
Thus, Cβ ⊆ 〈(−1 + u + u2)g1(x) + (1 − u2)g2(x) + (1 −
u)g3(x)〉, which implies that C = 〈(−1 + u + u2)g1(x) +
(1 − u2)g2(x) + (1 − u)g3(x)〉. According to the theory of
cyclic codes over finite field, we know that g1(x)|(xβ −
1), g2(x)|(xβ − 1) and g3(x)|(xβ − 1). Therefore, for j =
1, 2, 3, there exist polynomials hj(x) ∈ Z4[x] such that

xβ − 1 = h1(x)g1(x)
xβ − 1 = h2(x)g2(x)
xβ − 1 = h3(x)g3(x),

which implies that xβ − 1 = (−1 +u+u2)h1(x)g1(x) + (1−
u2)h2(x)g2(x)+(1−u)h3(x)g3(x) = [(−1+u+u2)h1(x)+
(1−u2)h2(x)+(1−u)h3(x)]g(x) Therefore, g(x) is a divisor
of xβ − 1.

According to the above Theorem, it is easy to get the
following corollary and omit the proof process here.

Corollary 1: Let Cβ = (−1 + u + u2)Cβ,1 ⊕ (1 −
u2)Cβ,2 ⊕ (1 − u)Cβ,3 be a cyclic code of length β over
R and g1(x), g2(x) and g3(x) be the generator polynomials
of Cβ,1, Cβ,2 and Cβ,3, respectively. Then

|Cβ | = 43β−(deg(g1(x))+deg(g2(x))+deg(g3(x)))

Definition 4: An R−submodule C of Zα4Rβ is
called a cyclic code of length (α, β) if and only if
(eα−1, e0, . . . , eα−2 | rβ−1, r0, . . . , rβ−2) ∈ C whenever
(e0, . . . , eα−1 | r0, . . . , rβ−1) ∈ C.

Theorem 5: Let C be a linear code over Z4R of length
(α, β), and let C = Cα × Cβ , where Cα is linear code over
Z4 of length α and Cβ is linear code over R of length β. Then
C is a cyclic code if and only if Cα is a cyclic code over Z4

and Cβ is a cyclic code over R, respectively.
Proof: Let C be a Z4R−cyclic code of length (α, β) and

(e0, . . . , eα−1 | r0, . . . , rβ−1) ∈ C, where (e0, . . . , eα−1) ∈
Cα and (r0, . . . , rβ−1) ∈ Cβ . As C is a Z4R−cyclic code, we
get (eα−1, e0, . . . , eα−2 | rβ−1, r0, . . . , rβ−2) ∈ C, which im-
plies (eα−1, e0, . . . , eα−2) ∈ Cα and (rβ−1, r0, . . . , rβ−2) ∈
Cβ . Therefore, Cα and Cβ are cyclic codes of length α and
β over Z4 and R, respectively.

Conversely, suppose that Cα and Cβ are cyclic codes over
Z4 and R, respectively. Let (e0, e1, . . . , eα−1) ∈ Cα and
(r0, r1, . . . , rβ−1) ∈ Cβ . Therefore, (eα−1, e0, . . . , eα−2,
rβ−1, r0, . . . , rβ−2) ∈ Cα × Cβ = C. Hence, C is a
Z4R−cyclic code of length (α, β).

IV. REVERSIBLE CYCLIC CODES OVER Z4R

In this section, we mainly study some properties of re-
versible codes.

Theorem 6: Let Cβ = (−1+u+u2)Cβ,1⊕ (1−u2)Cβ,2⊕
(1 − u)Cβ,3 be a cyclic code of arbitrary length β over R.
Then Cβ is reversible code if and only if Cβ,1, Cβ,2 and Cβ,3
are reversible codes, respectively, where Cβ,1, Cβ,2 and Cβ,3
are cyclic codes over Z4.

Proof:
Let Cβ,1, Cβ,2 and Cβ,3 be reversible which means

Crβ,1, C
r
β,2, C

r
β,3 ∈ Cβ . Then for any b ∈ Cβ we have

b = (−1 + u + u2)b1 + (1 − u2)b2 + (1 − u)b3, where
b1 ∈ Cβ,1, b2 ∈ Cβ,2 and b3 ∈ Cβ,3. We can easy know
that br1 ∈ Cβ,1, b

r
2 ∈ Cβ,2 and br3 ∈ Cβ,3, thus br =

(−1 + u + u2)br1 + (1 − u2)br2 + (1 − u)br3 ∈ Cβ . Hence
Cβ is reversible.

Conversely, if Cβ is reversible code, then for any b = (−1+
u+u2)b1+(1−u2)b2+(1−u)b3 ∈ Cβ , where b1 ∈ Cβ,1, b2 ∈
Cβ,2 and b3 ∈ Cβ,3, we have br = (−1 + u + u2)br1 + (1 −
u2)br2 + (1 − u)br3 ∈ Cβ and br = (−1 + u + u2)br1 + (1 −
u2)br2 +(1−u)br3 = (−1+u+u2)c1 +(1−u2)c2 +(1−u)c3,
where c1 ∈ Cβ,1, c2 ∈ Cβ,2 and c3 ∈ Cβ,3. Then (−1 + u +
u2)(br1− c1) + (1− u2)(br2− c2) + (1− u)(br3− c3) = 0, thus
br1 = c1 ∈ Cβ,1, br2 = c2 ∈ Cβ,2 and br3 = c3 ∈ Cβ,3. Hence
Cβ,1, Cβ,2 and Cβ,3 are reversible.

Theorem 7: Let C be a linear code over Z4R of length
(α, β), and let C = Cα × Cβ , where Cα is linear code over
Z4 of length α and Cβ is linear code over R of length β.
Then C is reversible if and only if Cα and Cβ are reversible
over Z4 and R, respectively.

Proof: Suppose C = Cα × Cβ is reversible and
s = (e0, e1, . . . , eα−1 | r0, r1, . . . , rβ−1) ∈ C where
(e0, e1, . . . , eα−1) ∈ Cα and (r0, r1, . . . , rα−1) ∈ Cβ .
Since C is reversible, then we have sr =
(eα−1, eα−2, . . . , e1, e0) | (rβ−1, rβ−2, . . . , r1, r0) ∈ C
which implies (eα−1, eα−2, . . . , e1, e0) ∈ Cα and
(rβ−1, rβ−2, . . . , r1, r1) ∈ Cβ . Thus Cα and Cβ are
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reversible over Z4 and R, respectively. Conversely, let
s = (e0, e1, . . . , eα−1) | (r0, r1, . . . , rβ−1) ∈ C where
(e0, e1, . . . , eα−1) ∈ Cα and (r0, r1, . . . , rβ−1) ∈ Cβ .
Suppose that Cα and Cβ are reversible over Z4 and R,
respectively. Then (eα−1, eα−2, . . .
, e1, e0) ∈ Cα and (rβ−1, rβ−2, . . . , r1, r0) ∈ Cβ . Thus
sr = (eα−1, eα−2, . . . , e1, e0) | (rβ−1, rβ−2, . . . , r1, r0) ∈ C.
Therefore, C is reversible.
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