Models & Optimisation and Mathematical Analysis Journal VVolume 01 Issue 02 (2012)

New Algorithm to Solve Convex Separable
Programming

A.Chikhaoui, 2B. Djebbar , ®A. Mokhtari, >A.Belabbaci

tUniversity of Tiaret Algeria, University of USTO Oran Algeria, 3University of Laghouat Algeria,
ah_chikhaoui@yahoo.fr, badj2000@yahoo.fr, aek_mokhtari@yahoo.fr, A_Belabbaci@yahoo.fr.

Abstract:  Separable programming is very useful for
solving problems of nonlinear programming. In this
paper we propose a new algorithm for solving
problems of nonlinear programming separable. We
approximate the nonlinear problem by a polynomial of
degree two, we use a quadratic programming
algorithm to find the optimal solution.
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Introduction

SEPARABLE PROGRAMMING is a special
class of nonlinearly constrained optimization
problems whose objective and constraint functions
are sums of functions of one variable. Separable
programming problems are usually solved by linear
programming techniques (Hillier and Lieberman,
2001). A separable programming (SP) problem
whose objective and constraint functions are sums of
functions of one variable (Gill et al., 1981). The SP
problem can be solved efficiently by linear
optimization techniques. The flow interaction among
wells can play an important role in some rate
allocation problems. In such cases, the rate
allocation problem is formulated as a general
nonlinear constrained optimization problem and
solved by a Sequential Quadratic Programming
method (Gill et al., 2002). Separable linear
programming is a method for solving nonlinear
problems by using the simplex algorithm employed
in linear programming.

Its use in agricultural economics is illustrated by the
Blakley and Kloth study

of plant location and the Holland and Baritelle study
of school location. However, a shortcoming of
separable linear programming is the risk of not
obtaining a global optimum solution. Neither of the
above studies reported information on the likelihood
of having obtained non-global solutions. While this
problem is reasonably well documented in literature
on quantitative methods, it is examined and
illustrated in the following discussion to help assure
the proper use of separable programming in applied
research.

Problem statement
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Let's consider the general nonlinear programming
problem:

Minimize f(x)
(P )=79;(x) <b
i=1..m

with two additional provisions: 1) the objective
function and all constraints are separable, and 2)

each decision variable X; is bounded below by 0
and above by a known constant U;, j=1,...,n.

Recall that a function, f(X), is separable if it can

be expressed as the sum of function of the individual
decision variables.

f0=3 f,(x,).

The separable nonlinear programming problem has
the following structure.

f(x)=_zn_:fj(xj)

subject to > g;(x;)<b,, i=1..m
j=L '

0<x;<u; j=1..,n

The key advantage of this formulation is that the
nonlinearities are mathematically independent. This
property in conjunction with the finite bounds on the
decision variable permits the development of a
piecewise quadratic approximation for each function
in the problem.

Consider the general nonlinear  function

f;(X)defined on the interval [a,b]; and Iet
a=Xy,..,X, =ba subdivision of [a,b] with
steph=X,, — X, nodd.

On every interval [Xi 1 Xiso ] we replace the function

f; with a polynomial of two degree.

Notations
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Let (X, )y, , subdivision of [a,, ], n,odd,

X =8
X2=a1+hl

an = al + nlhl where h1 = blr_l_ai

1

and let (an+i) subdivision of [a,,b,],

i=1,2,..n,
n,odd,
Xn1+l = a2

Xn1+2 = al + hl

bz_az
n2
X SX<X;, put X=X +th,

X

n

m, =8, +N,h, where h, =

For where

X—X

t, e [0,2], ort, =
Generally for

XZi—l X< X2i+1’

n -1
>

1<i<

Xn1 +2
Xn1 +1 i Xn

a2 b2
Interpolation of the functic.. . .

Set f (y1! yz) = (Dl(yl) - (Dz(yz)With
a<y<b,a<y<h

a) Interpolation of the function ¢, .

If X, < X< X;, the function ¢, is replaced by the
Newton of degree two noted

Pz(x): (01(X1)+%A¢1(X1)+MAZ¢1(X1)'

the polynomial can be calculated from the following
finite differences table.

X 2 (X) Ag, (X)

polynomial

Az%(x)
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M

set  then

With t, = ,

Wl(tl): PZ(X)_¢1(X1): oty "':Bltl2

where «, = A(pl(xl)— % Azgol(xl) and

1
B = E AZ(P1(X1)

In  general, for X,

t tit -1
P, (X) = ¢1(X2i-1)+iA¢’1(X2i-1)+ l( |2!
with =2
h,
Vi (ti ) =F, (X)_ ¢1(X2i-1) =ot; + ﬂitiz
i=12,... -1

The study of the optimum of the function
v defined by

L‘l
l//(tl,tz,---,tnllJ = Zzlt//i (ti) replace
T i=1

then the study of the optimum of the
function @, on the interval [atl.bl] We
add the supplementary condition: one and
one only tj is positive.

In fact, the linear constraints are written
0<t <2, furthermore, if t € o2

and t, =0 for all

i=12.. 071 i then
2

l//(tl’tZ""’tnl—l] =a; b, + Bt = v, (tio)
2

=P (X)_(/’l X2i0—l)
Consequently

PZ(X) = y/(tl,tz,...,tnl_l] + ¢1(X2i0-1)? and we

2

see that the optimum of P, is that of y/

b) Interpolation of the function @, :

In the same manner as in part a) and for
a<x<b,, we st y,=X, |,

N, (Xn1+2i71) = A(Anilgoz (Xn1+2ifl )) ;df
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X1 S X< X, 5, the function ¢, is replaced The study of the opti.mum of the function
by the Newton polynomial of degree two noted : Y defined by
tnl—_1+1
PZ(X)=¢2(an+l)+ ?LI A(DZ(Xnﬁ—l) Va t”17’1+1't"17’1+2’ B ”1 -1 ”2 ZV/ n1
' replace then the study of the optlmum of
tnl;lﬂ 1 the function @,on the interval [a,,b,].
2 2 2 iti .
+ : Ao, (Xn +l) Add the supplementary co_ndltlo.n. :
2! oneand oneonly t  , is positive.
the polynomial can be calculated from the 17”
finite differences table. In fact, the  linear constraints are written
0<t,, <2. Furthermore, if t, € P.2[
L4 0
2
X=X
with  t = — t . n-1 . .
I i+ h we e and t,, =0for all i=12,..,—2—,i#i,
2 2 I?Jri 2
then:
V/z[tw] = PZ(X)—¢2(XH1+1)
2
where Wz[tmzlﬂ’tfhzlu’ B tan 2] alotlo +ﬂ.0 ig WIO(IO) .
1.
-+ = A(DZ (anﬂ)_EA 2 (Xn1+l) and P( ) (/)2( nl+2i0—1)
2 . Consequently
Bo = _A2¢’2 X
nl?ﬂ 2 ( nl+1) PZ(X):V/Z tnl—l l’tn1—1 2’ . 1:nl -1 n2 +§02( n1+2i0—1)'
Generally for X <X<X R 22
' hrA nra And we see that the optimum of P, is that of v,
tn 1
e S

P.(x)= X o)+ —2—A ) When the objective function is not quadratic, replace
2( ) ¢2( "2 l) 1 (02( 2 1) then problem (P) with the problem (P’) deduce from
(P) as following :
-1
t“l‘lﬂ(t"l‘lﬂ ] replace thefunction ¢, by w.
L2 2 AZ(DZ (X ) 1 1
2! Mrais and replace thefunction ¢, by v,
i.e.
X=X, .o
with t,, = %2'1 put then o
2 ? (//[tlltz""’tnl’“ ) 1]_ Za + Bt
2 T i=1
W{t“ﬂijzp( ) =020, 20) ' -1, -1
2 (P) i<t <2; 1<i< M2y
_ g LB, 2 2
”12 +. = ”1 i “121. is at most one ti IS nonzero in each
where of thechoosed subdivision.

(04 =Ap, (Xn1+2i—l ) - % AZQZ (Xn1+2i—1)

—n171+i

, ﬂnﬂ = %Azgoz (an+2i— ) and The calculus of Y; is given by the formulas :
. . -1
n,—1 Y, =X,y +ht if 1<i<—

. N, -
Yo = Xnig T oty i 1 1<i<

52
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Algorithm:

Solving separable programming problem into two
parts:

1.expression each function,
2.approximation interval and step,
3.approximat each function by the method of finite
differences

4. With this approximation, we construct the
quadratic program for each function
5.solve quadratic program associated to each

function. We obtain value of component X? and the

f,06).

approximate value of the function
6.Goto 1.

Algorithm separable :

Data : number_variable_separable,

number_constrainte_separable,
Matrix_A_constraintes, vector_b

/I input of express functions and bororne inf, borne
sup, step.
For j=1: number_variable_separable
Txt= input(‘ expression of the j*™ function’);
Express_fun(j,1:length(txt))=txt;
Txt param = input( ‘lower bound,upper bound,
step’);
param_fun(j,1:3)=eval(['[' txt_param T1);
end

/I quadratic interpolation of functions
for k=1:n_variables_sep

x=linspace(param_fun(k,1),param_fun(k,2),param_f
un(k,3));
y=eval(express_fun(k,:));
x_values(k,1:length(x))=x;
func_values(k,1:(length(y)))=v;
D1=diff(y) ; D2=diff(D1);
ndif2=length(D2);  ne=(ndif2+1)/2 ;
alpha_f(k,1:ne+1)=[  ne D1(1:2:ndif2)-
0.5*D2(1:2:ndif2)] ;
beta_f(k,1:ne+1)=[ne 0.5*D2(1:2:ndif2)] ;
end

/I solve quadratic programming problems

for indice_func = 1:n_variables_sep
algorithm_gp(alpha_f, beta_f);

end

Results = x_optimale_value, f_optimal_value.

algorithm_gp(«, )

Begin Algorithm Initialization: vectors «, £, b
and matrix A, & Z Z=Zo, A positif = true;
While (A_positif =true) do

For all indexes J :
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.| b
Calculate @; =miny—, a; >0¢,
i aij
For all indexes | : Calculate A; = c;0; + 3,0, .
Choose A; =maxA;.
J

if A, =+co then  STOP: this program don’t

have optimum.
if Aio < 0then STOP : this program is optimal.

Let Zz=Z+A; , X; isentering basic vector.

J

a.

.| b, . . .

0, = m_m{—', a;, >0, X is leaving basic
I 1o

vector. @, ; is the pivot.

Forall indexes j : if j <> j, then

aio i

. b
a; =a; _(“J +2ﬂ19) +_°(5Joi +5jjo)

io Jo ioJo

else «; =0;0, =0 endif

For all indexes i For all indexes |
it (i<>iy)

a =a ——a” a. :b=b-—2
i — Yj () It B i ip *
io] a;j
0J0

endif endfor endfor.

A _positif = false;
For all indexes i Forall indexes j :
if a; > 0 then A _positif = true
endif endfor endfor
if A_positif = false
this program do not have optimum Stop.

endif
endWhile.

Example  Let the function f;(X)=Xx—Logx,
. 15 -
defined on E, E , to maximize. We use the two

degree polynomial of Newton with step h=0.5
to interpolate.

1.5 2 2.5

1.19 1 1.09 | 131 |158
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Calculate 4 (tl) .

X 1y Ay A2y
0.5 |1.19 -0.19 0.28
1 1 0.09

1.5 | 1.09

To use the polynomial of Newton, we find:

o, =-033 p =014 and
w, (t,)=-0.33t, +0.14t.
Calculate o (t2 )
X y Ay A2 y
15 109 022 0.05
2 131 0.27
25 158
a,=-020 p,=0.03 and

w,(t,)=0.20t, +0.03t2.
Consequently
w(t)=-0.33t, +0.20t, +0.14t7 + 0.03t? that

we maximize.
We use the method describe in [10] to resolve this

problem. Recall the expression of 0 and A (see

[9D.
0 :min{b—k, for the a, >0} and

&g akj

2
A, =a,0,+ 0

tl t2

-0.33 0.20 (0
0.14 0.03 B

2 2 0
-0.10 0.52 A

1 0 t,=2
0 1 t,=2

t, is entering variable and it replaces t, in the base.
More, t, =2and t, =0.
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The maximum of the function
w(t)=—0.33t, +0.20t, +0.14t2 +0.03t? s
givenby t, =0 and t, =0.

The optimum of this function equal 0.5.
The maximum of the objective function is the in the

point X=X;+2h e in the point with
abscise X = 2.5, this maximum is equal 1.58.
The maximum of P,(x)is equal

0.52+ f;(%;) =1.61who is near the real value of
this maximum.

Note that is important to find only the value of tj

for which the function
w(t)=-0.33t, +0.20t, +0.14t> +0.03t7 s
optimal.

We say that the objective function is optimal in the
point X =X,; , +t;h.

The maximum of the objective function is
calculating immediately.

Results and discussion

- It is possible to solve large nonlinear
separable problems with the quadratic

separable programming,

- We used an approximation of order two
which is more accurate than the first order

approximation used in the linear

approximation to apply simplex procedure.
- It is possible to approximate constraints by
similar procedure.
- To get more accurate result, the piecewise

quadratic approximation fi can be refined.
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