New Algorithm to Solve Convex Separable Programming

${ }^{1}$ A.Chikhaoui, ${ }^{2}$ B. Djebbar, ${ }^{3}$ A. Mokhtari, ${ }^{3}$ A.Belabbaci
${ }^{1}$ University of Tiaret Algeria, ${ }^{2}$ University of USTO Oran Algeria, ${ }^{3}$ University of Laghouat Algeria, ah_chikhaoui@yahoo.fr, badj2000@yahoo.fr, aek_mokhtari@yahoo.fr, A_Belabbaci@yahoo.fr.

Abstract

Separable programming is very useful for solving problems of nonlinear programming. In this paper we propose a new algorithm for solving problems of nonlinear programming separable. We approximate the nonlinear problem by a polynomial of degree two, we use a quadratic programming algorithm to find the optimal solution.

Keyword: global optimization, piecewise quadratic function, separable programming.

Introduction

SEPARABLE PROGRAMMING is a special class of nonlinearly constrained optimization problems whose objective and constraint functions are sums of functions of one variable. Separable programming problems are usually solved by linear programming techniques (Hillier and Lieberman, 2001). A separable programming (SP) problem whose objective and constraint functions are sums of functions of one variable (Gill et al., 1981). The SP problem can be solved efficiently by linear optimization techniques. The flow interaction among wells can play an important role in some rate allocation problems. In such cases, the rate allocation problem is formulated as a general nonlinear constrained optimization problem and solved by a Sequential Quadratic Programming method (Gill et al., 2002). Separable linear programming is a method for solving nonlinear problems by using the simplex algorithm employed in linear programming.
Its use in agricultural economics is illustrated by the Blakley and Kloth study
of plant location and the Holland and Baritelle study of school location. However, a shortcoming of separable linear programming is the risk of not obtaining a global optimum solution. Neither of the above studies reported information on the likelihood of having obtained non-global solutions. While this problem is reasonably well documented in literature on quantitative methods, it is examined and illustrated in the following discussion to help assure the proper use of separable programming in applied research.

Problem statement

Let's consider the general nonlinear programming problem:

$$
\left(P_{f}\right)=\left\{\begin{array}{l}
\text { Minimize } f(x) \\
g_{i}(x) \leq b_{i} \\
i=1, \ldots, m
\end{array}\right.
$$

with two additional provisions: 1) the objective function and all constraints are separable, and 2) each decision variable x_{j} is bounded below by 0 and above by a known constant $u_{j}, j=1, \ldots, n$. Recall that a function, $f(x)$, is separable if it can be expressed as the sum of function of the individual decision variables.

$$
f(x)=\sum_{j=1}^{n} f_{j}\left(x_{j}\right)
$$

The separable nonlinear programming problem has the following structure.

$$
\begin{aligned}
& f(x)=\sum_{j=1}^{n} f_{j}\left(x_{j}\right) \\
& \text { subject to } \sum_{j=1}^{n} g_{i j}\left(x_{j}\right) \leq b_{i}, i=1, \ldots, m \\
& 0 \leq x_{j} \leq u_{j,} \quad j=1, \ldots, n
\end{aligned}
$$

The key advantage of this formulation is that the nonlinearities are mathematically independent. This property in conjunction with the finite bounds on the decision variable permits the development of a piecewise quadratic approximation for each function in the problem.
Consider the general nonlinear function $f_{j}(x)$ defined on the interval $[a, b]$; and let $a=x_{1}, \ldots, x_{n}=b$ a subdivision of $[a, b]$ with step $h=x_{i+1}-x_{i}, \mathrm{n}$ odd.
On every interval $\left[x_{i}, x_{i+2}\right]$, we replace the function f_{j} with a polynomial of two degree.

Let $\left(x_{i}\right)_{i=1,2, \ldots, n_{1}}$ subdivision of $\left[a_{1}, b_{1}\right], n_{1}$ odd,
$x_{1}=a_{1}$
$x_{2}=a_{1}+h_{1}$
引
$x_{n_{1}}=a_{1}+n_{1} h_{1} \quad$ where $\quad h_{1}=\frac{b_{1}-a_{1}}{n_{1}}$
and let $\left(x_{n_{1}+i}\right)_{i=1,2, \ldots, n_{2}}$ subdivision of $\left[a_{2}, b_{2}\right]$,
n_{2} odd,
$x_{n_{1}+1}=a_{2}$
$x_{n_{1}+2}=a_{1}+h_{1}$
\vdots
$x_{n_{1}+n_{2}}=a_{2}+n_{2} h_{2} \quad$ where $\quad h_{2}=\frac{b_{2}-a_{2}}{n_{2}}$
For $\quad x_{1} \leq x \leq x_{3}$, put $\quad x=x_{1}+t_{1} h_{1}$, where $t_{1} \in[0,2]$, or $t_{1}=\frac{x-x_{1}}{h_{1}}$.
Generally for
$x_{2 i-1} \leq x \leq x_{2 i+1}, \quad t_{i}=\frac{x-x_{2 i-1}}{h_{1}}$,
$1 \leq i \leq \frac{n_{1}-1}{2}$.

Interpolation of the functic... .
Set
$f\left(y_{1}, y_{2}\right)=\varphi_{1}\left(y_{1}\right)-\varphi_{2}\left(y_{2}\right)$ with $a_{1} \leq y_{1} \leq b_{1}, a_{2} \leq y_{2} \leq b_{2}$
a) Interpolation of the function φ_{1}.

If $x_{1} \leq x \leq x_{3}$, the function φ_{1} is replaced by the Newton polynomial of degree two noted : $P_{2}(x)=\varphi_{1}\left(x_{1}\right)+\frac{t_{1}}{1!} \Delta \varphi_{1}\left(x_{1}\right)+\frac{t_{1}\left(t_{1}-1\right)}{2!} \Delta^{2} \varphi_{1}\left(x_{1}\right)$,
the polynomial can be calculated from the following finite differences table.

x	$\varphi_{1}(x)$	$\Delta \varphi_{1}(x)$	$\Delta^{2} \varphi_{1}(x)$
x_{1}			
x_{2}			
\vdots			

$x_{n_{1}}$			

With $\quad t_{1}=\frac{x-x_{1}}{h_{1}}, \quad$ set then $\psi_{1}\left(t_{1}\right)=P_{2}(x)-\varphi_{1}\left(x_{1}\right)=\alpha_{1} t_{1}+\beta_{1} t_{1}^{2}$
where $\alpha_{1}=\Delta \varphi_{1}\left(x_{1}\right)-\frac{1}{2} \Delta^{2} \varphi_{1}\left(x_{1}\right)$ and
$\beta_{1}=\frac{1}{2} \Delta^{2} \varphi_{1}\left(x_{1}\right)$
In general, for $x_{2 i-1} \leq x \leq x_{2 i+1}$,
$P_{2}(x)=\varphi_{1}\left(x_{2 i-1}\right)+\frac{t_{i}}{1!} \Delta \varphi_{1}\left(x_{2 i-1}\right)+\frac{t_{i}\left(t_{i}-1\right)}{2!} \Delta^{2} \varphi_{1}\left(x_{2 i-1}\right)$
With $\quad t_{i}=\frac{x-x_{i}}{h_{1}}, \quad$ put then
$\psi_{i}\left(t_{i}\right)=P_{2}(x)-\varphi_{1}\left(x_{2 \mathrm{i}-1}\right)=\alpha_{i} t_{i}+\beta_{i} t_{i}^{2}$
$i=1,2, \cdots, \frac{n_{1}-1}{2}$.
The study of the optimum of the function ψ defined
by
$\psi\left(t_{1}, t_{2}, \cdots, t_{\frac{n_{1}-1}{2}}\right)=\sum_{i=1}^{\frac{n_{1}-1}{2}} \psi_{i}\left(t_{i}\right) \quad$ replace
then the study of the optimum of the function φ_{1} on the interval $\left[a_{1}, b_{1}\right]$. We add the supplementary condition: one and one only t_{i} is positive.
In fact, the linear constraints are written $0 \leq t_{i} \leq 2$, furthermore, if $\left.t_{i_{0}} \in\right] 0,2[$
and $\quad t_{i}=0$ for
all
$i=1,2, \ldots, \frac{n-1}{2}, i \neq i_{0}$ then
$\psi\left(t_{1}, t_{2}, \ldots, t_{\frac{n_{1}-1}{2}}\right)=\alpha_{i_{0}} t_{i_{0}}+\beta_{i_{0}} t_{i_{0}}^{2}=\psi_{i_{0}}\left(t_{i_{0}}\right)$
$=P_{2}(x)-\varphi_{1}\left(x_{2 i_{0}-1}\right)$
Consequently
$P_{2}(x)=\psi\left(t_{1}, t_{2}, \ldots, t_{\frac{n_{1}-1}{2}}\right)+\varphi_{1}\left(x_{2 i_{0}-1}\right) ; \quad$ and we
see that the optimum of P_{2} is that of ψ
b) Interpolation of the function φ_{2} :

In the same manner as in part a) and for $a_{2} \leq x \leq b_{2}$, we set $y_{2}=x, \quad$, $\Delta^{n} \varphi_{2}\left(x_{n_{1}+2 i-1}\right)=\Delta\left(\Delta^{n-1} \varphi_{2}\left(x_{n_{1}+2 i-1}\right)\right), \quad ; \quad$ if
$x_{n_{1}+1} \leq x \leq x_{n_{1}+3}$, the function φ_{2} is replaced by the Newton polynomial of degree two noted :
$P_{2}(x)=\varphi_{2}\left(x_{n_{1}+1}\right)+\frac{t_{n_{1}-1}^{2}+1}{1!} \Delta \varphi_{2}\left(x_{n_{1}+1}\right)$
$+\frac{\left(t_{\frac{n_{1}-1}{2}+1}\right)\left(t_{\frac{n_{1}+1}{2}}^{2}-1\right)}{2!} \Delta^{2} \varphi_{2}\left(x_{n_{1}+1}\right)$
the polynomial can be calculated from the finite differences table.

With $\quad t_{\frac{n_{1}+1}{2}}=\frac{x-x_{n_{1}+1}}{h_{2}}, \quad$ we \quad set
$\psi_{2}\left(t_{\frac{n_{1}+1}{2}}\right)=P_{2}(x)-\varphi_{2}\left(x_{n_{1}+1}\right)$
where
$\alpha_{\frac{n_{1}+1}{2}}=\Delta \varphi_{2}\left(x_{n_{1}+1}\right)-\frac{1}{2} \Delta^{2} \varphi_{2}\left(x_{n_{1}+1}\right)$ and
$\beta_{\frac{n_{1}+1}{2}}=\frac{1}{2} \Delta^{2} \varphi_{2}\left(x_{n_{1}+1}\right)$
Generally, for $\quad x_{n_{1}+2 i-1} \leq x \leq x_{n_{1}+2 i+1}$,
$P_{2}(x)=\varphi_{2}\left(x_{n_{1}+2 i-1}\right)+\frac{t_{n_{1}-1}^{2}+i}{1!} \Delta \varphi_{2}\left(x_{n_{1}+2 i-1}\right)$
$+\frac{t_{\frac{n_{1}-1}{2}+i}\left(t_{\frac{n_{1}-1}{2}+i}-1\right)}{2!} \Delta^{2} \varphi_{2}\left(x_{n_{1}+2 i-1}\right)$

With $t_{\frac{n_{1}-1}{2}+i}=\frac{x-x_{n_{1}+2 i-1}}{h_{2}}$, put then
$\psi_{i}\left(t_{\frac{n_{1}-1}{2}+i}\right)=P_{2}(x)-\varphi_{2}\left(x_{n_{1}+2 \mathrm{i}-1}\right)$
$=\alpha_{\frac{n_{1}-1}{2}+i} t_{\frac{n_{1}-1}{2}+i}+\beta_{\frac{n_{1}-1}{2}+i} t^{2}$
where
$\alpha_{\frac{n_{1}-1}{2}+i}=\Delta \varphi_{2}\left(x_{\mathrm{n}_{1}+2 \mathrm{i}-1}\right)-\frac{1}{2} \Delta^{2} \varphi_{2}\left(x_{\mathrm{n}_{1}+2 \mathrm{i}-1}\right)$
, $\quad \beta_{\frac{n_{1}-1}{2}+i}=\frac{1}{2} \Delta^{2} \varphi_{2}\left(x_{n_{1}+2 \text { i-1 }}\right) \quad$ and
$i=1,2, \cdots, \frac{n_{2}-1}{2}$.

The study of the optimum of the function ψ_{2} defined by $\psi_{2}\left(t_{\frac{n_{1}-1}{2}+1}, t_{\frac{n_{1}-1}{2}+2}, \cdots, t_{\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}}\right)=\sum_{i=1}^{\frac{n_{2}-1}{2}} \psi_{i}\left(t_{\frac{n_{1}-1}{2}+i}\right)$
replace then the study of the optimum of the function φ_{2} on the interval $\left[a_{2}, b_{2}\right]$. Add the supplementary condition : one and one only $t_{\frac{n_{1}-1}{2}+i}$ is positive.
In fact, the linear constraints are written $0 \leq t_{\frac{n_{1}-1}{2}+i} \leq 2$. Furthermore, if $\left.t_{i_{0}} \in\right] 0,2[$ and $\quad t_{\frac{n_{1}-1}{2}+i}=0$ for all $i=1,2, \ldots, \frac{n_{2}-1}{2}, i \neq i_{0}$ then:
$\psi_{2}\left(t_{\frac{n_{1}-1}{2}+1}, t_{\frac{n_{1}-1}{2}+2}, \cdots, t_{\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}}\right)=\alpha_{i_{0}} t_{i_{0}}+\beta_{i_{0}} t_{i_{0}}^{2}=\psi_{i_{0}}\left(t_{i_{0}}\right)$.
$=P_{2}(x)-\varphi_{2}\left(x_{n_{1}+2 i_{0}-1}\right)$
Consequently
$P_{2}(x)=\psi_{2}\left(t_{\frac{n_{1}-1}{2}+1}, t_{\frac{n_{1}-1}{2}+2}, \cdots, t_{\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}}\right)+\varphi_{2}\left(x_{n_{1}+2 i_{0}-1}\right)$.
And we see that the optimum of P_{2} is that of ψ_{2}
When the objective function is not quadratic, replace then problem (P) with the problem (P^{\prime}) deduce from (P) as following :
replace thefunction φ_{1} by ψ_{1}
and replace thefunction φ_{2} by ψ_{2}
i.e.
$\left(P^{\prime}\right)\left\{\begin{array}{l}\psi\left(t_{1}, t_{2}, \cdots, t_{n_{1}}, \cdots, t_{\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}}\right)=\sum_{i=1}^{\frac{n_{1}+n_{1}}{2}-1} \alpha_{i} t_{i}+\beta_{i} t_{i}^{2} \\ 0 \leq t_{i} \leq 2 ; 1 \leq i<\frac{n_{1}-1}{2}+\frac{n_{2}-1}{2}\end{array}\right.$
is at most one t_{i} is nonzero in each of the choosed subdivision.

The calculus of y_{i} is given by the formulas :
$y_{1}=x_{2 \mathrm{i}-1}+h_{1} t_{i} \quad$ if $1 \leq i \leq \frac{n_{1}-1}{2}$
$y_{2}=x_{n_{1}+2 \mathrm{i}-1}+h_{2} t_{n_{1+} i} \quad$ if $1 \leq i \leq \frac{n_{2}-1}{2}$

Models \& Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

Algorithm:

Solving separable programming problem into two parts:
1.expression each function, 2.approximation interval and step, 3.approximat each function by the method of finite differences
4. With this approximation, we construct the quadratic program for each function 5.solve quadratic program associated to each function. We obtain value of component x_{j}^{*} and the approximate value of the function $f_{j}\left(x_{j}^{*}\right)$. 6. Go to 1 .

Algorithm separable :

Data : number_variable_separable, number_constrainte_separable,

Matrix_A_constraintes, vector_b
// input of express functions and bororne inf, borne sup, step.
For $\mathrm{j}=1$: number_variable_separable
Txt= input(' expression of the $\mathrm{j}^{\text {eme }}$ function');
Express_fun(j, $1:$ length(txt))=txt;
Txt_param $=$ input('lower bound,upper bound, step');
param_fun(j, 1:3)=eval(['[' txt_param ']']);
end
// quadratic interpolation of functions
for $\mathrm{k}=1: \mathrm{n}$ _variables_sep
$\mathrm{x}=$ linspace(param_fun(k,1),param_fun(k,2),param_f un(k,3));
$\mathrm{y}=$ eval(express_fun(k,:));
x_values($\mathrm{k}, 1:$ length $(\mathrm{x}))=\mathrm{x}$;
func_values $(\mathrm{k}, 1:($ length $(\mathrm{y})))=\mathrm{y}$;
D1= $\operatorname{diff}(\mathrm{y})$; $\quad \mathrm{D} 2=\operatorname{diff}(\mathrm{D} 1)$;
ndif2=length(D2); ne=(ndif2+1)/2;
alpha_f(k,1:ne+1)=[ne D1(1:2:ndif2)-
0.5*D2(1:2:ndif2)] ;
beta_f(k,1:ne+1)=[ne 0.5*D2(1:2:ndif2)] ;
end

// solve quadratic programming problems

for indice_func = 1:n_variables_sep
algorithm_qp(alpha_f, beta_f);
end
Results = x_optimale_value, f_optimal_value.
$\operatorname{algorithm} _\mathbf{q p}(\alpha, \beta)$
Begin Algorithm Initialization: vectors α, β, b and matrix $A, \delta \mathrm{Z} \quad \mathrm{Z}=\mathrm{Z}_{0}, \mathrm{~A} _$positif $=$true;
While (A_positif $=$ true) do
For all indexes ${ }^{j}$:

Calculate $\theta_{j}=\min _{i}\left\{\frac{b_{i}}{a_{i j}}, a_{i j}>0\right\}$,
For all indexes j : Calculate $\Delta_{j}=\alpha_{j} \theta_{j}+\beta_{j} \theta_{j}$.
Choose $\quad \Delta_{j_{0}}=\max _{j} \Delta_{j}$.
if $\Delta_{j_{0}}=+\infty$ then STOP : this program don't have optimum.
if $\Delta_{j_{0}} \leq 0$ then STOP : this program is optimal.
Let $z=z+\Delta_{j_{0}}, x_{j_{0}}$ is entering basic vector.
$\theta_{0}=\min _{i}\left\{\frac{b_{i}}{a_{i j_{0}}}, a_{i j_{0}}>0\right\}, \quad x_{i_{0}}$ is leaving basic vector. $a_{i_{0} j_{0}}$ is the pivot.
For all indexes j : if $j<>j_{0}$ then
$\alpha_{j}^{\prime}=\alpha_{j}-\left(\alpha_{j}+2 \beta_{j} \theta\right) \frac{a_{i_{0} j}}{a_{i_{0} j_{0}}}+\frac{b_{i_{0}}}{a_{i_{0} j_{0}}}\left(\delta_{j_{0} j}+\delta_{j j_{0}}\right)$;
else $\alpha_{j_{0}}^{\prime}=0 ; \beta_{j_{0}}^{\prime}=0$ endif
For all indexes i For all indexes j
if $\left(i<>i_{0}\right)$

$$
a_{i j}^{\prime}=a_{i j}-\frac{a_{i j}}{a_{i_{0} j_{0}}} a_{i_{0} j} ; b_{i}^{\prime}=b_{i}-\frac{a_{i j_{0}}}{a_{i j}} b_{i_{0}} .
$$

endif endfor endfor.
A_positif = false;
For all indexes i For all indexes j :
if $a_{i j}>0$ then A_positif $=$ true
endif endfor endfor
if A_positif = false
this program do not have optimum Stop.
endif
endWhile.

Example Let the function $f_{j}(x)=x-\log x$, defined on $\left[\frac{1}{2}, \frac{5}{2}\right]$, to maximize. We use the two degree polynomial of Newton with step $h=0.5$ to interpolate.

x	0.5	1	1.5	2	2.5
$y=f_{j}(x)$	1.19	1	1.09	1.31	1.58

Models \& Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

Calculate $\psi_{1}\left(t_{1}\right)$.

x	y	Δy	$\Delta^{2} y$
0.5	1.19	-0.19	0.28
1	1	0.09	
1.5	1.09		

To use the polynomial of Newton, we find:

$$
\begin{aligned}
& \alpha_{1}=-0.33 \quad \beta_{1}=0.14 \\
& \psi_{1}\left(t_{1}\right)=-0.33 t_{1}+0.14 t_{1}^{2}
\end{aligned}
$$

1. Calculate $\psi_{2}\left(t_{2}\right)$.

x	y	Δy	$\Delta^{2} y$
1.5	1.09	0.22	0.05
2	1.31	0.27	
2.5	1.58		
$\alpha_{2}=-0.20$	$\beta_{2}=0.03$		
$\psi_{2}\left(t_{2}\right)=0.20 t_{2}+0.03 t_{2}^{2}$.			

Consequently
$\psi(t)=-0.33 t_{1}+0.20 t_{2}+0.14 t_{1}^{2}+0.03 t_{2}^{2}$ that we maximize.
We use the method describe in [10] to resolve this problem. Recall the expression of θ and Δ (see [9]).
$\theta_{j}=\min _{a_{k j}}\left\{\frac{b_{k}}{a_{k j}}\right.$, for the $\left.a_{k j}>0\right\}$ and

$$
\Delta_{j}=\alpha_{j} \theta_{j}+\beta_{j} \theta_{j}^{2}
$$

t_{1}	t_{2}	
-0.33	0.20	α
0.14	0.03	β
2	2	θ
-0.10	0.52	Δ
1	0	$t_{3}=2$
0	1	$t_{4}=2$

t_{2} is entering variable and it replaces t_{4} in the base.
More, $t_{2}=2$ and $t_{1}=0$.

The maximum of the function $\psi(t)=-0.33 t_{1}+0.20 t_{2}+0.14 t_{1}^{2}+0.03 t_{2}^{2} \quad$ is given by $t_{2}=0$ and $t_{1}=0$.
The optimum of this function equal 0.5 .
The maximum of the objective function is the in the point $x=x_{3}+2 h$ i.e. in the point with abscise $x=2.5$, this maximum is equal 1.58 .

The maximum of $P_{2}(x)$ is equal $0.52+f_{j}\left(x_{3}\right)=1.61$ who is near the real value of this maximum.

Note that is important to find only the value of t_{j} for which the function $\psi(t)=-0.33 t_{1}+0.20 t_{2}+0.14 t_{1}^{2}+0.03 t_{2}^{2} \quad$ is optimal.

We say that the objective function is optimal in the point $x=x_{2 j-1}+t_{j} h$.
The maximum of the objective function is calculating immediately.

Results and discussion

- It is possible to solve large nonlinear separable problems with the quadratic separable programming,
- We used an approximation of order two which is more accurate than the first order approximation used in the linear approximation to apply simplex procedure.
- It is possible to approximate constraints by similar procedure.
- To get more accurate result, the piecewise quadratic approximation $f i$ can be refined.

References

[1] Blakley, Leo. V. and Donald W. Kloth, "Price Alignment and Movements of Class 1 Milk Between Markets", American Journal of Agricultural Economics, 54(1972): 496-502.
[2] Chikhaoui A, Djebbar B., Bellabacci A, Mokhtari A., 2009. Optimization of a quadratic function under its Canonical form Asian Journal of Applied Sciences 2(6):499-510
[3] Chikhaoui A, Djebbar B., and Mekki R., 2010. New Method for Finding an Optimal Solution to Quadratic Programming Problem, Journal of Applied Sciences 10(15):1627- 1631-2010.
ISSN 1812-5654.
[4] Chikhaoui A, Djebbar B., Bellabacci A, Mokhtari A.,2011. An Algorithm for calculating optimal Solution of Quadratic Programming problems. Not published yet.
[5] Stephen B. and Lieven V., 2004. Convex Optimization, Cambridge University Press.
[6] HILLIER, F.S., AND LIEBERMAN, G.J., 2001. Introduction to Operations Research, 7th Edition, McCraw-Hill Companies, Inc., New York, NY,
[7] Holland, David W. and John L. Baritelle, "School Consolidation in Sparsely Populated Rural Areas: A Separable Programming Approach", American Journal of Agricultural Economics, 57(1975): 567-575.
[8] GILL, P.E., MURRAY, W., AND SAUNDERS, M.A., 2002. "SNOPT: An SQP Algorithm for Large-scale Constrained Optimization", SIAM J. Optimization, Vol. 19, No. 4, pp. 979-1006.
[9] PADBERG, M., 2000. "Approximating Separable Nonlinear Functions Via Mixed ZeroOne Programs", Operations Research Letters, 27 (200), 1-5. S., 1984, Programmation linéaire. Traduction française. Edition MIR. Moscou.

