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Abstract:    Separable programming is very useful for 

solving problems of nonlinear programming. In this 

paper we propose a new algorithm for solving 

problems of nonlinear programming separable. We 

approximate the nonlinear problem by a polynomial of 

degree two, we use a quadratic programming 

algorithm to find the optimal solution. 

Keyword: global optimization, piecewise quadratic 

function, separable programming. 

Introduction 

 

       SEPARABLE PROGRAMMING is a special 

class of nonlinearly constrained optimization 

problems whose objective and constraint functions 

are sums of functions of one variable. Separable 

programming problems are usually solved by linear 

programming techniques (Hillier and Lieberman, 

2001). A separable programming (SP) problem 

whose objective and constraint functions are sums of 

functions of one variable (Gill et al., 1981). The SP 

problem can be solved efficiently by linear 

optimization techniques. The flow interaction among 

wells can play an important role in some rate 

allocation problems. In such cases, the rate 

allocation problem is formulated as a general 

nonlinear constrained optimization problem and 

solved by a Sequential Quadratic Programming 

method (Gill et al., 2002). Separable linear 

programming is a method for solving nonlinear 

problems by using the simplex algorithm employed 

in linear programming. 

Its use in agricultural economics is illustrated by the 

Blakley and Kloth study 

of plant location and the Holland and Baritelle study 

of school location. However, a shortcoming of 

separable linear programming is the risk of not 

obtaining a global optimum solution. Neither of the 

above studies reported information on the likelihood 

of having obtained non-global solutions. While this 

problem is reasonably well documented in literature 

on quantitative methods, it is examined and 

illustrated in the following discussion to help assure 

the proper use of separable programming in applied 

research. 
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Let's consider the general nonlinear programming 

problem: 
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with two additional provisions: 1) the objective 

function and all constraints are separable, and 2) 

each decision variable  jx is bounded below by 0 

and above by a known constant .n,...,j,u j 1  

Recall that a function, )x(f , is separable if it can 

be expressed as the sum of function of the individual 

decision variables. 
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The separable nonlinear programming problem has 

the following structure. 
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The key advantage of this formulation is that the 

nonlinearities are mathematically independent. This 

property in conjunction with the finite bounds on the 

decision variable permits the development of a 

piecewise quadratic approximation for each function 

in the problem. 

Consider the general nonlinear function 

)x(f j defined on the interval  b,a ; and let 

bx,...,xa n  1 a subdivision of  b,a  with 

step ii xxh  1 , n odd. 

On every interval  2ii x,x , we replace the function 

jf  with a polynomial of two degree. 

 

Notations  

 

 

New Algorithm to Solve Convex Separable 

Programming 
 

1A.Chikhaoui, 2B. Djebbar , 3A. Mokhtari, 3A.Belabbaci 
1University of Tiaret Algeria, 2University of USTO Oran Algeria, 3University of Laghouat Algeria,  

 ah_chikhaoui@yahoo.fr, badj2000@yahoo.fr, aek_mokhtari@yahoo.fr, A_Belabbaci@yahoo.fr. 

 

 

 

 

 

 

mailto:badj2000@yahoo.fr
mailto:aek_mokhtari@yahoo.fr


Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012) 
 

51 

Let  
1,...,2,1 niix


 subdivision of  11,ba , 1n odd,  

1

11
1111

112

11

1 n

ab
hwherehnax

hax

ax

n








  

and let  
2

1 ,...,2,1 niinx
   subdivision of  22 ,ba , 

2n odd, 

2

22
2222

112

21

21

1

1

n

ab
hwherehnax

hax

ax

nn

n

n














  

For  31 xxx  ,  put  111 htxx  ,    where 

 2,01 t , or 

1

1
1

h

xx
t


 . 

Generally for  

,1212   ii xxx
1

12

h

xx
t i

i


 ,    

2

1
1 1 

n
i . 

 

 

 

 

 

 

Interpolation of the function f :   

Set )()(),( 221121 yyyyf   with 

222111 , byabya   

a) Interpolation of the function 1 .  

If  31 xxx  , the function 1  is replaced by the 

Newton polynomial of degree two noted :   
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Algorithm: 

 

Solving separable programming problem into two 

parts: 

1.expression each function, 

2.approximation interval and step, 

3.approximat each function by the method of finite 

differences 

4. With this approximation, we construct the 

quadratic program for each function 

5.solve quadratic program associated to each 

function. We obtain value of component 
*

jx  and the 

approximate value of the function   *

jj xf . 

6. Go to 1. 

 

Algorithm separable : 

Data :   number_variable_separable, 

number_constrainte_separable, 

 Matrix_A_constraintes, vector_b 

 

// input of express functions and bororne inf, borne 

sup, step.  

For j=1: number_variable_separable  

   Txt= input(‘ expression of the jeme function’); 

    Express_fun(j,1:length(txt))=txt; 

   Txt_param = input( ‘lower bound,upper bound, 

step’); 

   param_fun(j,1:3)=eval(['[' txt_param ']']); 

end 

 

// quadratic interpolation of functions 

for k=1:n_variables_sep 

  

x=linspace(param_fun(k,1),param_fun(k,2),param_f

un(k,3)); 

    y=eval(express_fun(k,:)); 

    x_values(k,1:length(x))=x;   

    func_values(k,1:(length(y)))= y;   

    D1=diff(y)  ;     D2=diff(D1) ;      

    ndif2=length(D2);      ne=(ndif2+1)/2 ; 

    alpha_f(k,1:ne+1)=[ ne  D1(1:2:ndif2)-

0.5*D2(1:2:ndif2)] ; 

    beta_f(k,1:ne+1)=[ne 0.5*D2(1:2:ndif2)] ; 

end     

 

// solve quadratic programming problems 

 for indice_func  = 1:n_variables_sep     

    algorithm_qp(alpha_f, beta_f); 

 end 

Results = x_optimale_value, f_optimal_value. 

 

 

algorithm_qp(  , ) 

Begin Algorithm Initialization:  vectors b,,     

and  matrix ,A  Z   Z=Z0, A_positif = true;   

While  (A_positif = true) do 

  For all indexes
j

: 
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j

j
j  max
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if  
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 then    STOP : this program don’t 

have optimum. 

if 0
0
 j then STOP : this program is optimal.    

     Let 
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x is entering basic vector. 













 0,min
0

0

0 ij

ij

i

i
a

a

b
 , 

0i
x is leaving basic 

vector. 
00 jia is the pivot. 

For all indexes j  :  if   0jj   then  

   
00

00

0

00

02'

jjjj

ji

i

ji

ji

jjjj
a

b

a

a
 

; 

 

else    0'

0
j ; 0'

0
j  endif 

   

For all indexes i  For all indexes j   

if  0ii     

       ji

ji

ij

ijij a
a

a
aa

0

00

'    ; 
0

0'

i

ij

ij

ii b
a

a
bb  . 

endif   endfor   endfor. 

 

A_positif = false;   

For all indexes i  For all indexes j :  

 if 0ija  then  A_positif = true   

endif    endfor   endfor 

     if A_positif = false     

      this program do not have optimum Stop. 

    endif     

endWhile. 

 

 

Example      Let the function xLogxxf j )( , 

defined on 








2

5
,

2

1
, to maximize. We use the two 

degree polynomial of  Newton with step  50.h    

to  interpolate. 

 

 
x  0.5 1 1.5 2 2.5 

 xfy j  1.19 1 1.09 1.31 1.58 

 



Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012) 
 

54 

Calculate  11 t . 

x  y  y  y2  

0.5 1.19 -0.19 0.28 

1 1 0.09  

1.5 1.09   

 

 

To use the polynomial of Newton, we find: 

14.033.0 11    and    

  2

1111 14.033.0 ttt  . 

1. Calculate  22 t . 

x  y  y  y2  

1.5 1.09 0.22 0.05 

2 1.31 0.27  

2.5 1.58   

03.020.0 22      and    

  2

2222 03.020.0 ttt  . 

Consequently 

  2

2

2

121 03.014.020.033.0 ttttt   that 

we maximize. 

We use the method describe in [10] to resolve this 

problem. Recall the expression of   and  (see 

[9]).  

andathefor
a

b
kj

kj
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j
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1t  2t   

-0.33 0.20   

0.14 0.03   

2 2   

-0.10 0.52   

1 0 23 t  

0 1 24 t  

 

2t is entering variable and it  replaces 4t  in the base. 

More, 22 t and 01 t . 

 

The maximum of the function 

  2

2

2

121 03.014.020.033.0 ttttt   is 

given by 00 12  tandt .  

The optimum of this function equal 0.5. 

The maximum of the objective function is the in the 

point hxx 23   i.e. in the point with 

abscise 5.2x , this maximum is equal 58.1 . 

 

The maximum of  xP2 is equal 

61.1)(52.0 3  xf j who is near the real value of 

this maximum. 

 

Note that is important to find only the value of jt  

for which the function 

  2

2

2

121 03.014.020.033.0 ttttt   is 

optimal. 

 

 We say that the objective function is optimal in the 

point htxx jj  12 .  

The maximum of the objective function is 

calculating immediately. 

 

Results and discussion 

- It is possible to solve large nonlinear 

separable problems with the quadratic 

separable programming, 

- We used an approximation of order two 

which is more accurate than the first order 

approximation used in the linear 

approximation to apply simplex procedure. 

- It is possible to approximate constraints by 

similar procedure. 

- To get more accurate result, the piecewise 

quadratic approximation fi can be refined. 
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