
Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

78

Abstract — In this paper, we propose a real-time

platform for H.264 CODEC with a memory management

method in which we use a preloading mechanism in

order to reduce external memory accessing. The

simulation platform uses then an external DDR2

memory to record the images of the sequence and an

intelligent memory controller which reads the DDR2

periodically to charge another local memory for the

processing modules of the H.264 encoder containing

macroblocks (of different size). We either use image

manipulation or chosen mode. The proposed intelligent

controller is tested on an Xilinx-virtex5-ML501 platform

with multiple internal and external components,

including a DDR2 of 256MB. Similarly, the proposed

memory controller unit is well-adapted to future

memory-bandwidth-constraint System-on-Chip

applications.

Keywords: Memory management, H.264/AVC CODEC,

ML501 platform, Real-time application.

I. INTRODUCTION

The H.264 video coding standard has achieved a

significant improvement in coding efficiency when

compared to other coding methods. However, the

computational complexity of the H.264 encoder is

increased drastically, resulting on practical

difficulties in its implementation on the embedded

platform. To use this standard method in real-time

applications, it is necessary to implement on

hardware accelerators.

A. The H.264 Standard

The new video coding standard recommendation

H.264 of ITU-T (also known as international

standard 14496-10 or MPEG-4 part 10 Advanced

Video Coding ‘AVC’ of ISO/IEC [1]) is the latest

coding standard in a sequence of the video coding

standards H.261 (1990) , MPEG-1 Video (1993),

MPEG-2 Video (1994), H.263(1995, 1997), MPEG-

4 Visual or part 2 (1998) [2].

Fig. 1. Video coding standards evolution.

These previous coding standards reflect the

technological progress in video compression and the

adaptation of video coding to different applications

and networks. Applications range from video

telephony (H.261) to the internet or mobile networks

(H.263, MPEG-4). The importance of new network

access technologies demand for the new video

coding standard H.264/AVC, providing enhanced

video compression performance in view of

interactive applications such as video telephony that

requires a low latency system and non-interactive

applications for the storage, broadcast, and the

streaming of standard definition TV where the focus

is on high coding efficiency [2].

TABLE I. Applications for standard video coding.

Standard Application

MPEG-1 Video-CD, CDI

MPEG-2 Digital Television, High

definition TV, DVD, TNT,

Satellite video

MPEG-4 Visual Internet, Mobil video, Studio,

Video On Demand (VOD)

MPEG_4 AVC

H.264 AVC

Internet, Mobil video, Studio,

High Definition Video On

Demand

Comparing the H.264/AVC video coding tools

(multiple reference frames, 1/4 pel motion

compensation, deblocking filter or integer

transform) to the tools of previous standards video

coding, the H.264/AVC brought in the most

algorithmic discontinuities in the evolution of

standardized video coding[3].

ITU-T

ITU-

T/MPEG

MPEG

H.261

 1984 1988 1992

1996 2000 2004

H262/MPE

G2

MPEG1 MPEG4

H264 H264/AV

C

H263 H263+ H263++

A Real-Time Simulation Platform for the H.264

CODEC Modules

Kamel Messaoudi12 Maamar Touiza1 ElBay Bourennane1 Salah Toumi2 Ouassila Labbani1

1 LE2I Laboratory - Burgundy University - Dijon Cedex, France

(kamel.messaoudi@u-bourgogne.fr) , (maamar.touiza@u-bourgogne.fr)

(ebourenn@u-bourgogne.fr) , (ouassila.labbani@u-bourgogne.fr)
2 LERICA Laboratory - Annaba University - Sidi Amar, B.P# 12, Annaba, Algeria

 (toumi.salah@hotmail.com)

mailto:kamel.messaoudi@u-bourgogne.fr
mailto:toumi.salah@hotmail.com

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

79

B. Hardware Implementation of the H.264 CODEC

In the literature, there are many hardware

architectures proposed for the H.264 modules [4]

[5]. There is a plethora of results related to the

design and realization of modules of a H.264/AVC

encoder [4-6-7-8], but there are only a few papers

published in the literature that are related to the

simulation platform and to the memory part that

provides the entries to the modules. Such entries are

needed to obtain complete hardware H.264 encoder

solutions.

C. Paper organization

The paper is organized with Sect. 2 includes which

presents an overview of the H.264 CODEC

architecture, the mapping of the functionality of the

H.264 encoder onto the memory of images sequence

and the details of the modules in direct contact with

the memory. Section 3 describes the proposal

architecture for the simulation platform for the

H.264 modules at the base of DDR2 memory.

Section 4 shows the results of simulation with

ModelSim, discussions are also given. Finally, Sect.

5 concludes the proposal.

II. THE H.264 ENCODER STRUCTURE

The new visual standard H.264 shares a number of

devices with old standards, including H.263 and

MPEG-4. Mainly, H.264 is based on a hybrid model

for the Adaptive Differential Pulse Code Modulation

(ADPCM) and a transformation based on the coding

of integers, similar to discrete cosine transform

(DCT) used in earlier standards. This complex

coding is done to take advantage of the temporal and

spatial redundancy occurring in successive visual

images [3]. The diagram of the encoder H264 is

shown on the following basis:

I

B

B

B

P

t

Intra Prediction

Motion

estimation

Intra

inter

Core coding

 Transform

Motion

Compensation

Quantization
Entropy

Coder

Rate

Distortion

Control

Inverse

Quantization

Inverse

Transform

Storage

Reconstructed

frame « I’ »

Deblocking

Filter

Intra

Decoding

Network

Packetize

Bit

Stream

Motion vector & Inter mode

Intra mode

Memory

+

-

+

-

+

+

Decoder blocs

Voisinage

voisinage

Fig. 2. H.264 encoder hardware architecture.

In this figure, only two modules (intra prediction and

inter prediction) are in direct contact with the

memory (mode read of image sequence), a detailed

study of these two modules about reading blocks and

macroblocks is given in what follows.

A. H.264 Modules Description

The H.264 encoder, when taken as a system,

processes video frames that are divided in basic

units defined as MacroBlocks (MBs). Each MB is a

square tile of 16x16 luminance and 8x8 chrominance

data. The entire encoding operation is composed of

the forward (encoding) path and the inverse

(reconstruction or decoding) path. The forward-

encoding path predicts each MB using Inter or Intra

prediction and also transforms and quantizes (TQ)

the residual, and then it forwards the result to the

Entropy Encoder module and finally forms the

output packets in the Network Abstraction Layer

(NAL) module. The inverse path involves the

reconstruction of the MB from the previously

transformed data by utilizing the Inverse Transform

and Quantization (ITQ) and the deblocking filter [4].

B. Profiles and Levels

H.264 defines a set of three Profiles, each supporting

a particular set of coding functions. The Baseline

Profile supports intra and inter-coding (using I-slices

and P-slices) and entropy coding with context-

adaptive variable-length codes (CAVLC). The Main

Profile includes support for interlaced video, inter-

coding using B-slices, inter coding using weighted

prediction and entropy coding using context-based

arithmetic coding (CABAC). The Extended Profile

does not support interlaced video or CABAC but

adds modes to enable efficient switching between

coded bitstreams (SP- and SI-slices) and improved

error resilience (Data Partitioning) [2].

Fig. 3. H.264/AVC profiles and corresponding tools.

C. Video Format in the H.264 encoder

H.264 supports coding and decoding of 4:2:0

progressive or interlaced video. In addition, an

H.264 video sequence consists of different type

frame structured as GOP (Group Of Pictures). A

GOP is a sequence of frame which are coded

according to three methods: intra-frame coding (I-

frame), predictive-frame or inter-frame coding (P-

frame) and bidirectional-frame coding (B-frame).

For example, a GOP may be in the form of

IBBBPBBBPBBB.

Fig. 4. The 3 frame type structured as GOP.

A coded frame consists of a number of macroblocks,

each containing 16x16 luma samples and associated

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

80

chroma samples (8x8 Cb and 8x8 Cr samples). I-

macroblocks are predicted using intra prediction. A

prediction is formed either for the complete 16x16

macroblock according to four modes, or for each

4x4 macroblock according to nine modes. P-

macroblocks are predicted using inter prediction

from reconstructed reference picture (I’). An inter

coded macroblock may be divided into macroblock

partitions, i.e. macroblocks of size 16x16, 16x8,

8x16 or 8x8 luma samples (and associated chroma

samples). If the 8x8 partition size is chosen, each

8x8 sub-macroblock may be further divided into

sub-macroblock partitions of size 8x8, 8x4, 4x8 or

4x4 luma samples (and associated chroma samples).

Finally, B-macroblocks are predicted using inter

prediction from reference frames (I’ and P’) [3].

Fig. 5. Frame decomposition in H.264.

D. Intra Prediction

In intra mode a prediction macroblock (Ip) is formed

based on previously encoded and reconstructed

macroblocks and is subtracted from the current

block prior to encoding. For the luma samples, (Ip)

is formed for each 4x4 macroblock or for a 16x16

macroblock. There are a total of nine optional

prediction modes for each 4x4 luma macroblock,

four modes for each 16x16 luma macroblock and

four modes for the chroma components. The encoder

typically selects the prediction mode for each

macroblock that minimises the difference between

(Ip) and the macroblock to be encoded in (I) [4].

Fig. 6. Intra 4x4 prediction modes.

E. Inter Prediction

In former standards as MPEG-4 or H.263, only

macroblocks of the size 16x16 and 8x8 are

supported. A displacement vector is estimated and

transmitted for each macroblock, refers to the

corresponding position of its image signal in an

already transmitted reference image. Important

differences from H.264 standards include the

support for a range of block sizes (from 16x16 down

to 4x4) and fine subsample motion vectors (quarter-

sample resolution in the luma component) [5].

Macroblock

Partitions

Sub-Macroblock

Partitions

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

Fig. 7. Partitioning of a macroblock and a sub-macroblock.

These partitions and the sub-macroblock give rise to

a large number of possible combinations within each

macroblock. This method of partitioning

macroblocks into motion compensated sub-blocks of

varying size is known as tree structured motion

compensation. A separate motion vector is required

for each partition or sub-macroblock. Each motion

vector must be coded and transmitted and the choice

of partition(s) must be encoded in the compressed

bitstream. Choosing a large partition size means that

a small number of bits are required to signal the

choice of motion vector(s) and the type of partition

but the motion compensated residual may contain a

significant amount of energy in frame areas with

high details. Choosing a small partition size may

give a lower-energy residual after motion

compensation but requires a larger number of bits to

signal the motion vectors and the choice of

partition(s). The choice of partition size has then a

significant impact on compression performance. In

general, a large partition size is appropriate for

homogeneous areas of the frame and a small

partition size may be beneficial for detailed areas

[4].

F. The H.264 Decoder

The decoding process consists of interpreting the

coded symbols of a compliant Bitstream and of

processing this data according to the standard

specification in order to generate a reconstructed

video sequence. Thus, the decoding process consists

generally of two primary paths: the generation of the

predicted video macroblocks and the decoding of the

coded residual macroblocks. The sample values of

the output macroblocks resulting from these two

paths are summed and clipped to the valid range for

pixel data to form the reconstructed macroblocks. A

generalized block diagram of an H.264/AVC

decoder is given in the following Figure [9]:

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

81

Bit

Stream

Entropy

Decoder

Inverse

Quantization

Inverse

Transform

Intra

inter

Intra

Prediction

D
e
b

l
o
c
k

i
n

g

F
i
l
t
e
r

Image I’

+
+

 P’ or B’

Motion

Compensate

+

+

I’

B’

B’

B’

P’

t

P

B

Voisinage

Motion vector & Inter mode

Intra mode

Fig. 8. H.264 Decoder hardware architecture.

G. The H.264 and Real-Time Applications

Nowadays, many video applications require the

H.264 encoder to perform at real-time with low bit-

rate. Moreover, these applications generally require

a hardware implementation with minimal VLSI cost.

The problem of optimizing both the bit-rate

(compression ratio) and the VLSI area introduces

new challenges in the field of hardwired video

encoders.

1. The choice of a profile which has to meet an
acceptable bit-rate by providing
performance close to that of the reference
H.264 encoder.

2. The design of the flow graph which has to
minimize the internal memory and the
register count.

3. Providing an efficient mapping of the
computations onto the hardware resources
has to maximize the utilization of the
computing resources and to allow the
elimination of those resources that show
small utilization rates.

4. The designers have to implement an
architecture with low clock rates and
minimized power consumption.

To meet these challenges, the designer has to look

for a set of features of the chosen profile, resulting in

the required performance with respect to the

compression ratio and to the area architecture.

III. SIMULATION PLATFORM FOR THE H.264 CODEC

To meet the real time requirements of a large

number of multimedia applications, researchers and

engineers have presented solutions for realizing the

CODEC or for optimizing the various modules of

the encoder/decoder, but the memory part that

provides the input values to the encoder modules is

generally not described. In-fact, most solutions

assume that the entries of encoder’s modules are a

bus (4, 8, 16, 32, ...) of bits or pixels, but the

recording and management of these pixels are not

given, or are supposed insured by software.

In the flowing figure, we present the principle of an

implementation platform of a CODEC, the image is

initially captured, stored in memory, processed,

stored and displayed at the end (complete chain of

video processing). it is also possible to register

intermediate parameters during processing, these

parameters can even be an entire image.

Simulation Platform

V
id

e
o

 s
o

u
r
c
e

Interface

H.264 CODEC

Modules Interface

Memory

Interface

A
f
f
ic

h
a
g

e

e
n

r
e
g

is
tr

e
m

e
n

t

Fig. 9. Simulation platform for H.264 modules.

Processing modules in a CODEC are generally

applied to macroblock for different sizes of recorded

images, not for entire images. In addition to treating

some types of images in a sequence, it is necessary

to save previous images, which require us to record

multiple images at once. Therefore, it is necessary to

use an external memory.

A. Local and External Memory

In simulation platforme, the local memory

organization is of significant importance because it

provides a temporal storage and the means for

efficient communication of the aforementioned data

among the CODEC modules. Usually in codec, the

local memory is used for recording the coefficients

and intermediate data, and the external memory is

reserved for recording images of the sequence and

output files. Only for the basic profile of CODEC

with I-image and P-image, that it is possible on any

platform prototype, to use local memory for saving

parameters and images [3].

 Prototyping platform

D
D

R
2

 M
e
m

o
ry

M
e
m

o
ry

 C
o

n
tro

lle
r

Local memory

Control

Local memory

Capteur Pixel

128bits

128bits

Addr

Addr

64bits

Intra

Memory

Intra

Memory

C
o

n
tro

l

CODEC Modules

D
a
ta

(K

b
its

)

Fig. 10. Proposed memory management for H.264 modules.

B. Memory Management

In the previous figure, the images of sequence are

stored in external DDR2 memory, after gathering

packet of 128 bits in a local memory. Next, the

DDR2 memory has fueled another local memory

periodically by the macroblock processing object

following the mode of treatment and the type of

image.

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

82

For intra16x16 mode, the local memory must

contain a macroblock (16x16 pixels of the image 'I')

and the 33 neighboring pixels. For intra4x4 mode,

the memory must contain the 4x4 pixels and the 13

surrounding pixels (as shown in the figure 6). In

inter mode, memory must contain the macroblock of

16x16 pixels image 'P' and a macroblock of 16x16

pixels image 'I’'. This last macroblock must be

recharged periodically according to a scan mode

from a search window in the reference image 'I’', to

achieve this architecture two proposals are

appropriate:

 Download the search window in one goes that

from the external memory to local memory, with

the disadvantage of the need of a local memory.

Use only 16x16 pixels memory, and charge this for

each calculation of SAD, with the disadvantage of

the large number of memory access (for eatch

macrobloc 16x16) and the delay time for each

access. To resolve this problem, we can use two

memories (16x16 pixels) instead of a single-mode

ping-pong, with a memory load step and another

step

Reading from DDR2 to local memory is performed

periodically as required H.264 modules CODEC.

For example, as mentioned in paragraph 3.2, the

module intra4x4 of the encoder is needed for each

intra prediction of a 4x4 pixels that are as near to

other blocks. The figure below shows the reading of

a 4x4 block and the designation of neighboring

pixels.

 in literacy and numeracy. The ping-pong

memory mostly doubles the memory

requirements.

C. Prototyping Platform

The prototyping was done using the Xilinx Virtex5

ML501 development platform, with many external

components (serial port, VGA output, many

different inputs, and other interface resources with

de FPGA core type XC5VLX50-1FFG676). It was

also fitted with a DDR2 SDRAM SODIMM module

of 256MB.

The FPGA contains multiple IP blocks: RAMs 36

Kbit blocks configured according to application

needs, FIFO blocks, programmable logic blocks,

DSPs, clock generators, ... [10].

D. DDR2 Memory Organization

DDR2 memory is organized into 4 banks, each bank

is in the form of a matrix of cells with 210 columns

and 213 rows, each cell is composed of 64bits. For

the luminance signal Y, each cell may contain,

therefore, 8 pixels. Similarly, a line can contain

8x210 pixels, and an image 256x256pixels has 8

lines of DDR2 memory [11].

From this architecture of DDR2 memory, that it is

impossible to read an amount less than 8 pixels. This

fact, reads image block for the H.264 standard,

performed by 8, 16, 32, ... pixels at a time. In

addition to the mode (Burst = 4), we can read

(4x128bits), which means 32 pixels at a time.

IV. SIMULATION RESULTS

At simulation, a test bench file is written to replace

the image capture part, the file must provide the

image pixels at a frequency (fpixels) calculated

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

83

according to the type of input video sequence (a

sequence format CIF with 352x288 pixel/image and

10 images/Second, the pixel frequency is given by

352x288x10Hz).

At the input of the Controller, the pixels are

collected by a group of 16 pixels by 4 times (128

bits x 4 => Burt mode) at frequency fpixels, then

transfer the 64 pixels (512bit) to the DDR2 memory

through the DDR controller at the frequency of

FPGA (100 MHz for the platform ML501). The

following figure shows the timing of the transfer of

the first pixels of the image to DDR2 memory:

macroblock and 13 pixels neighborhood. The 4x4

macroblock is read directly from the DDR2 to the

local memory and the neighborhood pixels are

reused from previous calculations. So at the end of

each calculation of a 4x4 block, it saves the pixels

that are as near to other blocks. The figure below

shows the reading of a 4x4 block and the designation

of neighboring pixels.

 Fig. 12. Read memory for the 4x4 pixels intra-prediction.

Similarly for other modes of intra prediction and

inter-prediction. So our proposal is an intelligent

controller that supplies periodically modules of the

H.264 encoder by macroblocks from the sequence of

prerecorded images at the DDR2 in the ML501

platform. The modules of the encoder deal therefore

only with part of the calculation, not with the

reading part of macroblocks.

V. CONCLUSION

In this work, we optimize an intelligent memory

controller for the H.264 encoder to build a real-time

platform for simulation with the CODEC modules.

A series of optimization is applied to the controller,

to enable him to supply the modules of treatement

periodically by the required data (macroblocks) for

each step. Simulations were performed with

ModelSim using as Virtex5 ML501 platform. This

study allowed us also to set the time (the number of

clock cycles) required for processing each

macroblock of different images and that following

the types of images manipulated. The proposed

platforme with intelligent controller can be

employed in many real-time implementation of the

H.264 CODEC with advantage of high flexibility

and reconfiguration.

REFERENCES
[1] ISO/IEC 14496–10:2003, “Coding of Audiovisual

Objects-Part 10 : Advanced Video Coding,” 2003, also
ITU-T Recommendation H.264 “Advanced video coding
for generic audiovisual services.”

[2] J. Ostermann, J. Bormans, P. List, D. Marpe, M.
Narroschke, F. Pereira, T. Stockhammer, and T. Wedi,
“Video coding with H.264/AVC: Tools, Performance,
and Complexity”, 2004, IEEE Circuits and Systems
Magazine, pp. 7-28, First Quarter 2004,

[3] K. Messaoudi, S. Toumi, E. Bourennane, “Material
architecture proposition for the block matching method
of motion estimate in H264 standard”, 2008, ICTTA’08,
Damascus, Syria.

[4] K. Babionitakis, G. Doumenis, G. Georgakarakos, G.
Lentaris, K. Nakos, D. Reisis, I. Sifnaios, and N.
Vlassopoulos, “A real-time H.264/AVC VLSI encoder
architecture”, 2008, Springer - Real-Time Image Proc,
pp.43–59.

[5] T. Chen, C. Lian and L. Chen, “Hardware Architecture
Design of an H.264/AVC Video Codec” 2006, IEEE – 7D-
3, pp. 750-757.

[6] D. T. Lin and C. Yang. Wu, “H.264/AVC Video Encoder
Realization and Acceleration on TI DM642 DSP”, 2009,
Springer - Springer-Verlag Berlin Heidelberg 2009, pp.
910-920.

[7] T. Liu, T. Lin, S. Wang, W. Lee, K. Hou, J.Yang and C. Lee,
“An 865-μW H.264/AVC Video Decoder for Mobile
Applications” 2005, IEEE – 12-2, pp. 301-305.

[8] S. Wang, S. Yang, H. Chen, C. Yang and J. Wu, “A Multi-
core Architecture Based Parallel Framework for
H.264/AVC Deblocking Filters”, 2008, Springer - Sign
Process Syst.

[9] M. Horowitz, A. Joch, F. Kossentini, S. Member, and A.
Hallapuro, “H.264/AVC Baseline Profile Decoder
Complexity Analysis”, 2003, IEEE transactions on
circuits and systems for video technology, vol. 13, no. 7,
pp.704–716, july 2003.

[10] Xilinx DOC, « Xilinx Memory Interface Generator (MIG)
User Guide, DDR SDRAM, DDRII SRAM, DDR2 SDRAM,
QDRII SRAM and RLDRAM II Interfaces », UG086 (v2.0)
September 18, 2007.

[11] Micron Technology, Inc, « 128MB, 256MB, 512MB: (x64,
SR) 200-Pin DDR2 SDRAM SODIMM Features », pdf:
09005aef80eec96e, 2004, 2005 Micron Technology.

