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Abstract — In this paper, we propose a real-time 

platform for H.264 CODEC with a memory management 

method in which we use a preloading mechanism in 

order to reduce external memory accessing. The 

simulation platform uses then an external DDR2 

memory to record the images of the sequence and an 

intelligent memory controller which reads the DDR2 

periodically to charge another local memory for the 

processing modules of the H.264 encoder containing 

macroblocks (of different size). We either use image 

manipulation or chosen mode. The proposed intelligent 

controller is tested on an Xilinx-virtex5-ML501 platform 

with multiple internal and external components, 

including a DDR2 of 256MB. Similarly, the proposed 

memory controller unit is well-adapted to future 

memory-bandwidth-constraint System-on-Chip 

applications. 

Keywords: Memory management, H.264/AVC CODEC, 

ML501 platform, Real-time application. 

I. INTRODUCTION 

The H.264 video coding standard has achieved a 

significant improvement in coding efficiency when 

compared to other coding methods. However, the 

computational complexity of the H.264 encoder is 

increased drastically, resulting on practical 

difficulties in its implementation on the embedded 

platform. To use this standard method in real-time 

applications, it is necessary to implement on 

hardware accelerators. 

A.  The H.264 Standard  

The new video coding standard recommendation 

H.264 of ITU-T (also known as international 

standard 14496-10 or MPEG-4 part 10 Advanced 

Video Coding ‘AVC’ of ISO/IEC [1]) is the latest 

coding standard in a sequence of the video coding 

standards H.261 (1990) , MPEG-1 Video (1993), 

MPEG-2 Video (1994), H.263(1995, 1997), MPEG-

4 Visual or part 2 (1998) [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Video coding standards evolution. 

These previous coding standards reflect the 

technological progress in video compression and the 

adaptation of video coding to different applications 

and networks. Applications range from video 

telephony (H.261) to the internet or mobile networks 

(H.263, MPEG-4). The importance of new network 

access technologies demand for the new video 

coding standard H.264/AVC, providing enhanced 

video compression performance in view of 

interactive applications such as video telephony that 

requires a low latency system and non-interactive 

applications for the storage, broadcast, and the 

streaming of standard definition TV where the focus 

is on high coding efficiency [2]. 

TABLE I. Applications for standard video coding. 

Standard Application 

MPEG-1 Video-CD, CDI 

MPEG-2 Digital Television, High 

definition TV, DVD, TNT, 

Satellite video 

MPEG-4 Visual Internet, Mobil video, Studio, 

Video On Demand (VOD) 

MPEG_4 AVC 

H.264 AVC 

Internet, Mobil video, Studio, 

High Definition Video On 

Demand 
 

Comparing the H.264/AVC video coding tools 

(multiple reference frames, 1/4 pel motion 

compensation, deblocking filter or integer 

transform) to the tools of previous standards video 

coding, the H.264/AVC brought in the most 

algorithmic discontinuities in the evolution of 

standardized video coding[3]. 
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B. Hardware Implementation of the H.264 CODEC 

In the literature, there are many hardware 

architectures proposed for the H.264 modules [4] 

[5]. There is a plethora of results related to the 

design and realization of modules of a H.264/AVC 

encoder [4-6-7-8], but there are only a few papers 

published in the literature that are related to the 

simulation platform and to the memory part that 

provides the entries to the modules. Such entries are 

needed to obtain complete hardware H.264 encoder 

solutions.  

C. Paper organization  

The paper is organized with Sect. 2 includes which 

presents an overview of the H.264 CODEC 

architecture, the mapping of the functionality of the 

H.264 encoder onto the memory of images sequence 

and the details of the modules in direct contact with 

the memory. Section 3 describes the proposal 

architecture for the simulation platform for the 

H.264 modules at the base of DDR2 memory. 

Section 4 shows the results of simulation with 

ModelSim, discussions are also given. Finally, Sect. 

5 concludes the proposal. 

II. THE H.264 ENCODER STRUCTURE 

The new visual standard H.264 shares a number of 

devices with old standards, including H.263 and 

MPEG-4. Mainly, H.264 is based on a hybrid model 

for the Adaptive Differential Pulse Code Modulation 

(ADPCM) and a transformation based on the coding 

of integers, similar to discrete cosine transform 

(DCT) used in earlier standards. This complex 

coding is done to take advantage of the temporal and 

spatial redundancy occurring in successive visual 

images [3]. The diagram of the encoder H264 is 

shown on the following basis: 

 

 

I 

B 

B 

B 

P 

t 

 

Intra Prediction 

Motion 

estimation 

Intra 

 

 
inter 

 

Core coding 

 

 Transform 

Motion 

Compensation 

Quantization 
Entropy 

Coder 

Rate 

Distortion 

Control 

Inverse 

Quantization 

Inverse 

Transform 

Storage 

Reconstructed 

frame « I’ » 

 

Deblocking 

Filter 

Intra  

Decoding 

Network 

Packetize 

Bit 

Stream 

Motion vector & Inter mode 

Intra mode 

Memory 

+ 

- 

+ 

- 

+ 

+ 

Decoder blocs 

Voisinage 

voisinage 

 
Fig. 2. H.264 encoder hardware architecture. 

In this figure, only two modules (intra prediction and 

inter prediction) are in direct contact with the 

memory (mode read of image sequence), a detailed 

study of these two modules about reading blocks and 

macroblocks is given in what follows. 

A. H.264 Modules Description  

The H.264 encoder, when taken as a system, 

processes video frames that are divided in basic 

units defined as MacroBlocks (MBs). Each MB is a 

square tile of 16x16 luminance and 8x8 chrominance 

data. The entire encoding operation is composed of 

the forward (encoding) path and the inverse 

(reconstruction or decoding) path. The forward-

encoding path predicts each MB using Inter or Intra 

prediction and also transforms and quantizes (TQ) 

the residual, and then it forwards the result to the 

Entropy Encoder module and finally forms the 

output packets in the Network Abstraction Layer 

(NAL) module. The inverse path involves the 

reconstruction of the MB from the previously 

transformed data by utilizing the Inverse Transform 

and Quantization (ITQ) and the deblocking filter [4]. 

B. Profiles and Levels 

H.264 defines a set of three Profiles, each supporting 

a particular set of coding functions. The Baseline 

Profile supports intra and inter-coding (using I-slices 

and P-slices) and entropy coding with context-

adaptive variable-length codes (CAVLC). The Main 

Profile includes support for interlaced video, inter-

coding using B-slices, inter coding using weighted 

prediction and entropy coding using context-based 

arithmetic coding (CABAC). The Extended Profile 

does not support interlaced video or CABAC but 

adds modes to enable efficient switching between 

coded bitstreams (SP- and SI-slices) and improved 

error resilience (Data Partitioning) [2]. 

 
Fig. 3. H.264/AVC profiles and corresponding tools. 

C. Video Format in the H.264 encoder 

H.264 supports coding and decoding of 4:2:0 

progressive or interlaced video. In addition, an 

H.264 video sequence consists of different type 

frame structured as GOP (Group Of Pictures). A 

GOP is a sequence of frame which are coded 

according to three methods: intra-frame coding (I-

frame), predictive-frame or inter-frame coding (P-

frame) and bidirectional-frame coding (B-frame). 

For example, a GOP may be in the form of 

IBBBPBBBPBBB.  

 
Fig. 4. The 3 frame type structured as GOP. 

A coded frame consists of a number of macroblocks, 

each containing 16x16 luma samples and associated 
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chroma samples (8x8 Cb and 8x8 Cr samples). I-

macroblocks are predicted using intra prediction. A 

prediction is formed either for the complete 16x16 

macroblock according to four modes, or for each 

4x4 macroblock according to nine modes. P-

macroblocks are predicted using inter prediction 

from reconstructed reference picture (I’). An inter 

coded macroblock may be divided into macroblock 

partitions, i.e. macroblocks of size 16x16, 16x8, 

8x16 or 8x8 luma samples (and associated chroma 

samples). If the 8x8 partition size is chosen, each 

8x8 sub-macroblock may be further divided into 

sub-macroblock partitions of size 8x8, 8x4, 4x8 or 

4x4 luma samples (and associated chroma samples). 

Finally, B-macroblocks are predicted using inter 

prediction from reference frames (I’ and P’) [3].  

 
Fig. 5. Frame decomposition in H.264. 

D. Intra Prediction  

In intra mode a prediction macroblock (Ip) is formed 

based on previously encoded and reconstructed 

macroblocks and is subtracted from the current 

block prior to encoding. For the luma samples, (Ip) 

is formed for each 4x4 macroblock or for a 16x16 

macroblock. There are a total of nine optional 

prediction modes for each 4x4 luma macroblock, 

four modes for each 16x16 luma macroblock and 

four modes for the chroma components. The encoder 

typically selects the prediction mode for each 

macroblock that minimises the difference between 

(Ip) and the macroblock to be encoded in (I) [4]. 

 

 

 

 

 

Fig. 6. Intra 4x4 prediction modes. 

 

E. Inter Prediction  

In former standards as MPEG-4 or H.263, only 

macroblocks of the size 16x16 and 8x8 are 

supported. A displacement vector is estimated and 

transmitted for each macroblock, refers to the 

corresponding position of its image signal in an 

already transmitted reference image. Important 

differences from H.264 standards include the 

support for a range of block sizes (from 16x16 down 

to 4x4) and fine subsample motion vectors (quarter-

sample resolution in the luma component) [5]. 
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Fig. 7. Partitioning of a macroblock and a sub-macroblock. 

These partitions and the sub-macroblock give rise to 

a large number of possible combinations within each 

macroblock. This method of partitioning 

macroblocks into motion compensated sub-blocks of 

varying size is known as tree structured motion 

compensation. A separate motion vector is required 

for each partition or sub-macroblock. Each motion 

vector must be coded and transmitted and the choice 

of partition(s) must be encoded in the compressed 

bitstream. Choosing a large partition size means that 

a small number of bits are required to signal the 

choice of motion vector(s) and the type of partition 

but the motion compensated residual may contain a 

significant amount of energy in frame areas with 

high details. Choosing a small partition size may 

give a lower-energy residual after motion 

compensation but requires a larger number of bits to 

signal the motion vectors and the choice of 

partition(s). The choice of partition size has then a 

significant impact on compression performance. In 

general, a large partition size is appropriate for 

homogeneous areas of the frame and a small 

partition size may be beneficial for detailed areas 

[4]. 

F. The H.264 Decoder 

The decoding process consists of interpreting the 

coded symbols of a compliant Bitstream and of 

processing this data according to the standard 

specification in order to generate a reconstructed 

video sequence. Thus, the decoding process consists 

generally of two primary paths: the generation of the 

predicted video macroblocks and the decoding of the 

coded residual macroblocks. The sample values of 

the output macroblocks resulting from these two 

paths are summed and clipped to the valid range for 

pixel data to form the reconstructed macroblocks. A 

generalized block diagram of an H.264/AVC 

decoder is given in the following Figure [9]:  
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Fig. 8. H.264 Decoder hardware architecture. 

G. The H.264 and Real-Time Applications 

Nowadays, many video applications require the 

H.264 encoder to perform at real-time with low bit-

rate. Moreover, these applications generally require 

a hardware implementation with minimal VLSI cost. 

The problem of optimizing both the bit-rate 

(compression ratio) and the VLSI area introduces 

new challenges in the field of hardwired video 

encoders. 

1. The choice of a profile which has to meet an 
acceptable bit-rate by providing 
performance close to that of the reference 
H.264 encoder.  

2. The design of the flow graph which has to 
minimize the internal memory and the 
register count.  

3. Providing an efficient mapping of the 
computations onto the hardware resources 
has to maximize the utilization of the 
computing resources and to allow the 
elimination of those resources that show 
small utilization rates.  

4. The designers have to implement an 
architecture with low clock rates and 
minimized power consumption. 

To meet these challenges, the designer has to look 

for a set of features of the chosen profile, resulting in 

the required performance with respect to the 

compression ratio and to the area architecture. 

III. SIMULATION PLATFORM FOR THE H.264 CODEC 

To meet the real time requirements of a large 

number of multimedia applications, researchers and 

engineers have presented solutions for realizing the 

CODEC or for optimizing the various modules of 

the encoder/decoder, but the memory part that 

provides the input values to the encoder modules is 

generally not described. In-fact, most solutions 

assume that the entries of encoder’s modules are a 

bus (4, 8, 16, 32, ...) of bits or pixels, but the 

recording and management of these pixels are not 

given, or are supposed insured by software. 

In the flowing figure, we present the principle of an 

implementation platform of a CODEC, the image is 

initially captured, stored in memory, processed, 

stored and displayed at the end (complete chain of 

video processing). it is also possible to register 

intermediate parameters during processing, these 

parameters can even be an entire image. 
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Fig. 9. Simulation platform for H.264 modules. 

Processing modules in a CODEC are generally 

applied to macroblock for different sizes of recorded 

images, not for entire images. In addition to treating 

some types of images in a sequence, it is necessary 

to save previous images, which require us to record 

multiple images at once. Therefore, it is necessary to 

use an external memory. 

A. Local and External Memory 

In simulation platforme, the local memory 

organization is of significant importance because it 

provides a temporal storage and the means for 

efficient communication of the aforementioned data 

among the CODEC modules. Usually in codec, the 

local memory is used for recording the coefficients 

and intermediate data, and the external memory is 

reserved for recording images of the sequence and 

output files. Only for the basic profile of CODEC 

with I-image and P-image, that it is possible on any 

platform prototype, to use local memory for saving 

parameters and images [3]. 
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Fig. 10. Proposed memory management for H.264 modules. 

 

B. Memory Management 

In the previous figure, the images of sequence are 

stored in external DDR2 memory, after gathering 

packet of 128 bits in a local memory. Next, the 

DDR2 memory has fueled another local memory 

periodically by the macroblock processing object 

following the mode of treatment and the type of 

image.  
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For intra16x16 mode, the local memory must 

contain a macroblock (16x16 pixels of the image 'I') 

and the 33 neighboring pixels. For intra4x4 mode, 

the memory must contain the 4x4 pixels and the 13 

surrounding pixels (as shown in the figure 6). In 

inter mode, memory must contain the macroblock of 

16x16 pixels image 'P' and a macroblock of 16x16 

pixels image 'I’'. This last macroblock must be 

recharged periodically according to a scan mode 

from a search window in the reference image 'I’', to 

achieve this architecture two proposals are 

appropriate:  

 Download the search window in one goes that 

from the external memory to local memory, with 

the disadvantage of the need of a local memory. 

Use only 16x16 pixels memory, and charge this for 

each calculation of SAD, with the disadvantage of 

the large number of memory access (for eatch 

macrobloc 16x16) and the delay time for each 

access. To resolve this problem, we can use two 

memories (16x16 pixels) instead of a single-mode 

ping-pong, with a memory load step and another 

step 

 

Reading from DDR2 to local memory is performed 

periodically as required H.264 modules CODEC. 

For example, as mentioned in paragraph 3.2, the 

module intra4x4 of the encoder is needed for each 

intra prediction of a 4x4 pixels that are as near to 

other blocks. The figure below shows the reading of 

a 4x4 block and the designation of neighboring 

pixels. 

 

 

 

 

 

 

 

 

 

 in literacy and numeracy. The ping-pong 

memory mostly doubles the memory 

requirements. 

C. Prototyping Platform 

The prototyping was done using the Xilinx Virtex5 

ML501 development platform, with many external 

components (serial port, VGA output, many 

different inputs, and other interface resources with 

de FPGA core type XC5VLX50-1FFG676). It was 

also fitted with a DDR2 SDRAM SODIMM module 

of 256MB.  

The FPGA contains multiple IP blocks: RAMs 36 

Kbit blocks configured according to application 

needs, FIFO blocks, programmable logic blocks, 

DSPs, clock generators, ... [10].   

D. DDR2 Memory Organization 

DDR2 memory is organized into 4 banks, each bank 

 

is in the form of a matrix of cells with 210 columns 

and 213 rows, each cell is composed of 64bits. For 

the luminance signal Y, each cell may contain, 

therefore, 8 pixels. Similarly, a line can contain 

8x210 pixels, and an image 256x256pixels has 8 

lines of DDR2 memory [11]. 

From this architecture of DDR2 memory, that it is 

impossible to read an amount less than 8 pixels. This 

fact, reads image block for the H.264 standard, 

performed by 8, 16, 32, ... pixels at a time. In 

addition to the mode (Burst = 4), we can read 

(4x128bits), which means 32 pixels at a time. 

IV. SIMULATION RESULTS 

At simulation, a test bench file is written to replace 

the image capture part, the file must provide the 

image pixels at a frequency (fpixels) calculated 
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according to the type of input video sequence (a 

sequence format CIF with 352x288 pixel/image and 

10 images/Second, the pixel frequency is given by 

352x288x10Hz). 

At the input of the Controller, the pixels are 

collected by a group of 16 pixels by 4 times (128 

bits x 4 => Burt mode) at frequency fpixels, then 

transfer the 64 pixels (512bit) to the DDR2 memory 

through the DDR controller at the frequency of 

FPGA (100 MHz for the platform ML501). The 

following figure shows the timing of the transfer of 

the first pixels of the image to DDR2 memory: 

macroblock and 13 pixels neighborhood. The 4x4 

macroblock is read directly from the DDR2 to the 

local memory and the neighborhood pixels are 

reused from previous calculations. So at the end of 

each calculation of a 4x4 block, it saves the pixels 

that are as near to other blocks. The figure below 

shows the reading of a 4x4 block and the designation 

of neighboring pixels. 

 

 

 

  Fig. 12. Read memory for the 4x4 pixels intra-prediction. 

 

Similarly for other modes of intra prediction and 

inter-prediction. So our proposal is an intelligent 

controller that supplies periodically modules of the 

H.264 encoder by macroblocks from the sequence of 

prerecorded images at the DDR2 in the ML501 

platform. The modules of the encoder deal therefore 

only with part of the calculation, not with the 

reading part of macroblocks. 

V. CONCLUSION 

In this work, we optimize an intelligent memory 

controller for the H.264 encoder to build a real-time 

platform for simulation with the CODEC modules. 

A series of optimization is applied to the controller, 

to enable him to supply the modules of treatement 

periodically by the required data (macroblocks) for 

each step. Simulations were performed with 

ModelSim using as Virtex5 ML501 platform. This 

study allowed us also to set the time (the number of 

clock cycles) required for processing each 

macroblock of different images and that following 

the types of images manipulated. The proposed 

platforme with intelligent controller can be 

employed in many real-time implementation of the 

H.264 CODEC with advantage of high flexibility 

and reconfiguration.  
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