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         Abstract - Reconfigurable devices, such as modern 

FPGA provide advanced capabilities which allow the 

creation of embedded systems on single chips (SoC). 

One of the most challenging opportunities provided by 

this kind of devices is the ability to dynamically and 

partially reconfigure themselves. It consists in the 

modification of a portion of the circuitry mapped on 

the FPGA while the system is running. This ability 

allows development of flexible systems that can deal 

with changes in the requirements, standards and 

operational conditions. 

This paper presents partially reconfigurable FIR filter 

design that employs dynamic partial reconfiguration. 

Our scope is to implement a low-power, area-efficient 

autonomously reconfigurable digital signal processing 

architecture that is tailored for the realization of many 

response FIR filters using Xilinx FPGA. The 

implementation of design addresses area efficiency and 

flexibility allowing dynamically inserting and/or 

removing the partial modules to implement the partial 

reconfigurable FIR filters with various types. This FIR 

filter design method shows the good area efficiency and 

flexibility by using the dynamic partial reconfiguration 

method. 

 

Keywords -   Dynamic Partial Reconfiguration, 

FPGA, Signal Processing.   

 

I. INTRODUCTION 

The Dynamic Partial Self-Reconfiguration 

concept is the ability to change the configuration of 

part of an FPGA device by itself while other 

processes continue in the rest of the device [1]. 

The general reason for partial reconfiguration is 

changing the design behavior without full 

reconfiguration. Dynamic partial reconfiguration has 

additional advantages when runtime-reconfiguration 

and efficient resource utilization is desirable. 

Runtime reconfiguration is especially useful for 

applications that require adaptive and flexible 

hardware since they need to change the behavior of a 

system to adapt it to externally changing 

environment. Dynamic partial reconfiguration also 

facilitates more efficient changing configurations 

which results in reduced chip area and power  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consumption and availability of more FPGA 

resources. 

In this work we present a practical application of 

signal processing implemented in a FPGA and uses 

the principle of dynamic reconfiguration in its 

execution. The considered application is a filtering 

device for audio signal. Two digital filters were 

made, one is low-pass type and other is high-pass 

type. These two digital filters present our two 

reconfigurable modules. All aspects of its design and 

implementation will be exposed.  

This paper is organized as follows. Section 2 gives 

an overview of dynamic partial reconfiguration. In 

Section 3 we present the total design flow to 

implement a reconfigurable architecture. In section 

4, we describe our implementation of a 

reconfigurable digital filter. Some results are given 

in section 4. Finally, Section 5 concludes the paper 

and gives some perspectives. 

 

II. PARTIAL RECONFIGURATION OVERVIEW 

Partial reconfiguration is useful for systems with 

multiple functions that can time-share the same 

FPGA device resources. In such systems, one 

section of the FPGA operates continuously while 

other sections of the FPGA are disabled and partially 

reconfigured to provide new functionality. This 

technique is analogous to a microprocessor 

managing context switching between software 

processes, except in the case of FPGA partial 

reconfiguration, it is hardware functionality, not 

software, that is affected (Figure 1). 

A partially reconfigurable design consists of a set of 

full designs and partial modules. The full and partial 

bitstreams are generated for different configurations 

of a design. The idea of implementing a self-

reconfiguring platform for Xilinx Virtex family was 

first reported in [1]. The platform enabled an FPGA 

to dynamically reconfigure itself under the control of 

an embedded microprocessor. The hardware 

component of Self Reconfiguring Platform is 

composed of the internal configuration access port 

(ICAP), control logic and an embedded processor. . 

The embedded processor can be Xilinx Microblaze, 

Implementation of a Real-time Signal Processing                                                   

Application using Partial Dynamic Reconfiguration     

in FPGA 
Maamar Touiza1, Kamel Messaoudi1,  El-bay Bourennane1, Abderrezak Guessoum2 

1 Université de Bourgogne, Laboratoire LE2I, BP 47870  Dijon  21078 Cedex France 
2 Université de Blida, Laboratoire LATSI, BP270 Route de Soumaa, Blida 9000 Algérie 

maamar.touiza@u-bourgogne.fr, kamel.messaoudi@u-bourgogne.fr,  ebourenn@u-bourgogne.fr ,  

guessouma@hotmail.com 

 

mailto:maamar.touiza@u-bourgogne.fr
mailto:ebourenn@u-bourgogne.fr
mailto:guessouma@hotmail.com


Models & Optimisation and Mathematical Analysis Journal Vol. 01  Issue 01  (2012)  

 

 

 

67 

which is a 32-bit RISC soft processor core [6]. The 

hard-core Power PC on some Virtex can also be 

used as the embedded processor. The embedded 

processor provides intelligent control of device 

reconfiguration run-time.  

 

 

 

 
  

Figure 1   Analogy between Microprocessor Context Switching 

and FPGA Partial Reconfiguration Regions  

 

The provided hardware architecture established the 

framework for the implementation of the self-

reconfiguring platforms. Internal configuration 

access port application program interface (ICAP 

API) and Xilinx partial reconfiguration toolkit 

design flow provide methods for reading and 

modifying select FPGA resources and support for 

relocatable partial bitstreams.  

 

A. Design flow of a dynamically 

reconfigurable architecture: 

For Xilinx FPGA, the design flow that supports 

partial reconfiguration uses largely the Xilinx ISE 

tool with a few complements to enable the partial 

reconfiguration management [5]. These changes are 

needed because the basic tool can generate just a 

single total configuration bitstream. In the case of 

partial reconfiguration, we need to produce multiple 

configurations bitstreams for the same application 

(one for the static part and other partial 

configurations for each reconfigurable module 

completed).  

Several versions of ISE are dedicated to the partial 

reconfiguration; the latest supported version 

available is ISE 9.2 SP4 with the additional PR tool. 

Using Xilinx PlanAhead tool will further simplify 

the task. It offers a graphical interface to manage the 

entire process of reconfiguration in the same project 

and run the various tools for static and partial 

bitstreams generation. 

 

B. Starting a Partial Reconfiguration design 

with EDK:  

The Xilinx EDK (Embedded Development Kit) is 

a graphical environment tool for developing a 

complete application around an embedded processor 

and integrated it into an FPGA. Based on a design 

with EDK, we can generate a partially 

reconfigurable architecture. This involves the 

creation of reconfigurable devices, changing their 

HDL descriptions and their implementations using 

the design flow for partial reconfiguration 

mentioned previously. Given the highly automated 

platform EDK, manual intervention is necessary to 

merge the two design flows. The placement of 

reconfigurable blocks and the generation of different 

bitstreams of system can be made via the PlanAhead 

tool.  
 

C. Bus Macro Communication 

The design flow for partial reconfiguration is used 

to generate a configuration for the static part and 

partial configurations for each reconfigurable block. 

To satisfy the communication constraints between 

the static region and reconfigurable regions, 

components called Bus Macros must be added 

between the two parties. 

These bus macros ensure firstly that whenever a 

partial reconfiguration is done, the routing of signals 

between the two parties remains unchanged. 

Secondly, they serve to isolate the two parties during 

the reconfiguration of the partial bitstream to avoid 

the unstable state of the interconnection signals.  

 

 

 

 

 

 

 

 

 

Figure 2   Physical Implementation of a 4-bit Bus Macro by 

Xilinx 

 

III.  DESCRIPTION OF THE EXAMPLE DESIGN 

Our example as mentioned is based on partially 

reconfigurable architecture around a Microblaze 

processor designed under the EDK environment. 

The application considered is a filtering device for 

an audio signal. Two digital filters were made, one is 

low pass type and the other is high-pass type. These 

two digital filters are our two reconfigurable 

modules. The audio signal, acquired from the 

controller, pass through the reconfigurable filter 

which can be loaded by choosing one of this two 

variants. The processed signal will be sent to the 

sound controller for its reading. The reconfiguration 

process is controlled by a Microblaze processor 

through a program written in C. The platform used is 
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the ML501 Xilinx prototyping board, around a 

Virtex 5 FPGA. 

With the EDK tool we have specified a system 

containing a Microblaze processor and peripherals 

strictly necessary (see Figure 3). The Microblaze 

(MB) is a soft-core processor; we would have added 

a memory LMB (local memory block) to store code 

and data. MB processor communicates with devices 

via a PLB bus (Processor Local Bus).  We have 

attached to this bus some peripherals such : SDRAM 

memory controller, a UART, Audio CODEC AC'97 

controller, ACE controller for access to Card Flash 

memory, ICAP controller (Internal Configuration 

Access Port) for lead partial  reconfigurations and 

finally our designed PRR reconfigurable 

                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Design of digital filters: 

The realization of our two filters has been made 

through the Xilinx System Generator tool. This tool 

is very powerful. It uses the Matlab/Simulink 

development environment to design an application 

using specific components provided by Xilinx as a 

library of graphical components [8]. Once the model 

is designed, it can be simulated in Simulink for 

validation and then we can generate with System 

Generator tool the VHDL template code and a 

Netlist of the model after synthesis. 

Our design model of Numeric Filter (Figure 4) 

uses the component FIR compiler as main element. 

This feature allows to dynamically loading all the 

filter parameters that we wish to achieve. These 

parameters are determined by the component 

PDATool (Figure 5) which provided a graphical 

programming filter.  

 Using System Generator, we have synthesized the 

two variants of our filter and can then be inserted 

into our platform. Their main parameters are 

described in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter device attached  to the bus through an 

interface adaptation Socket containing Bus Macros 

components. 

 
TABLE 1 

FILTERS PARAMETERS 

 

Low Pass High Pass 
Filter type Direct FIR  Direct FIR 

Freq pass (Hz) 3000 5000 

Freq Stop (Hz) 7000 5000 

Filter Order 31 31 
 

 
 

 

 
 

Figure 3   Block diagram of our system 
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        Figure 4: Filter design in Simulink with System Generator 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5  The PDATool component for filter programming 

 

 

A. Connecting the two filters to the system bus 

PLB 

As mentioned, the PLB is a one element of the 

IBM CoreConnect Bus designed for connection of 

processor to high-performance peripheral devices 

under EDK. In order to control our filter modules 

with processor we have equipped these cores with an 

interface layer called PLB IPIF that facilitates the 

connection to the Bus (PLB). This connection has 

been made automatically by wizard provided in 

EDK named Create and Import Peripheral. A small 

intervention in the generated code was necessary to 

instantiate the filter components in the interface.  A 

PLB core was then constructed for each variant of 

filter. 

To meet the partial reconfiguration design 

constraints, Bus Macros components must be added 

between the PLB Bus and the PLB-filter modules. 

To do this we have designed a second layer called 

Socket (see Figure 6). This socket allows passing all 

signals from PLB bus through Bus Macros and 

controlling them via the control bus DCR. 

 

B. System Implementation Steps 
 

Following the design flow for partial reconfiguration 

in EDK, several steps are needed to build our 

reconfigurable architecture. These steps are 

described as follows: 

 

C.1 Creation of our architecture in EDK  
 

The first step is to create a project in EDK witch 

contains all the modules presented in Figure 3 using 

the Base System Builder support. The IP core 

catalog in EDK does not contain all the modules 

needed for our design such a sound controller. For 

this we have added to the system this module and 

one version of our filter module (we have begun 

with low pass type) associated with socket module 

(containing Bus Macros components). Once all 

modules are added and connected to the PLB bus, 

the address generation system is done by specifying 

the address range required for each device (referring 

to the specific documentation of modules). The 

system is now ready for synthesising to produce all 

modules netlists. To synthesis the other version of 

filter module (high pass) we have created a similar 

project in EDK. In the latter, we have just swap the 

filters modules.  

 

C.2   Implementation of reconfigurable 

modules: 
 
 

After synthesis phase of system in the EDK 

environment, we pass now to implement our 

reconfigurable architecture using powerful Xilinx 

PlanAhead graphical tool.  With this tool, we can 

firstly specify the reconfigurable regions in FPGA. . 

We associate for each region their reconfigurable 

modules concerned. . We put Bus Macros 

components in the appropriate places. 

In second phase, we produce the different 

configurations which will be assembled to generate 

different bitstreams of system (static and partial 

bitstreams). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Socket for crossing PLB bus signals through Bus 

Macros. 

 

For our architecture, we have a single reconfigurable 

region that can be loaded by one of two Filter 
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modules. The dimensions of the region and the 

number of resources to be included are defined 

based on resources estimation given by the synthesis 

tool in EDK for filter modules. The placement of 

Bus Macros components is done manually within the 

reconfigurable region. We have 48 Bus Macros for 

circulate all PLB bus signals between the static and 

reconfigurable regions. It is necessary that Bus 

Macros will be placed in orderly manner (in one 

column for example) to facilitate subsequent routing 

procedure. 

After this phase of construction, DRC (Design Rule 

Checks) will be launched to ensure that the location 

of the reconfigurable region and the placement of 

bus macros are correct. The next step is the 

generation of configurations of the static part and 

two reconfigurable modules. This is done via tools 

ISE_PR mapping (MAP) and placement and routing 

(Place & Route) launched directly from the 

PlanAhead tool. The last step in this flow is the 

execution of PR Assemble command allowing the 

creation of partial bitstreams and the total bitstream 

that will be first loaded into the FPGA. 

C.3 Driving Program: 

As mentioned, C program has been developed to 

control the                                                                                

                                                                                 

 

 

 

Audio data will be transferred to the filter core (low 

pass filter at the top). Data processed by filter will be 

retrieved and sent to a FIFO memory included in the 

AC97 controller for real-time playback. The partial 

reconfiguration is controlled via a menu that gives 

the choice to load one of two filter bitstreams. The 

selected bitstream is read from the flash card. After 

examining the file header, the reconfiguration data 

will be sent to the ICAP device to reprogram the 

reconfigurable region in the FPGA. The serial port is 

configured in FPGA as Stdin/Stdout to give us a user 

interface of a system. 

IV.   RESULTS : 

Table 2 shows the utilization of slices, DSP48E 

macros of the two reconfigurable Filters and static 

part of our architecture after mapping operation.  

 
TABLE 2 

 RESOURCES UTILIZATION FOR PR-FILTERS AND STATIC PART  
  

 
PR-Low 

Pass Filter 

PR-High 

Pass Filter 
Static Part 

Slices 1268 1257 6106 

DSP48E 16 16 3 

 
The partial reconfiguration of filter module can save 

about 14.7% of slices and 45% of DSP48E macros 

compared to the full implementation where the static 

and the two filters types coexist together in FPGA.  

 

V. CONCLUSION  

 

This paper describes the dynamic partial 

reconfiguration process in Xilinx FPGA and shows 

the importance of such method for hardware 

optimization of resources through a time-sharing of  

 

 

 

 

one or more regions of the FPGA by different 

functionalities which leads to a reduction in 

hardware cost.  

In the future, we are planning to focus on the 

implementation of self-reconfiguration of FPGA 

through a real-time operating system to take into 

account the constraints of real-time applications. 
    

Figure 7: Description of partial reconfiguration process 
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