
Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

66

 Abstract - Reconfigurable devices, such as modern

FPGA provide advanced capabilities which allow the

creation of embedded systems on single chips (SoC).

One of the most challenging opportunities provided by

this kind of devices is the ability to dynamically and

partially reconfigure themselves. It consists in the

modification of a portion of the circuitry mapped on

the FPGA while the system is running. This ability

allows development of flexible systems that can deal

with changes in the requirements, standards and

operational conditions.

This paper presents partially reconfigurable FIR filter

design that employs dynamic partial reconfiguration.

Our scope is to implement a low-power, area-efficient

autonomously reconfigurable digital signal processing

architecture that is tailored for the realization of many

response FIR filters using Xilinx FPGA. The

implementation of design addresses area efficiency and

flexibility allowing dynamically inserting and/or

removing the partial modules to implement the partial

reconfigurable FIR filters with various types. This FIR

filter design method shows the good area efficiency and

flexibility by using the dynamic partial reconfiguration

method.

Keywords - Dynamic Partial Reconfiguration,

FPGA, Signal Processing.

I. INTRODUCTION

The Dynamic Partial Self-Reconfiguration

concept is the ability to change the configuration of

part of an FPGA device by itself while other

processes continue in the rest of the device [1].

The general reason for partial reconfiguration is

changing the design behavior without full

reconfiguration. Dynamic partial reconfiguration has

additional advantages when runtime-reconfiguration

and efficient resource utilization is desirable.

Runtime reconfiguration is especially useful for

applications that require adaptive and flexible

hardware since they need to change the behavior of a

system to adapt it to externally changing

environment. Dynamic partial reconfiguration also

facilitates more efficient changing configurations

which results in reduced chip area and power

consumption and availability of more FPGA

resources.

In this work we present a practical application of

signal processing implemented in a FPGA and uses

the principle of dynamic reconfiguration in its

execution. The considered application is a filtering

device for audio signal. Two digital filters were

made, one is low-pass type and other is high-pass

type. These two digital filters present our two

reconfigurable modules. All aspects of its design and

implementation will be exposed.

This paper is organized as follows. Section 2 gives

an overview of dynamic partial reconfiguration. In

Section 3 we present the total design flow to

implement a reconfigurable architecture. In section

4, we describe our implementation of a

reconfigurable digital filter. Some results are given

in section 4. Finally, Section 5 concludes the paper

and gives some perspectives.

II. PARTIAL RECONFIGURATION OVERVIEW

Partial reconfiguration is useful for systems with

multiple functions that can time-share the same

FPGA device resources. In such systems, one

section of the FPGA operates continuously while

other sections of the FPGA are disabled and partially

reconfigured to provide new functionality. This

technique is analogous to a microprocessor

managing context switching between software

processes, except in the case of FPGA partial

reconfiguration, it is hardware functionality, not

software, that is affected (Figure 1).

A partially reconfigurable design consists of a set of

full designs and partial modules. The full and partial

bitstreams are generated for different configurations

of a design. The idea of implementing a self-

reconfiguring platform for Xilinx Virtex family was

first reported in [1]. The platform enabled an FPGA

to dynamically reconfigure itself under the control of

an embedded microprocessor. The hardware

component of Self Reconfiguring Platform is

composed of the internal configuration access port

(ICAP), control logic and an embedded processor. .

The embedded processor can be Xilinx Microblaze,

Implementation of a Real-time Signal Processing

Application using Partial Dynamic Reconfiguration

in FPGA
Maamar Touiza1, Kamel Messaoudi1, El-bay Bourennane1, Abderrezak Guessoum2

1 Université de Bourgogne, Laboratoire LE2I, BP 47870 Dijon 21078 Cedex France
2 Université de Blida, Laboratoire LATSI, BP270 Route de Soumaa, Blida 9000 Algérie

maamar.touiza@u-bourgogne.fr, kamel.messaoudi@u-bourgogne.fr, ebourenn@u-bourgogne.fr ,

guessouma@hotmail.com

mailto:maamar.touiza@u-bourgogne.fr
mailto:ebourenn@u-bourgogne.fr
mailto:guessouma@hotmail.com

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

67

which is a 32-bit RISC soft processor core [6]. The

hard-core Power PC on some Virtex can also be

used as the embedded processor. The embedded

processor provides intelligent control of device

reconfiguration run-time.

Figure 1 Analogy between Microprocessor Context Switching

and FPGA Partial Reconfiguration Regions

The provided hardware architecture established the

framework for the implementation of the self-

reconfiguring platforms. Internal configuration

access port application program interface (ICAP

API) and Xilinx partial reconfiguration toolkit

design flow provide methods for reading and

modifying select FPGA resources and support for

relocatable partial bitstreams.

A. Design flow of a dynamically

reconfigurable architecture:

For Xilinx FPGA, the design flow that supports

partial reconfiguration uses largely the Xilinx ISE

tool with a few complements to enable the partial

reconfiguration management [5]. These changes are

needed because the basic tool can generate just a

single total configuration bitstream. In the case of

partial reconfiguration, we need to produce multiple

configurations bitstreams for the same application

(one for the static part and other partial

configurations for each reconfigurable module

completed).

Several versions of ISE are dedicated to the partial

reconfiguration; the latest supported version

available is ISE 9.2 SP4 with the additional PR tool.

Using Xilinx PlanAhead tool will further simplify

the task. It offers a graphical interface to manage the

entire process of reconfiguration in the same project

and run the various tools for static and partial

bitstreams generation.

B. Starting a Partial Reconfiguration design

with EDK:

The Xilinx EDK (Embedded Development Kit) is

a graphical environment tool for developing a

complete application around an embedded processor

and integrated it into an FPGA. Based on a design

with EDK, we can generate a partially

reconfigurable architecture. This involves the

creation of reconfigurable devices, changing their

HDL descriptions and their implementations using

the design flow for partial reconfiguration

mentioned previously. Given the highly automated

platform EDK, manual intervention is necessary to

merge the two design flows. The placement of

reconfigurable blocks and the generation of different

bitstreams of system can be made via the PlanAhead

tool.

C. Bus Macro Communication

The design flow for partial reconfiguration is used

to generate a configuration for the static part and

partial configurations for each reconfigurable block.

To satisfy the communication constraints between

the static region and reconfigurable regions,

components called Bus Macros must be added

between the two parties.

These bus macros ensure firstly that whenever a

partial reconfiguration is done, the routing of signals

between the two parties remains unchanged.

Secondly, they serve to isolate the two parties during

the reconfiguration of the partial bitstream to avoid

the unstable state of the interconnection signals.

Figure 2 Physical Implementation of a 4-bit Bus Macro by

Xilinx

III. DESCRIPTION OF THE EXAMPLE DESIGN

Our example as mentioned is based on partially

reconfigurable architecture around a Microblaze

processor designed under the EDK environment.

The application considered is a filtering device for

an audio signal. Two digital filters were made, one is

low pass type and the other is high-pass type. These

two digital filters are our two reconfigurable

modules. The audio signal, acquired from the

controller, pass through the reconfigurable filter

which can be loaded by choosing one of this two

variants. The processed signal will be sent to the

sound controller for its reading. The reconfiguration

process is controlled by a Microblaze processor

through a program written in C. The platform used is

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

68

the ML501 Xilinx prototyping board, around a

Virtex 5 FPGA.

With the EDK tool we have specified a system

containing a Microblaze processor and peripherals

strictly necessary (see Figure 3). The Microblaze

(MB) is a soft-core processor; we would have added

a memory LMB (local memory block) to store code

and data. MB processor communicates with devices

via a PLB bus (Processor Local Bus). We have

attached to this bus some peripherals such : SDRAM

memory controller, a UART, Audio CODEC AC'97

controller, ACE controller for access to Card Flash

memory, ICAP controller (Internal Configuration

Access Port) for lead partial reconfigurations and

finally our designed PRR reconfigurable

A. Design of digital filters:

The realization of our two filters has been made

through the Xilinx System Generator tool. This tool

is very powerful. It uses the Matlab/Simulink

development environment to design an application

using specific components provided by Xilinx as a

library of graphical components [8]. Once the model

is designed, it can be simulated in Simulink for

validation and then we can generate with System

Generator tool the VHDL template code and a

Netlist of the model after synthesis.

Our design model of Numeric Filter (Figure 4)

uses the component FIR compiler as main element.

This feature allows to dynamically loading all the

filter parameters that we wish to achieve. These

parameters are determined by the component

PDATool (Figure 5) which provided a graphical

programming filter.

 Using System Generator, we have synthesized the

two variants of our filter and can then be inserted

into our platform. Their main parameters are

described in Table 1.

Filter device attached to the bus through an

interface adaptation Socket containing Bus Macros

components.

TABLE 1

FILTERS PARAMETERS

Low Pass High Pass
Filter type Direct FIR Direct FIR

Freq pass (Hz) 3000 5000

Freq Stop (Hz) 7000 5000

Filter Order 31 31

Figure 3 Block diagram of our system

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

69

 Figure 4: Filter design in Simulink with System Generator

Figure 5 The PDATool component for filter programming

A. Connecting the two filters to the system bus

PLB

As mentioned, the PLB is a one element of the

IBM CoreConnect Bus designed for connection of

processor to high-performance peripheral devices

under EDK. In order to control our filter modules

with processor we have equipped these cores with an

interface layer called PLB IPIF that facilitates the

connection to the Bus (PLB). This connection has

been made automatically by wizard provided in

EDK named Create and Import Peripheral. A small

intervention in the generated code was necessary to

instantiate the filter components in the interface. A

PLB core was then constructed for each variant of

filter.

To meet the partial reconfiguration design

constraints, Bus Macros components must be added

between the PLB Bus and the PLB-filter modules.

To do this we have designed a second layer called

Socket (see Figure 6). This socket allows passing all

signals from PLB bus through Bus Macros and

controlling them via the control bus DCR.

B. System Implementation Steps

Following the design flow for partial reconfiguration

in EDK, several steps are needed to build our

reconfigurable architecture. These steps are

described as follows:

C.1 Creation of our architecture in EDK

The first step is to create a project in EDK witch

contains all the modules presented in Figure 3 using

the Base System Builder support. The IP core

catalog in EDK does not contain all the modules

needed for our design such a sound controller. For

this we have added to the system this module and

one version of our filter module (we have begun

with low pass type) associated with socket module

(containing Bus Macros components). Once all

modules are added and connected to the PLB bus,

the address generation system is done by specifying

the address range required for each device (referring

to the specific documentation of modules). The

system is now ready for synthesising to produce all

modules netlists. To synthesis the other version of

filter module (high pass) we have created a similar

project in EDK. In the latter, we have just swap the

filters modules.

C.2 Implementation of reconfigurable

modules:

After synthesis phase of system in the EDK

environment, we pass now to implement our

reconfigurable architecture using powerful Xilinx

PlanAhead graphical tool. With this tool, we can

firstly specify the reconfigurable regions in FPGA. .

We associate for each region their reconfigurable

modules concerned. . We put Bus Macros

components in the appropriate places.

In second phase, we produce the different

configurations which will be assembled to generate

different bitstreams of system (static and partial

bitstreams).

Figure 6: Socket for crossing PLB bus signals through Bus

Macros.

For our architecture, we have a single reconfigurable

region that can be loaded by one of two Filter

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

70

modules. The dimensions of the region and the

number of resources to be included are defined

based on resources estimation given by the synthesis

tool in EDK for filter modules. The placement of

Bus Macros components is done manually within the

reconfigurable region. We have 48 Bus Macros for

circulate all PLB bus signals between the static and

reconfigurable regions. It is necessary that Bus

Macros will be placed in orderly manner (in one

column for example) to facilitate subsequent routing

procedure.

After this phase of construction, DRC (Design Rule

Checks) will be launched to ensure that the location

of the reconfigurable region and the placement of

bus macros are correct. The next step is the

generation of configurations of the static part and

two reconfigurable modules. This is done via tools

ISE_PR mapping (MAP) and placement and routing

(Place & Route) launched directly from the

PlanAhead tool. The last step in this flow is the

execution of PR Assemble command allowing the

creation of partial bitstreams and the total bitstream

that will be first loaded into the FPGA.

C.3 Driving Program:

As mentioned, C program has been developed to

control the

Audio data will be transferred to the filter core (low

pass filter at the top). Data processed by filter will be

retrieved and sent to a FIFO memory included in the

AC97 controller for real-time playback. The partial

reconfiguration is controlled via a menu that gives

the choice to load one of two filter bitstreams. The

selected bitstream is read from the flash card. After

examining the file header, the reconfiguration data

will be sent to the ICAP device to reprogram the

reconfigurable region in the FPGA. The serial port is

configured in FPGA as Stdin/Stdout to give us a user

interface of a system.

IV. RESULTS :

Table 2 shows the utilization of slices, DSP48E

macros of the two reconfigurable Filters and static

part of our architecture after mapping operation.

TABLE 2

 RESOURCES UTILIZATION FOR PR-FILTERS AND STATIC PART

PR-Low

Pass Filter

PR-High

Pass Filter
Static Part

Slices 1268 1257 6106

DSP48E 16 16 3

The partial reconfiguration of filter module can save

about 14.7% of slices and 45% of DSP48E macros

compared to the full implementation where the static

and the two filters types coexist together in FPGA.

V. CONCLUSION

This paper describes the dynamic partial

reconfiguration process in Xilinx FPGA and shows

the importance of such method for hardware

optimization of resources through a time-sharing of

one or more regions of the FPGA by different

functionalities which leads to a reduction in

hardware cost.

In the future, we are planning to focus on the

implementation of self-reconfiguration of FPGA

through a real-time operating system to take into

account the constraints of real-time applications.

Figure 7: Description of partial reconfiguration process

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

71

REFERENCES

[1] E Horta, John W. Lockwood, et al., “Dynamic hardware

plugins in an FPGA with partial run-time reconfiguration,”
Proceedings of the 39th conference on Design automation,

NewOrleans, Louisiana, 343-348, 2002.

[2] G. Mermoud, “A Module-Based Dynamic Partial

Reconfiguration Tutorial,” Technical report, Logic Systems

Laboratory, Ecole Polytechnique Federale de Lausanne,
November 2004.

[3]. Xilinx, “Two Flows for Partial Reconfiguration: Module

Based or Difference Based,” www.xilinx.com, Xilinx Application
Note 290, September 2004.

[4] P. Lysaght, B. Blodget, et al., “Enhanced Architectures,

Design Methodologies and CAD Tools for Dynamic

Reconfiguration of Xilinx FPGAs,” International Conference on

Field Programmable Logic, Madrid, Spain, June 2006.

[5] Xilinx, “Early access partial reconfiguration user guide”

Xilinx Application Note, March 2006.

[6] Xilinx, “EDK Design using PlanAhead for Partial
Reconfiguration,” preliminary copy edition, 2007.

[7] N. Dorairaj, E. Shiflet, and MarkGoosman, “PlanAhead

Software as a Platform for Partial Reconfiguration,” Xcell Journal
Online, (4):68–71, 2005.

[8] Xilinx, “System Generator for DSP User Guide”, Xilinx

Application Note, 2009.

