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  Abstract- In this paper, we propose and validate a 

flow integrating the Unified Modelling Language UML 

with existing high level synthesis tools targeting 

reconfigurable architectures. The flow tries to take 

advantages of UML as a standard for visual object 

modelling and functional simulation and some CAD 

tools for profiling, simulation and high level synthesis 

that work with Xilinx platforms. In order to validate 

our proposed flow, a case study on the H264 decoder is 

illustrated. 

 

I.    INTRODUCTION 

 

   The productivity gap between semiconductor 

technology and methodology and tool support has 

become one of the biggest challenges in embedded 

systems design. To deal with this problem, 

specialists in the field have resorted to software 

engineering and borrowed from it many ideas and 

technologies to close this gap. 

   Since embedded systems development requires 

collaboration between customers, software and 

hardware teams, a visual common language is 

preferable to eliminate misunderstandings that can 

occur. This language must be able to capture 

customer requirements and then proceeds toward 

efficient software and hardware implementations in 

a well defined design flow. We believe that if done 

correctly, the Unified Modelling Language (UML) 

can be such a language. 

   UML [2] is a graphical object-oriented modelling 

language, originally, was used in software systems. 

The use of such graphical notation help designer to 

understand, capture and analyze the client 

requirements at early stages of development in a 

semiformal manner. In its basic form, it is applicable 

to a wide variety of systems (open language). 

   However, several key attributes of UML are 

important to embedded systems: 

1. UML is abstract, and designers can focus on the 

high-level characteristics of the system, rather than 

implementation-specific factors. 

2. Hardware and software designers would share a 

common language. 

3. A rich set of notations suited for modelling 

different points of view. 

4. Support for object-based structural decomposition 

and refinement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Support for non functional constraints modelling. 

   

   Recent works aim at generating hardware 

description languages like VHDL, and SystemC 

from UML diagrams.  The generated code is used 

either for simulation or synthesis purposes [3]. 

   Despite of the effort in the direction of UML-

based system-level design, there is no consistent 

design flow for embedded systems and the proposed 

methodologies and associated tools still lack 

completeness and interoperability. For this reason, 

many UML2.0 profiles have been proposed by both 

academia and industry. According to authors, 

UML2.0 can be tailored to different application 

domains by the definition of profiles. A profile 

extends an application specific UML sub-set using 

extension mechanisms offered by UML like 

stereotypes, constraints, and tagged values. 

Furthermore a profile must provide a methodology 

[3]. 

   Our purpose is not to define a new UML profile, 

instead of, we try to create a bridge between UML 

and some existing high level synthesis tools 

targeting reconfigurable architectures. We note that 

UML will not replace the well practiced languages 

and CAD tools, instead, it builds on the top of them 

an abstract visual layer to facilitate the task of 

synthesis especially for software designers those are 

not familiar with hardware domain in general and 

reconfigurable architectures in particular. The paper 

is organized as follows: in Section 2 we first 

overview the related work. Our proposed flow is 

detailed in section 3. Section 4 is dedicated to 

discuss some results on the H264 decoder before 

concluding. 

 

II.    RELATED WORK 

 

   We can classify existing co-design flows targeting 

reconfigurable architectures into three main classes: 

conventional programming language, SystemC, and 

UML. 

   Conventional programming languages that are 

most used in system specification of embedded 

systems are C/C++, Java. Several approaches of 

design entry in C for reconfigurable coprocessors 

have been proposed [4, 8, 9, 10]. A compilation 

source application in C to a CPU and reconfigurable 
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co-processor is proposed by Callahan et al. [4]. 

Their hardware/software partitioning process is done 

at the basic block level. Nimble [9] is a framework 

that automatically compiles system-level 

applications specified in C to executables on the 

embedded reconfigurable architecture. In this 

framework, hardware/software partitioning 

algorithm performs fine-grained partitioning (at loop 

and basic-block levels) of an application. In contrast 

to these approaches our partitioning process is done 

at the method level. Java based design flow for 

networked reconfigurable systems is first proposed 

by Fleischmann et al. [6, 7].  

   The proposed co-design environment called 

JACoP, which contains a run-time manager to 

schedule methods for execution either on the Java 

virtual machine (JVM) or on the reconfigurable 

hardware. Such programming languages have the 

advantage of being executable, and thereby facilitate 

early verification and simulation. However, for the 

purpose of system level specifications, the use of 

these languages does not satisfy all the requirements. 

SystemC is recently used as system-level 

specification languages [11, 12]. 

   Pelkonen et al. [12] proposed a system-level 

modelling methodology of dynamically 

reconfigurable hardware using SystemC. This 

methodology allows users to do design space 

exploration at the system-level, without the need to 

map the design first to an actual technology 

implementation. However, this methodology is far 

from complete; the accuracy of the results is 

required for further investigations. 

   Using UML as a front end for co-design flow for 

embedded systems is still quite new.  

   In [1] Beierlein et al. presented a UML-based co-

design environment for run-time reconfigurable 

architectures, called Model Compiler for 

Configurable Architecture (MOCCA). They use the 

UML throughout all phases of development, from 

specification to synthesis. The concept of hardware-

software co-design, Model Driven Architecture 

(MDA), and platform-based design are used in 

proposed development approach. They extended the 

UML by an action language to enable model 

execution, early verification and simulation, design 

space exploration, and automated and complete 

synthesis. 

   The work in [14], a UML-based design flow for 

Dynamic Reconfigurable Computing Systems 

(DRCS) is proposed. The proposed design flow is 

targeted at the execution speedup of functional 

algorithms in DRCS and at the reduction of the 

complexity and time-consuming efforts in designing 

DRCS. In particular, the most notable feature of the 

proposed design flow is a HW-SW partitioning 

methodology based on the UML 2.0 sequence 

diagram, called Dynamic Bitstream Partitioning on 

Sequence Diagram (DBPSD). Besides, partitioning 

guidelines are also included in DBPSD to help 

designers make prudent partitioning decisions at the 

class method granularity. 

   Contrary to this work, our flow targets the 

enhancement of global system performance and 

performs the hardware/software co-simulation and 

synthesis tasks on reconfigurable architectures 

starting from UML models. The Hardware/Software 

partitioning is performed at the method granularity 

on objects diagram. Of course, we can perform 

partitioning at a coarse grained level such as object 

or fine grained level like elementary blocs. We 

choose the method level because it is situated 

between coarse and fine grained levels. 

 

 
 

III.    OUR PROPOSED FLOW 

 

   We have developed a design flow and related 

supporting tools. Figure 1 shows the detailed view of 

the proposed design flow, which is separated into 

four phases: specification, exploration, generation 

and integration. Our proposed flow starts by 

establishing UML models for both application and 

architecture. 

   We have adopted Rhapsody7.2 [13] as our UML 

modelling tool. After drawing UML models in 

Rhapsody, the tool can generate C, C++, Ada or 

Java code. Rhapsody provides an Object Execution 

Framework (OXF) which enables execution of 

objects. 

   Rhapsody in C is targeting embedded software 

development and makes it possible to create a 

platform-independent model. It covers automated 

code generation in C from UML diagrams including 

configuration of environment and makefile 

generation. This approach makes it possible to set up 

a cross compiler and linker to be used for the target 

platform. Visual models can be executed and 

animated for early verification and test. It also 

provides a good support for an iterative and agile 

development process. Rhapsody enables reuse of old 

legacy code by wrapping it into libraries linked with 

the model, and then only imports the header files 

into Rhapsody model. It is possible to configure how 

the Rhapsody code is generated by changing the 

properties for project, package or class. In some 

situations, this could be required to optimize the 

code size. In our case, application structural model is 

presented through object diagrams. 

   Each object is stereotyped with “singleton”. We 

use this stereotype because we have exactly one 

instance of each object. The internal behaviours of 

objects methods are implemented directly in the C 

programming language which is independent from 

any platform. In order to avoid the generation of 

dynamic variables, we customize the code 

generation process in Rhapsody. 

   Parallel to application modelling, Hardware 

architecture is modelled via UML structure diagram 

with a set of defined stereotypes and tagged values 
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that characterize hardware components and topology 

of the target architecture. 

   In our case, the target architecture is a 

reconfigurable platform (Xilinx) [15] with processor 

cores (PowerPC, MicroBlaze), programmable HW 

(Virtex4), Peripherals, HW/SW interfaces (FSL, 

APU, OPB, PLB), IP cores, and Operating System 

(OS) support for reconfigurable HW accelerator 

(linux). 

   After the generation of the application executable 

and the behaviour is verified, the next step consists 

in SW/HW exploration. In this step, the designer 

profiles the application executable code and 

analyzes the communication workload between 

methods.  

   According to the results of profiling and 

communication workload, the designer identifies the 

methods to be implemented in hardware and selects 

the communication scheme (i.e. point to point versus 

shared memory).  

   HW/SW partitioning is done at the method level in 

objects diagram by definition of a new stereotype 

called “HW” with a tagged value that specifies the 

IP name. We write a macro using VB API integrated 

in the Rhapsody environment to parse HW and SW 

methods and all calls from and to these methods. At 

this stage, we can for instance generate hardware 

wrappers and software drivers automatically. For 

this purpose, we have to introduce wrappers and 

drivers templates as header files in C. This is 

possible due to facilities offered by Rhapsody. 

Hardware methods serve as inputs for the Catapult 

HLS commercial tool for automatic VHDL code 

generation from C code. 

   Using such tool, the designer can optimize his/her 

design by applying some HLS optimization 

techniques such as loop unrolling, etc., and generate 

the RTL scheme of the design. He can also make a 

more accurate performance and area estimations. 

The last step consists in the integration of C/VHDL 

codes using XPS from Xilinx. 

   Generally, there are two ways to integrate a 

customized IP core into a MicroBlaze based 

embedded soft processor system. One way is to 

connect the IP on the On-chip Peripheral Bus (OPB). 

The OPB is part of the IBM Core ConnectTM on-

chip bus standard. The second way is to connect the 

user IP to the MicroBlaze dedicated Fast Simplex 

Link (FSL) bus system. If the application is time-

critical, the user IP should be connected to the FSL 

bus system; otherwise, it can be connected as a slave 

or master on the OPB. If the customized core is 

connected to the dedicated FSL interface, it is then 

possible to use predefined C functions to use the 

user core in the application software [15]. 

 

IV.    CASE STUDY 

 

   As a case study, we have tested our proposed 

methodology on the H264 decoder. The functional 

block diagram of the H264 is shown in figure2. 

   Figure 3 shows the UML object diagram for the 

H264 decoder. It is comprised of eighteen (18) 

singleton objects. 

All methods are implemented in C code. Figure 4 

shows the coretrans object that includes the inverse 

transform function (enter) which is stereotyped with 

“HW”.  

   Figure 5 shows the UML modelling for the 

MicroBlaze soft core. Table 1 illustrates the 

profiling results for the different methods of the 

H264 decoder. 

A. Code generation 

    This section focuses on the inverse transform 

function and its translation to hardware using HLS 

with the logic needed to interface the MicroBlaze 

processor. 

  First, we generate RTL code using Mentor Catapult 

from pure C code. The use of such tool helps greatly 

the VHDL code generation problem, but manual 

analysis is likely to be unavoidable to address 

efficiently the sensitive problem of interfaces. In our 

case, the inverse transform function processes small 

and homogeneous 4x4 blocks, so a point to point 

communication looks like a suited solution. In this 

particular case, the processing in itself is fast (a few 

cycles) compared to the data transfers (16 data * 2). 

  Efficient transfers are mandatory to grant effective 

and significant speedups, and this can difficultly be 

processed efficiently without manual intervention. 
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Fig. 1. Flow based on cooperation of UML and EDA tools. Full 

arrows represent automatic code generation, dotted lines are 

manual or semi automated steps. Transversal steps such as 
validation are not represented but should cover all abstraction 

 

 
 

Fig. 2. Functional blocs diagram of H264 decoder 
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Fig. 3. UML object diagram of H264 decoder 
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Fig. 4. Coretrans object including the enter method (inverse 

transform) stereotyped by ‘HW’ 

   We defined a VHDL template wrapper that 

extends the original FSL templates provided by 

Xilinx tools, and able to consider the processing 

time of the accelerator with constraints of the data 

transfers. We also developed template driver 

functions for the accelerator to be called from the 

application code. Both templates have been 

developed with the concern to be applicable in 

general cases, some cases may require more or less 

adaptation depending on the data communication 

requirements. 

   In our case study, the RTL VHDL code is 

generated by a HLS tool (CatapultC Synthesis) this 

way, with the following simple interface: 16 

block_in ports, 16 block_out ports plus a clk and rst 

signals. Those signals are then wrapped to be 

compatible with the FSL interface that will make 

possible the connection of a coprocessor to the 

MicroBlaze processor.    

   Figure 6 shows the synthesis result of the inverse 

transform method. 

   A wrapper partially generated by XPS is thus 

added. The original FSM has to be modified with a 

wait for the end of co-processing before writing 

back the data. The software interface in this case is 

basic through the use of two assembly instructions 

(put/get). 

B. Global performance discussion 

    A realistic evaluation of speedup must take into 

account the penalty of data transfers to/from the 

coprocessor. In this evaluation, we have thus 

compared the C code of the inverse transform 

executing on the PowerPC, with a C code making a 

coprocessor call with exactly the same data sets. The 

results is an acceleration of 2.41, while on a pure 

processing point of view, this acceleration amount is 

approximate. This is due to data communication that 

is sequential with FSL. 

 
TABLE I 

RESULTS OF PROFILING FOR THE H264 DECODER FUNCTIONS 

% Symbol Name Functionality 

25.4309 GetLMCTempBlock Motion compensation 

21.0332   L_MC_get_sub Motion compensation 

10.7746 Clip1 Motion compensation 

 9.6356 MotionCompensateT

B 

Motion compensation 

6.9927 GetCMCTempBlock Motion compensation 

5.1527   inverse_quantize Inverse quantization 

5.1203 direct_ict Inverse transform 

4.2957 Enter Inverse transform 

3.3019 coeff_scan Inverse Scan 

1.1246 get_code CAVLC 

0.8510 decode_slice_data -- 

0.6445 enter_luma_block -- 

0.6193 residual_block -- 

0.5533 FillMVs Mode prediction 

0.5017 MotionCompensateM

B 

Motion compensation 

0.3613 input_get_one_bit -- 
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Fig. 5. UML modelling of the MicroBlaze soft core 

 

 
 

Fig. 6. Result of  the inverse transform method synthesis 

 

IV.    CONCLUSION AND FUTURE WORK 

 

   In this paper, we presented a new flow that uses 

UML as a front end for embedded systems co-design 

targeting a reconfigurable architecture. The 

proposed flow tries to take advantages of both UML 

and EDA design tools for high level synthesis and 

co-simulation. As a first validation of our flow, we 

have applied the flow to model the H264 decoder.    

   According to profiling results, designer decides 

which method will be implemented in hardware. 

This decision is made manually and depends on 

designer experience. The designer also selects the 

most appropriate communication scheme. The 

subsequent steps consist in VHDL code generation 

using CatapultC, simulation using ModelSim, and 

software/hardware co-synthesis using the XPS/SDK 

tools from Xilinx. As a perspective, we plan to 

automate the wrappers and drivers generation from 

UML models. This is possible since the platform 

including templates for hardware wrappers and 

software drivers is modelled at UML level. 
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