
Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

56

 Abstract- In this paper, we propose and validate a

flow integrating the Unified Modelling Language UML

with existing high level synthesis tools targeting

reconfigurable architectures. The flow tries to take

advantages of UML as a standard for visual object

modelling and functional simulation and some CAD

tools for profiling, simulation and high level synthesis

that work with Xilinx platforms. In order to validate

our proposed flow, a case study on the H264 decoder is

illustrated.

I. INTRODUCTION

 The productivity gap between semiconductor

technology and methodology and tool support has

become one of the biggest challenges in embedded

systems design. To deal with this problem,

specialists in the field have resorted to software

engineering and borrowed from it many ideas and

technologies to close this gap.

 Since embedded systems development requires

collaboration between customers, software and

hardware teams, a visual common language is

preferable to eliminate misunderstandings that can

occur. This language must be able to capture

customer requirements and then proceeds toward

efficient software and hardware implementations in

a well defined design flow. We believe that if done

correctly, the Unified Modelling Language (UML)

can be such a language.

 UML [2] is a graphical object-oriented modelling

language, originally, was used in software systems.

The use of such graphical notation help designer to

understand, capture and analyze the client

requirements at early stages of development in a

semiformal manner. In its basic form, it is applicable

to a wide variety of systems (open language).

 However, several key attributes of UML are

important to embedded systems:

1. UML is abstract, and designers can focus on the

high-level characteristics of the system, rather than

implementation-specific factors.

2. Hardware and software designers would share a

common language.

3. A rich set of notations suited for modelling

different points of view.

4. Support for object-based structural decomposition

and refinement.

5. Support for non functional constraints modelling.

 Recent works aim at generating hardware

description languages like VHDL, and SystemC

from UML diagrams. The generated code is used

either for simulation or synthesis purposes [3].

 Despite of the effort in the direction of UML-

based system-level design, there is no consistent

design flow for embedded systems and the proposed

methodologies and associated tools still lack

completeness and interoperability. For this reason,

many UML2.0 profiles have been proposed by both

academia and industry. According to authors,

UML2.0 can be tailored to different application

domains by the definition of profiles. A profile

extends an application specific UML sub-set using

extension mechanisms offered by UML like

stereotypes, constraints, and tagged values.

Furthermore a profile must provide a methodology

[3].

 Our purpose is not to define a new UML profile,

instead of, we try to create a bridge between UML

and some existing high level synthesis tools

targeting reconfigurable architectures. We note that

UML will not replace the well practiced languages

and CAD tools, instead, it builds on the top of them

an abstract visual layer to facilitate the task of

synthesis especially for software designers those are

not familiar with hardware domain in general and

reconfigurable architectures in particular. The paper

is organized as follows: in Section 2 we first

overview the related work. Our proposed flow is

detailed in section 3. Section 4 is dedicated to

discuss some results on the H264 decoder before

concluding.

II. RELATED WORK

 We can classify existing co-design flows targeting

reconfigurable architectures into three main classes:

conventional programming language, SystemC, and

UML.

 Conventional programming languages that are

most used in system specification of embedded

systems are C/C++, Java. Several approaches of

design entry in C for reconfigurable coprocessors

have been proposed [4, 8, 9, 10]. A compilation

source application in C to a CPU and reconfigurable

High Level Synthesis of Embedded Systems Targeting

Reconfigurable Architectures

Fateh Boutekkouk
Department of Computer Science

University of Larbi ben M’hedi

Route de Constantine, PO 358, Oum El Bouaghi, Algeria

fateh_boutekkouk@yahoo.fr

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

57

co-processor is proposed by Callahan et al. [4].

Their hardware/software partitioning process is done

at the basic block level. Nimble [9] is a framework

that automatically compiles system-level

applications specified in C to executables on the

embedded reconfigurable architecture. In this

framework, hardware/software partitioning

algorithm performs fine-grained partitioning (at loop

and basic-block levels) of an application. In contrast

to these approaches our partitioning process is done

at the method level. Java based design flow for

networked reconfigurable systems is first proposed

by Fleischmann et al. [6, 7].

 The proposed co-design environment called

JACoP, which contains a run-time manager to

schedule methods for execution either on the Java

virtual machine (JVM) or on the reconfigurable

hardware. Such programming languages have the

advantage of being executable, and thereby facilitate

early verification and simulation. However, for the

purpose of system level specifications, the use of

these languages does not satisfy all the requirements.

SystemC is recently used as system-level

specification languages [11, 12].

 Pelkonen et al. [12] proposed a system-level

modelling methodology of dynamically

reconfigurable hardware using SystemC. This

methodology allows users to do design space

exploration at the system-level, without the need to

map the design first to an actual technology

implementation. However, this methodology is far

from complete; the accuracy of the results is

required for further investigations.

 Using UML as a front end for co-design flow for

embedded systems is still quite new.

 In [1] Beierlein et al. presented a UML-based co-

design environment for run-time reconfigurable

architectures, called Model Compiler for

Configurable Architecture (MOCCA). They use the

UML throughout all phases of development, from

specification to synthesis. The concept of hardware-

software co-design, Model Driven Architecture

(MDA), and platform-based design are used in

proposed development approach. They extended the

UML by an action language to enable model

execution, early verification and simulation, design

space exploration, and automated and complete

synthesis.

 The work in [14], a UML-based design flow for

Dynamic Reconfigurable Computing Systems

(DRCS) is proposed. The proposed design flow is

targeted at the execution speedup of functional

algorithms in DRCS and at the reduction of the

complexity and time-consuming efforts in designing

DRCS. In particular, the most notable feature of the

proposed design flow is a HW-SW partitioning

methodology based on the UML 2.0 sequence

diagram, called Dynamic Bitstream Partitioning on

Sequence Diagram (DBPSD). Besides, partitioning

guidelines are also included in DBPSD to help

designers make prudent partitioning decisions at the

class method granularity.

 Contrary to this work, our flow targets the

enhancement of global system performance and

performs the hardware/software co-simulation and

synthesis tasks on reconfigurable architectures

starting from UML models. The Hardware/Software

partitioning is performed at the method granularity

on objects diagram. Of course, we can perform

partitioning at a coarse grained level such as object

or fine grained level like elementary blocs. We

choose the method level because it is situated

between coarse and fine grained levels.

III. OUR PROPOSED FLOW

 We have developed a design flow and related

supporting tools. Figure 1 shows the detailed view of

the proposed design flow, which is separated into

four phases: specification, exploration, generation

and integration. Our proposed flow starts by

establishing UML models for both application and

architecture.

 We have adopted Rhapsody7.2 [13] as our UML

modelling tool. After drawing UML models in

Rhapsody, the tool can generate C, C++, Ada or

Java code. Rhapsody provides an Object Execution

Framework (OXF) which enables execution of

objects.

 Rhapsody in C is targeting embedded software

development and makes it possible to create a

platform-independent model. It covers automated

code generation in C from UML diagrams including

configuration of environment and makefile

generation. This approach makes it possible to set up

a cross compiler and linker to be used for the target

platform. Visual models can be executed and

animated for early verification and test. It also

provides a good support for an iterative and agile

development process. Rhapsody enables reuse of old

legacy code by wrapping it into libraries linked with

the model, and then only imports the header files

into Rhapsody model. It is possible to configure how

the Rhapsody code is generated by changing the

properties for project, package or class. In some

situations, this could be required to optimize the

code size. In our case, application structural model is

presented through object diagrams.

 Each object is stereotyped with “singleton”. We

use this stereotype because we have exactly one

instance of each object. The internal behaviours of

objects methods are implemented directly in the C

programming language which is independent from

any platform. In order to avoid the generation of

dynamic variables, we customize the code

generation process in Rhapsody.

 Parallel to application modelling, Hardware

architecture is modelled via UML structure diagram

with a set of defined stereotypes and tagged values

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

58

that characterize hardware components and topology

of the target architecture.

 In our case, the target architecture is a

reconfigurable platform (Xilinx) [15] with processor

cores (PowerPC, MicroBlaze), programmable HW

(Virtex4), Peripherals, HW/SW interfaces (FSL,

APU, OPB, PLB), IP cores, and Operating System

(OS) support for reconfigurable HW accelerator

(linux).

 After the generation of the application executable

and the behaviour is verified, the next step consists

in SW/HW exploration. In this step, the designer

profiles the application executable code and

analyzes the communication workload between

methods.

 According to the results of profiling and

communication workload, the designer identifies the

methods to be implemented in hardware and selects

the communication scheme (i.e. point to point versus

shared memory).

 HW/SW partitioning is done at the method level in

objects diagram by definition of a new stereotype

called “HW” with a tagged value that specifies the

IP name. We write a macro using VB API integrated

in the Rhapsody environment to parse HW and SW

methods and all calls from and to these methods. At

this stage, we can for instance generate hardware

wrappers and software drivers automatically. For

this purpose, we have to introduce wrappers and

drivers templates as header files in C. This is

possible due to facilities offered by Rhapsody.

Hardware methods serve as inputs for the Catapult

HLS commercial tool for automatic VHDL code

generation from C code.

 Using such tool, the designer can optimize his/her

design by applying some HLS optimization

techniques such as loop unrolling, etc., and generate

the RTL scheme of the design. He can also make a

more accurate performance and area estimations.

The last step consists in the integration of C/VHDL

codes using XPS from Xilinx.

 Generally, there are two ways to integrate a

customized IP core into a MicroBlaze based

embedded soft processor system. One way is to

connect the IP on the On-chip Peripheral Bus (OPB).

The OPB is part of the IBM Core ConnectTM on-

chip bus standard. The second way is to connect the

user IP to the MicroBlaze dedicated Fast Simplex

Link (FSL) bus system. If the application is time-

critical, the user IP should be connected to the FSL

bus system; otherwise, it can be connected as a slave

or master on the OPB. If the customized core is

connected to the dedicated FSL interface, it is then

possible to use predefined C functions to use the

user core in the application software [15].

IV. CASE STUDY

 As a case study, we have tested our proposed

methodology on the H264 decoder. The functional

block diagram of the H264 is shown in figure2.

 Figure 3 shows the UML object diagram for the

H264 decoder. It is comprised of eighteen (18)

singleton objects.

All methods are implemented in C code. Figure 4

shows the coretrans object that includes the inverse

transform function (enter) which is stereotyped with

“HW”.

 Figure 5 shows the UML modelling for the

MicroBlaze soft core. Table 1 illustrates the

profiling results for the different methods of the

H264 decoder.

A. Code generation

 This section focuses on the inverse transform

function and its translation to hardware using HLS

with the logic needed to interface the MicroBlaze

processor.

 First, we generate RTL code using Mentor Catapult

from pure C code. The use of such tool helps greatly

the VHDL code generation problem, but manual

analysis is likely to be unavoidable to address

efficiently the sensitive problem of interfaces. In our

case, the inverse transform function processes small

and homogeneous 4x4 blocks, so a point to point

communication looks like a suited solution. In this

particular case, the processing in itself is fast (a few

cycles) compared to the data transfers (16 data * 2).

 Efficient transfers are mandatory to grant effective

and significant speedups, and this can difficultly be

processed efficiently without manual intervention.

Platform
Specification
HW Modules

Topology/architec
ture

Configuration
HW functions+

com
- System config+

com

SW
Adaptation

- Accel driver
- Accel call
Insertion

HW Gen
- Accel +interface

- Input for platform
cfg tool

Compilatio
n

Synthesis

ACCEL

WRAPPER

TEMPLATES
C code

Platform
dependent

C code EDA
inputs

HW
function

s

bitstream binary

Catapult,

Modelsim, XPS

XPS, ISE

Design
analysis

Functional Specification
Algorithmic design

Module
decomposition/reuse

Partitioning
Simulation

Profiling/me
trics Oprofile,

gcc

Accel driver
templates C

code

XPS, SDK

Rhapsody

Rhapsody

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

59

Fig. 1. Flow based on cooperation of UML and EDA tools. Full

arrows represent automatic code generation, dotted lines are

manual or semi automated steps. Transversal steps such as
validation are not represented but should cover all abstraction

Fig. 2. Functional blocs diagram of H264 decoder

src1::block_Class

«Singleton»

enter_luma_blo...

enter_chroma_...

transform_luma...

transform_chro...

«flow»

src1::coretrans_Class

«Singleton»

core_block_multiply(a:core_blo...

forward_core_transform(original:...

forward_quantize(raw:core_bloc...

inverse_quantize(quantized:cor...

inverse_core_transform_slow(c...

inverse_core_transform_fast(co...

«HW» enter(ptr:unsigned char *...

direct_ict(coeff:core_block,img:...

hadamard(coeff:core_block):cor...

«flow»

src1::slice_Class

«Singleton»

decode_slice_...

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

src1::cavlc_Class

«Singleton»

init_code_table(items:c...

get_code(table:code_ta...

get_unsigned_exp_gol...

get_signed_exp_golom...

«flow»

«flow»

«flow»

«flow»

src1::mode_pred_Class

«Singleton»

alloc_mode_pr...

clear_mode_pr...

free_mode_pre...

get_mb_mode...

«flow»

«flow»«flow»

src1::residual_Class

«Singleton»

residual_block(...

init_code_table...

«flow»

«flow»

«flow»

«flow»

src1::input_Class

«Singleton»

__peek_bits(bi...

__step_bits(bit...

input_peek_bit...

input_step_bit...

input_get_bits(...

«flow»

«flow»

«flow»

«flow»

«flow» src1::slicehdr_Class

«Singleton»

skip_ref_pic_lis...

skip_adaptive_r...

decode_slice_h...

_str_slice_type...

«flow»

«flow»«flow»

«flow»

src1::params_Class

«Singleton»

decode_seq_...

decode_pic_...

check_unsup...

«flow»

«flow»

«flow»

«flow»

«flow»

src1::perf_Class

«Singleton»

perf_enable():v...

perf_enter(sec...

perf_summari...

«flow»

«flow»

src1::mocomp_Class

«Singleton»

GetLMCTempBlo...

Clip1(i:int):int

L_MC_get_sub(da...

«HW» GetCMCTe...

MotionCompensat...

MotionCompensat...

«flow»

«flow»

src1::intra_pred_Class

«Singleton»

Intra_4x4_Disp...

Intra_16x16_Di...

Intra_Chroma_...

Intra_4x4_Verti...

«flow»

«flow»«flow»

src1::in_file_Class

«Singleton»

input_open(file...

input_read(de...

input_rewind()...

input_close():v...

«flow»

«flow»

«flow»«flow»

src1::main_Class

«Singleton»

h264_open(filename:char*):...

h264_decode_frame(verbos...

h264_rewind():void

h264_close():void

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

«flow»

src1::nal_Class

«Singleton»

get_next_nal...

more_rbsp_d...

_str_nal_unit...

«flow»

«flow»

«flow»

«flow»

«flow»

src1::mbmodes_Class

«Singleton»

decode_m...

decode_su...

_str_mb_t...

_str_sub_...

«flow»

«request»

src1::playh264_Class

«Singleton»

help(arg:char*...

clamp_and_s...

showframe(sc...

do_bench(ma...

«request»

src1::common_Class

«Singleton»

alloc_frame(...

free_frame(f:f...

«flow»

Fig. 3. UML object diagram of H264 decoder

src1::coretrans_Class

core_block_multiply(a:core_blo...

forward_core_transform(original:...

forward_quantize(raw:core_bloc...

inverse_quantize(quantized:cor...

inverse_core_transform_slow(c...

inverse_core_transform_fast(co...

«HW» enter(ptr:unsigned char *...

direct_ict(coeff:core_block,img:...

hadamard(coeff:core_block):cor...

Fig. 4. Coretrans object including the enter method (inverse

transform) stereotyped by ‘HW’

 We defined a VHDL template wrapper that

extends the original FSL templates provided by

Xilinx tools, and able to consider the processing

time of the accelerator with constraints of the data

transfers. We also developed template driver

functions for the accelerator to be called from the

application code. Both templates have been

developed with the concern to be applicable in

general cases, some cases may require more or less

adaptation depending on the data communication

requirements.

 In our case study, the RTL VHDL code is

generated by a HLS tool (CatapultC Synthesis) this

way, with the following simple interface: 16

block_in ports, 16 block_out ports plus a clk and rst

signals. Those signals are then wrapped to be

compatible with the FSL interface that will make

possible the connection of a coprocessor to the

MicroBlaze processor.

 Figure 6 shows the synthesis result of the inverse

transform method.

 A wrapper partially generated by XPS is thus

added. The original FSM has to be modified with a

wait for the end of co-processing before writing

back the data. The software interface in this case is

basic through the use of two assembly instructions

(put/get).

B. Global performance discussion

 A realistic evaluation of speedup must take into

account the penalty of data transfers to/from the

coprocessor. In this evaluation, we have thus

compared the C code of the inverse transform

executing on the PowerPC, with a C code making a

coprocessor call with exactly the same data sets. The

results is an acceleration of 2.41, while on a pure

processing point of view, this acceleration amount is

approximate. This is due to data communication that

is sequential with FSL.

TABLE I

RESULTS OF PROFILING FOR THE H264 DECODER FUNCTIONS

% Symbol Name Functionality

25.4309 GetLMCTempBlock Motion compensation

21.0332 L_MC_get_sub Motion compensation

10.7746 Clip1 Motion compensation

 9.6356 MotionCompensateT

B

Motion compensation

6.9927 GetCMCTempBlock Motion compensation

5.1527 inverse_quantize Inverse quantization

5.1203 direct_ict Inverse transform

4.2957 Enter Inverse transform

3.3019 coeff_scan Inverse Scan

1.1246 get_code CAVLC

0.8510 decode_slice_data --

0.6445 enter_luma_block --

0.6193 residual_block --

0.5533 FillMVs Mode prediction

0.5017 MotionCompensateM

B

Motion compensation

0.3613 input_get_one_bit --

Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

60

Microblaze

1 «Softcore»

get():char

put():void

BootRom:RhpString

ClockFrequency:RhpReal

DataCache:RhpString

DataRam:RhpString

Debug:RhpBoolean=True

EnableFloatUnit:RhpString

InstructionCache:RhpString

InstructionRam:RhpString

InstructionWord:RhpString

PipelineDepth:RhpString

Fig. 5. UML modelling of the MicroBlaze soft core

Fig. 6. Result of the inverse transform method synthesis

IV. CONCLUSION AND FUTURE WORK

 In this paper, we presented a new flow that uses

UML as a front end for embedded systems co-design

targeting a reconfigurable architecture. The

proposed flow tries to take advantages of both UML

and EDA design tools for high level synthesis and

co-simulation. As a first validation of our flow, we

have applied the flow to model the H264 decoder.

 According to profiling results, designer decides

which method will be implemented in hardware.

This decision is made manually and depends on

designer experience. The designer also selects the

most appropriate communication scheme. The

subsequent steps consist in VHDL code generation

using CatapultC, simulation using ModelSim, and

software/hardware co-synthesis using the XPS/SDK

tools from Xilinx. As a perspective, we plan to

automate the wrappers and drivers generation from

UML models. This is possible since the platform

including templates for hardware wrappers and

software drivers is modelled at UML level.

REFERENCES

[1] T. Beierlein, D. Frohlich, and B. Steinbach. Model-driven
compilation of UML-models for reconfigurable

architectures. In Proc. of the Second RTAS Workshop on

Model-Driven Embedded Systems (MoDES’04), May 2004.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling

Language User Guide. Addison-Wesley, 1999.

[3] F. Boutekkouk, M. Benmohammed, S. Bilavarn, and M.

Auguin. UML2.0 profiles for Embedded Systems and

Systems On a Chip (SOCs). In JOT (Journal of Object
Technology), January 2009.

[4] T. Callahan and J. Wawrzynek. Instruction-level parallelism

for reconfigurable computing. In Proc. of the 8th
International Workshop on Field-Programmable Logic and

Applications, From FPGAs to Computing Paradigm, pages

248–257. Springer-Verlag, Berlin, August 1998.

[5] K. Compton and S. Hauck. Reconfigurable computing: A

survey of systems and software. ACM Computing Surveys,

34(2):171–210, June 2002.

[6] J. Fleischmann, K. Buchenrieder, and R. Kress. A

hardware/software prototyping environment for dynamically

reconfigurable embedded systems. In Proc. of the 6th
International Workshop on Hardware/software Codesign,

pages 105–109. IEEE Computer Society, March 1998.

[7] J. Fleischmann, K. Buchenrieder, and R. Kress. Java driven

codesign and prototyping of networked embedded systems.

In Proc. of the 36th ACM/IEEE Design Automation
Conference (DAC’99), pages 794–797. ACM Press, June

1999.

[8] S. Kimura, M. Yukishita, Y. Itou, A. Nagoya, M Hirao, and
K. Watanabe. A hardware/software codesign method for a

general purpose reconfigurable co-processor. In Proc. of the

5th International Workshop on Hardware/Software Co-
design (CODES/CASHE’97), pages 147–151. IEEE

Computer Society, March 1997.

[9] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood. Hardware-software co-design of embedded

reconfigurable architectures. In Proc. of the 37th

ACM/IEEE Design Automation Conference (DAC’00),

pages 507–512. IEEE Computer Society, June 2000.

[10] N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S.

Govindarajan, and R. Vemuri. Rapid prototyping of
reconfigurable coprocessors. In Proc. of the International

Conference on Application Specific Systems, Architectures,

and Processors (ASAP), pages 303–312. IEEE Press,
August 1996.

[11] K. D. Nguyen, Z. Sun, P. S. Thiagarajan, and W. F. Wong.

Model-driven SoC design via executable UML to SystemC.
In Proc. of the 25th IEEE International Real-Time Systems

Symposium (RTSS’04), pages 459–468. IEEE Computer

Society, December 2004.

[12] A. Pelkonen, K. Masselos, and M. Cupak. System-level

modeling of dynamically reconfigurable hardware with

SystemC. In Proc. of the 10th Reconfigurable Architectures
Workshop (RAW’03), 17th International Symposium on

Parallel and Distributed Processing (IPDPS’03), pages 174–

181. IEEE Computer Society, April 2003.

[13] Rhapsody case tool reference manual. I-Logix Inc.

http://www.ilogix.com.

[14] C.H. Tseng. UML-Based Rapid Prototyping Design Flow
for Dynamically Reconfigurable Computing Systems.

Master thesis, National Chung Cheng University, China,

June 2005.

[15] www.Xilinx.com.

