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Abstract-- In this paper, we suggest certain 

approach of validation of an embedded 

application. The presented methodology is 

divided on several layers, we can transit from one 

level to another level by refining. The first level 

represents abstraction associated to the 

application and the lowest level concerns FPGA 

implementation. The methodology is illustrated 

by an application based on GMM model and its 

hardware implementation.   

Index Terms-Embedded application,  

Refinement, Verification, Invariant, B formalism, 

hardware implementation. 

 

1    Introduction 

It seems relevant and important to study 

properties of design levels of embedded application 

in formal context. This context allows to: 

- work in independent manner from specific 

design methods and actors of these designs.  

- perform execution time analysis for particular 

target.  

- investigate verification interface between 

software and hardware, this context is relevant when 

we have to deal with deep problems of embedded 

problems industries.  

 

In this paper, we propose an approach which 

enables us to validate the implementation of 

embedded systems from a refinement point of view.  

Implementation validation is necessary when using 

the V cycle or when we have to add new elements 

(functions) to an existing system (notion of 

incrementality) [13][15]. 

In approaches like UML, SDL[1], the system is 

defined independently from the hardware 

implementation.   In addition it is necessary to 

validate the implementation generated by taking into 

account the hardware properties. The validation 

methods coupled to these approaches have used 

analytic methods and heuristics [17][21][16][10]. 

Our approach of validation can be considered as 

complementary to the pervious methods because we 

deal with implementation directly.  

Our method concerns the horizontal and vertical 

validation between design layers. We refer us to 

formal method like VDM, B[6][2], communicating 

timed automata [1][5][4][09] to structure  embedded  

systems design process. We qualify our method as 

novel  because we associate a certain analatical 

mathematic representation with formal computer 

science formalisms and there fore we try to fill gap 

between two approaches. 

 

This paper presents an approach in order to 

validate an implementation of an embedded 

application.  The approach is hierarchical and allows 

extracting models for each level of design process. 

The transition from one level to another level is 

realised by abstracting (omitting)  some details of 

the concerned level. There fore we need some 

criterion to validate the transformation.   

 

The extraction method of models is divided on 

two levels : The first level of modelling consists of 

establishing set of equations representing 

probabilistic model based in this paper on GMM 

model (Gaussian Mixture Models) [14].   The 

second level consists of hardware part : in our case it 

is represented by FPGA architecture [14][8].   

 

The case study GMM provides good performances 

and interesting properties as classifier, there fore 

dealing with its real-time characteristics[Mam] must 

improve its applicability.  

 

This paper in divided on several sections, the section  

two presents the general method used during 

embedded application design. The section three 

presents the based proof formalism used to validate 

applications stages and give definitions of 

refinement notion. The section four presents case 

study which illustrates the new point of view of 

refinement methodology. We conclude by some 

observations which give future directions of the 

present work.   

 

2 Hardware Design  

The design process of a digital FPGA consists of the 

following stages : logic design and simulation, 

placement and routing, design rules check and 

finally prototype production.  

 

The design of IC is divided in two parts called 

“HDL software development” and “hardware 

prototyping”. The HDL software development 

includes two stages : behavioural stage and 

structural stage. The hardeware prototyping is a 

physical stage.  

 

Behavioural stage: in the behavioural stage, the 

studied applications are fist written at system level 

using an HDL. The most common used HDL’s are 

Verilog or Very high speed integrated circuit 

hardware description language (VHDL).   VHDL 

allows the possibility of modelling the application 
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behaviour, regardless of target technology and 

implementation. VHDL is not suited for modelling 

or describing power or analog elements, where 

continuous time is required. MATLAB/Simulink 

tool [ ] is used for the modelling and simulation of 

control algorithms.  

Power system blockset are used for the modelling 

and simulation of power system. The same models 

will be reused all over this methodology to check the 

IC functionality.  

After functional validation at system level 

description, integrated control block properties must 

be studied and chosen by the designer. Thus, data 

binary format (word length, fixed or floating point), 

mathematical and numerical calculation methods 

(mathematical operators, integration) or 

quantification effects due to used binary format, 

must be defined. These choices are based on 

accuracy of estimated digital values. These 

parameters must be also defined to minimize digital 

estimation errors, which could decrease control 

performances. At the end of this behavioural stage, 

all digital properties must be defined, after 

functional validation by mixed (analog-digital) 

simulations.   

 

 

Structural stage: at this stage, the application must 

be partitioned into functional blocks. Each block is 

described into a lower abstraction level as in 

precedent stage, taking into account the digital 

properties previously defined. The description of the 

digital IC is closer to hardware implementation. The 

final goal of this stage is to obtain a Register 

Transfer Logic (RTL) model, which must be 

checked against by mixed simulation, reusing high 

level analog MATLAB/Simulink models written in 

behavioural stage for power analog elements. The 

major results of this stage are, first, the functionality 

of the VHDL described application and secondly, 

the additional information, such as length of the 

operations in term of clock cycles number. The final 

RTL digital model must be written according to the 

synthesis aspect, optimizing hardware resources and 

timing of the final digital IC. 

 

Physical stage: The RTL, VHDL model obtained at 

the end of structural stage, is independent of the 

target technology. The rapid hardware prototyping  

used method changes depending on the aim of the 

final implementation. The evolution of FPGA in 

term of integration capabilities, low costs and re-

programmability using static SRAM technology 

leads the designer to think of FPGA prototyping. For 

theses reasons, to reduce lead time and initial 

prototyping cost, we propose in methodology to 

implement and validate, first, on an experimental 

test bench, a FPGA prototype, programmed with the 

RTL final description of the structural stage. 

Another interest of FPGA prototyping is component 

re-programability. 

   

3 Proof-based development  based on B 

formalism. 

3.1 Event-based modelling  

Event-driven approach  [2*,7*] is based on the B 

notation [4].   A formal model is characterized by a 

(finite) list x of state variables possibly modified by 

a (finite) list of events, an invariant I(x) states some 

properties that must always be satisfied by the 

variables x and maintained by the activation of the 

events.  

 

Definition 1 : Generalised substitution  

Generalised substitutions are borrowed from B 

notation. They provide a way to express the 

transformations of the values of the state of a formal 

model. In its simple form, x:= E(x), a generalised 

substitution looks like an assignment statement. In 

this construct, x denotes a vector built on the set of 

state variables of the model, and E(x) a vector of 

expressions of the same size as the vector x. The 

interpretation we shall give here to this statement is 

not however that of an assignment statement. We 

interpret it as a logical simultaneous substitution of 

each variable of the vector x by the corresponding 

expression of the vector E(x).  There exists a more 

general form of generalised substitution. It is 

denoted by the construct x : P(x0,x). This is to be 

read ;” x is modified in such a way that the predicate 

P(x0,x) holds”, where x denotes the new value of  

the vector whereas x0 denotes its old value.  

 

Definition 2  Events and BeforeAfter predicates  

An event is essentially made of two parts : a guard, 

which is a predicate built on the state variables, and 

an action, which is a generalised substitution. An 

event can take one of the forms shown in the table 

below. In these constructs, evt is an identifier : this 

is the event name. The first event is not guarded: it is 

thus always enabled. The guard of the other events, 

which states the necessary condition for these events 

to occur, is represented by G(x) in the second case, 

and by  t. G(t,x) in the third one. The latter defines 

a non-deterministic event where t represents a vector 

of distinct local variables. The, so-called, before-

after predicate B A(x,x’) associated with each event 

shape, describes the event as a logical predicate 

expressing the relationship linking the values of the 

state variables just before(x) and just after(x’) the 

event “execution”.  

 

Event  Before-after Predicate 

B A(x,x’)  

Evt = begin x : P(x0,x) 

end 

P(x,x’)  

Evt = select G(x) then 

x : Q(x0,x) end  
G(x)  Q(x,x’)  

Evt = any t where 

G(t,x)  then x : 
 t ( G(t,x)  R(x,x’,t))  
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R(x0,x,t) end  

 

Proof  obligations are produced from events in order 

to state that the invariant condition I(x) is preserved. 

We next give the general rule to be proved. It 

follows immediately from the very definition of the 

before-after predicate, B A(x,x’) of each event : 

I(x)  B A(x,x’)  I(x’)  

 

3.2 Model refinement  

The refinement of a formal model allows us 

to enrich a model in a step by step approach. 

Refinement provides a way to construct stronger 

invariants and also to add details in a model. It is 

used to transform an abstract model in a more 

concrete version by modifying the state description. 

This is essentially done by extending the list of state 

variables (possibly suppression some of them), by 

refining each abstract event into a corresponding 

concrete version, and by adding new events. The 

abstract state variables, x, and the concrete ones, y, 

are linked together by means of a, so-called, gluing 

invariant J(x,y). A number of proof obligations 

ensure that (1) each abstract event is correctly 

refined by its corresponding concrete version, (2) 

each new event refines skip, (3) no new event take 

control for ever, and (4) relative deadlock freeness is 

preserved.  

 

Definition 3 : Refinement  

We suppose that an abstract model AM with 

variables x and invariant I(x) is refined by concrete 

model CM with variables y and gluing invariant 

J(x,y). If B AA(x,x’) and B AC(x,x’) are 

respectively  the abstract and concret before-after 

predicates of the same event, we have to prove the 

following statement :  

I(x)  J(x,y)  B AC(y,y’)   x’. ( B 

AA(x,x’)  J(x’,y’))  

This says that under the abstract invariant I(x) and 

the concret one J(x,y), a concrete step B AC(y,y’) 

can be simulated ( x’) by an abstract one 

BAA(x,x’) in such a way that gluing invariant 

J(x’,y’)  is preserved. A new event with before-after 

predicate B A(y,y’) must refine skip (x’=x). This 

leads to the following statement to prove: 

 

I(x)  J(x,y)  B A(y,y’)  J(x,y’)  

 

Moreover, we must prove that a variant V(y) is 

decreased by each new event ( this is to guarantee 

that an abstract step may occur). We have thus to 

prove the following for each new event with befire-

after predicate B A (y,y’) :  

I(x)  J(x,y)  B A(y,y’)  V(y’)  V(y)  

 

Finally, we must prove that the concrete model does 

not introduce more deadlocks than the abstract one.  

This is formalized by means of the following proof 

obligation : 

I(x)  J(x,y)  grds(AM)  grds(C M)  

Where grds(AM) stands for the disjunction of the 

guards of the events of the abstract model, and grds( 

C M) stands for the disjunction of the guards of the 

events of the concrete one. 

 

 

4   Incremental development of Gaussian Mixture 

Models Classifier 

In this section, we present several models of the 

GMM case-study. The case study used in this 

paper is  the task of a pattern recognition algorithm 

which  consists of setting a decision rule, which 

optimally partitions the data space into c regions, 

one for each class Ck. A pattern classifier 

generates a class label for an unknown feature 

vector x  Rd from a discrete set of previously 

learned classes. The Gaussian mixture models 

(GMM) classifier is used to illustrate the validation 

methodology presented in this paper. 

 

4.1 First model   

GMM is classified as a semi-parametric density 

estimation method since it defines a general class 

of functional forms for the density model. In this 

mixture model, a probability density function is 

expressed as a linear combination of basis 

functions. The interesting property of GMM is that 

the training procedure is done independently for 

each class by constructing a Gaussian mixture of a 

given class. In GMM, a classifier is constructed by 

evaluating the posterior probability of an unknown 

input pattern x belonging to a given class Ck 

expressed as (Ck|x)    

(Ck|x)   = (Ck) (x|Ck) / ( x)          

Where (Ck) is the frequency of a given training 

sample in the data-set and the unconditional 

density ( x) is given by  

( x)         =   (x|Ck) (Ck). 

 

The class conditional densities  (x|Ck)  can 

expressed by  

                   (x|Ck)=  j = 1 to M   (j)  (x|j) 

Where  (j) are the mixing coefficients of the 

component density functions  (x|j). Each mixture 

component is defined by a Gaussian parametric 

distribution in d dimensional space  

 

 (x|j) = exp { -1/2(x-j) T  j -1 (x-j) } /  (2) 
d/2  | j| 1/2 

 

The parameters to be estimated are the mixing 

coefficients  (j), the covariance matrix j, and the 

mean vector j.  

 

4.2 The second model  

One important task when considering GMM 

hardware complexity is to estimate the number 

of memory units storing the parameters of the 
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Gaussian models. In this context new set of 

parameters : constant Kj and a triangular matrix 

Gj are defined and used instead of  (Ck),  (j) , 

| j| ½  and  | j| -1  

 

 

The new coefficients Kj and Gj are given by :  

 

Ki = (Ck) (j) /(2) d/2 | j| ½  

 

Gj T Gj = ½ j -1  

 

Gj is a triangular matrix introduced in order to 

reduce the complexity.  

Consequently , we suppose that : 

zj = [ ( x -  j )T Gj ] [ ( x - j) T Gj ] T  

 

the equation (x|Ck) (Ck) =  (Ck)  j=1 to M 

(j) (x|j) 

 

(x|Ck) (Ck) = j=1 .. M   Kj exp{-zj}   (*)   

 

Thus the calculation of  (*)  can be divided into 

three steps : evaluation of parameters zj, the 

exponential calculation, and the multiplication 

with constant Kj.  

  

4.3 The third model 

The GMM processor includes a serial parallel 

vector matrix multiplier, a square and multiplier 

units, a LPF unit, a winner-takes-all (WTA) 

circuit, and two accumulators. A 10-bit data bus 

is used in order to load the GMM parameters 

and the test vector data using the load signals 

(Fig.1).   

 

State processor = Enable | Reset  

Serial parallel vector matrix multiplier = (-, 

Reg-GMM, Reg-x)  

Reg-x = (input, bus-10 bits)  

Reg-GMM = (load, GMM)  

Reg-k = (input, bus-10 bits)  

Y2 = (affectation, SPVMM)  

Acc1 = (affectation, Y2) 

LPF = (affectation, Acc)  

Acc2 = ( x, LPF, Reg-k)  

WTA = ( Affectation, Acc2)  

OUTPUT = (affectation, WTA)  

 

4.4 The fourth model  

One the major problems when implementing the 

GMM classifier is related to the complexity of the 

exponential function calculation. To approximate the 

expentional function  using linear piecewise function 

LPF. The process of building the classifier using 

LPF can be divided into two major phases : the 

training and the test procedure. The parameters of 

the classifier are selected during the training phase. 

We first obtain the parameters of the mixture models 

such as  and  based on the training data-set. The 

same training data are fed on the classifier in which 

the exponential function is replaced by LPF, while 

the other parameters of the Gaussian model such as 

the mean vector and the covariance matrix are kept 

unchanged. Next, the parameters of LPF are 

optimised such that the mismatch between decision 

boundaries in the LPF-based GMM and the original 

GMM is minimized. 

  

5 Conclusion 

The present paper suggests new approach of  

incremental validation of embedded application. The 

notion of refining is explored comparing to its initial 

definition used in formal methods like VDM, B 

formalism, etc….  

We suggest to combine these new approaches in 

order to deal with functional et temporal properties 

to be verified on embedded application.  Combining 

formalism like B or IF2C provide us the possibility 

to deal horizontal and vertical during design-

implementation process of embedded application. 
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