
Models & Optimisation and Mathematical Analysis Journal Vol. 01 Issue 01 (2012)

51

A New hybrid approach of Embedded Application Validation
Mostefa Belarbi

Ibn Khaldoun University of Tiaret – Algeria.

mbelarbi@mail.univ-tiaret.dz

Abstract-- In this paper, we suggest certain

approach of validation of an embedded

application. The presented methodology is

divided on several layers, we can transit from one

level to another level by refining. The first level

represents abstraction associated to the

application and the lowest level concerns FPGA

implementation. The methodology is illustrated

by an application based on GMM model and its

hardware implementation.

Index Terms-Embedded application,

Refinement, Verification, Invariant, B formalism,

hardware implementation.

1 Introduction

It seems relevant and important to study

properties of design levels of embedded application

in formal context. This context allows to:

- work in independent manner from specific

design methods and actors of these designs.

- perform execution time analysis for particular

target.

- investigate verification interface between

software and hardware, this context is relevant when

we have to deal with deep problems of embedded

problems industries.

In this paper, we propose an approach which

enables us to validate the implementation of

embedded systems from a refinement point of view.

Implementation validation is necessary when using

the V cycle or when we have to add new elements

(functions) to an existing system (notion of

incrementality) [13][15].

In approaches like UML, SDL[1], the system is

defined independently from the hardware

implementation. In addition it is necessary to

validate the implementation generated by taking into

account the hardware properties. The validation

methods coupled to these approaches have used

analytic methods and heuristics [17][21][16][10].

Our approach of validation can be considered as

complementary to the pervious methods because we

deal with implementation directly.

Our method concerns the horizontal and vertical

validation between design layers. We refer us to

formal method like VDM, B[6][2], communicating

timed automata [1][5][4][09] to structure embedded

systems design process. We qualify our method as

novel because we associate a certain analatical

mathematic representation with formal computer

science formalisms and there fore we try to fill gap

between two approaches.

This paper presents an approach in order to

validate an implementation of an embedded

application. The approach is hierarchical and allows

extracting models for each level of design process.

The transition from one level to another level is

realised by abstracting (omitting) some details of

the concerned level. There fore we need some

criterion to validate the transformation.

The extraction method of models is divided on

two levels : The first level of modelling consists of

establishing set of equations representing

probabilistic model based in this paper on GMM

model (Gaussian Mixture Models) [14]. The

second level consists of hardware part : in our case it

is represented by FPGA architecture [14][8].

The case study GMM provides good performances

and interesting properties as classifier, there fore

dealing with its real-time characteristics[Mam] must

improve its applicability.

This paper in divided on several sections, the section

two presents the general method used during

embedded application design. The section three

presents the based proof formalism used to validate

applications stages and give definitions of

refinement notion. The section four presents case

study which illustrates the new point of view of

refinement methodology. We conclude by some

observations which give future directions of the

present work.

2 Hardware Design

The design process of a digital FPGA consists of the

following stages : logic design and simulation,

placement and routing, design rules check and

finally prototype production.

The design of IC is divided in two parts called

“HDL software development” and “hardware

prototyping”. The HDL software development

includes two stages : behavioural stage and

structural stage. The hardeware prototyping is a

physical stage.

Behavioural stage: in the behavioural stage, the

studied applications are fist written at system level

using an HDL. The most common used HDL’s are

Verilog or Very high speed integrated circuit

hardware description language (VHDL). VHDL

allows the possibility of modelling the application

mailto:mbelarbi@mail.univ-tiaret.dz

 52

behaviour, regardless of target technology and

implementation. VHDL is not suited for modelling

or describing power or analog elements, where

continuous time is required. MATLAB/Simulink

tool [] is used for the modelling and simulation of

control algorithms.

Power system blockset are used for the modelling

and simulation of power system. The same models

will be reused all over this methodology to check the

IC functionality.

After functional validation at system level

description, integrated control block properties must

be studied and chosen by the designer. Thus, data

binary format (word length, fixed or floating point),

mathematical and numerical calculation methods

(mathematical operators, integration) or

quantification effects due to used binary format,

must be defined. These choices are based on

accuracy of estimated digital values. These

parameters must be also defined to minimize digital

estimation errors, which could decrease control

performances. At the end of this behavioural stage,

all digital properties must be defined, after

functional validation by mixed (analog-digital)

simulations.

Structural stage: at this stage, the application must

be partitioned into functional blocks. Each block is

described into a lower abstraction level as in

precedent stage, taking into account the digital

properties previously defined. The description of the

digital IC is closer to hardware implementation. The

final goal of this stage is to obtain a Register

Transfer Logic (RTL) model, which must be

checked against by mixed simulation, reusing high

level analog MATLAB/Simulink models written in

behavioural stage for power analog elements. The

major results of this stage are, first, the functionality

of the VHDL described application and secondly,

the additional information, such as length of the

operations in term of clock cycles number. The final

RTL digital model must be written according to the

synthesis aspect, optimizing hardware resources and

timing of the final digital IC.

Physical stage: The RTL, VHDL model obtained at

the end of structural stage, is independent of the

target technology. The rapid hardware prototyping

used method changes depending on the aim of the

final implementation. The evolution of FPGA in

term of integration capabilities, low costs and re-

programmability using static SRAM technology

leads the designer to think of FPGA prototyping. For

theses reasons, to reduce lead time and initial

prototyping cost, we propose in methodology to

implement and validate, first, on an experimental

test bench, a FPGA prototype, programmed with the

RTL final description of the structural stage.

Another interest of FPGA prototyping is component

re-programability.

3 Proof-based development based on B

formalism.

3.1 Event-based modelling

Event-driven approach [2*,7*] is based on the B

notation [4]. A formal model is characterized by a

(finite) list x of state variables possibly modified by

a (finite) list of events, an invariant I(x) states some

properties that must always be satisfied by the

variables x and maintained by the activation of the

events.

Definition 1 : Generalised substitution

Generalised substitutions are borrowed from B

notation. They provide a way to express the

transformations of the values of the state of a formal

model. In its simple form, x:= E(x), a generalised

substitution looks like an assignment statement. In

this construct, x denotes a vector built on the set of

state variables of the model, and E(x) a vector of

expressions of the same size as the vector x. The

interpretation we shall give here to this statement is

not however that of an assignment statement. We

interpret it as a logical simultaneous substitution of

each variable of the vector x by the corresponding

expression of the vector E(x). There exists a more

general form of generalised substitution. It is

denoted by the construct x : P(x0,x). This is to be

read ;” x is modified in such a way that the predicate

P(x0,x) holds”, where x denotes the new value of

the vector whereas x0 denotes its old value.

Definition 2 Events and BeforeAfter predicates

An event is essentially made of two parts : a guard,

which is a predicate built on the state variables, and

an action, which is a generalised substitution. An

event can take one of the forms shown in the table

below. In these constructs, evt is an identifier : this

is the event name. The first event is not guarded: it is

thus always enabled. The guard of the other events,

which states the necessary condition for these events

to occur, is represented by G(x) in the second case,

and by  t. G(t,x) in the third one. The latter defines

a non-deterministic event where t represents a vector

of distinct local variables. The, so-called, before-

after predicate B A(x,x’) associated with each event

shape, describes the event as a logical predicate

expressing the relationship linking the values of the

state variables just before(x) and just after(x’) the

event “execution”.

Event Before-after Predicate

B A(x,x’)

Evt = begin x : P(x0,x)

end

P(x,x’)

Evt = select G(x) then

x : Q(x0,x) end
G(x)  Q(x,x’)

Evt = any t where

G(t,x) then x :
 t (G(t,x)  R(x,x’,t))

 53

R(x0,x,t) end

Proof obligations are produced from events in order

to state that the invariant condition I(x) is preserved.

We next give the general rule to be proved. It

follows immediately from the very definition of the

before-after predicate, B A(x,x’) of each event :

I(x)  B A(x,x’)  I(x’)

3.2 Model refinement

The refinement of a formal model allows us

to enrich a model in a step by step approach.

Refinement provides a way to construct stronger

invariants and also to add details in a model. It is

used to transform an abstract model in a more

concrete version by modifying the state description.

This is essentially done by extending the list of state

variables (possibly suppression some of them), by

refining each abstract event into a corresponding

concrete version, and by adding new events. The

abstract state variables, x, and the concrete ones, y,

are linked together by means of a, so-called, gluing

invariant J(x,y). A number of proof obligations

ensure that (1) each abstract event is correctly

refined by its corresponding concrete version, (2)

each new event refines skip, (3) no new event take

control for ever, and (4) relative deadlock freeness is

preserved.

Definition 3 : Refinement

We suppose that an abstract model AM with

variables x and invariant I(x) is refined by concrete

model CM with variables y and gluing invariant

J(x,y). If B AA(x,x’) and B AC(x,x’) are

respectively the abstract and concret before-after

predicates of the same event, we have to prove the

following statement :

I(x)  J(x,y)  B AC(y,y’)   x’. (B

AA(x,x’)  J(x’,y’))

This says that under the abstract invariant I(x) and

the concret one J(x,y), a concrete step B AC(y,y’)

can be simulated ( x’) by an abstract one

BAA(x,x’) in such a way that gluing invariant

J(x’,y’) is preserved. A new event with before-after

predicate B A(y,y’) must refine skip (x’=x). This

leads to the following statement to prove:

I(x)  J(x,y)  B A(y,y’)  J(x,y’)

Moreover, we must prove that a variant V(y) is

decreased by each new event (this is to guarantee

that an abstract step may occur). We have thus to

prove the following for each new event with befire-

after predicate B A (y,y’) :

I(x)  J(x,y)  B A(y,y’)  V(y’)  V(y)

Finally, we must prove that the concrete model does

not introduce more deadlocks than the abstract one.

This is formalized by means of the following proof

obligation :

I(x)  J(x,y)  grds(AM)  grds(C M)

Where grds(AM) stands for the disjunction of the

guards of the events of the abstract model, and grds(

C M) stands for the disjunction of the guards of the

events of the concrete one.

4 Incremental development of Gaussian Mixture

Models Classifier

In this section, we present several models of the

GMM case-study. The case study used in this

paper is the task of a pattern recognition algorithm

which consists of setting a decision rule, which

optimally partitions the data space into c regions,

one for each class Ck. A pattern classifier

generates a class label for an unknown feature

vector x  Rd from a discrete set of previously

learned classes. The Gaussian mixture models

(GMM) classifier is used to illustrate the validation

methodology presented in this paper.

4.1 First model

GMM is classified as a semi-parametric density

estimation method since it defines a general class

of functional forms for the density model. In this

mixture model, a probability density function is

expressed as a linear combination of basis

functions. The interesting property of GMM is that

the training procedure is done independently for

each class by constructing a Gaussian mixture of a

given class. In GMM, a classifier is constructed by

evaluating the posterior probability of an unknown

input pattern x belonging to a given class Ck

expressed as (Ck|x)

(Ck|x) = (Ck) (x|Ck) / (x)

Where (Ck) is the frequency of a given training

sample in the data-set and the unconditional

density (x) is given by

(x) =   (x|Ck) (Ck).

The class conditional densities  (x|Ck) can

expressed by

  (x|Ck)=  j = 1 to M  (j)  (x|j)

Where  (j) are the mixing coefficients of the

component density functions  (x|j). Each mixture

component is defined by a Gaussian parametric

distribution in d dimensional space

 (x|j) = exp { -1/2(x-j) T  j -1 (x-j) } / (2)
d/2 | j| 1/2

The parameters to be estimated are the mixing

coefficients  (j), the covariance matrix j, and the

mean vector j.

4.2 The second model

One important task when considering GMM

hardware complexity is to estimate the number

of memory units storing the parameters of the

 54

Gaussian models. In this context new set of

parameters : constant Kj and a triangular matrix

Gj are defined and used instead of (Ck), (j) ,

| j| ½ and | j| -1

The new coefficients Kj and Gj are given by :

Ki = (Ck) (j) /(2) d/2 | j| ½

Gj T Gj = ½ j -1

Gj is a triangular matrix introduced in order to

reduce the complexity.

Consequently , we suppose that :

zj = [(x -  j)T Gj] [(x - j) T Gj] T

the equation (x|Ck) (Ck) = (Ck)  j=1 to M

(j) (x|j)

(x|Ck) (Ck) = j=1 .. M Kj exp{-zj} (*)

Thus the calculation of (*) can be divided into

three steps : evaluation of parameters zj, the

exponential calculation, and the multiplication

with constant Kj.

4.3 The third model

The GMM processor includes a serial parallel

vector matrix multiplier, a square and multiplier

units, a LPF unit, a winner-takes-all (WTA)

circuit, and two accumulators. A 10-bit data bus

is used in order to load the GMM parameters

and the test vector data using the load signals

(Fig.1).

State processor = Enable | Reset

Serial parallel vector matrix multiplier = (-,

Reg-GMM, Reg-x)

Reg-x = (input, bus-10 bits)

Reg-GMM = (load, GMM)

Reg-k = (input, bus-10 bits)

Y2 = (affectation, SPVMM)

Acc1 = (affectation, Y2)

LPF = (affectation, Acc)

Acc2 = (x, LPF, Reg-k)

WTA = (Affectation, Acc2)

OUTPUT = (affectation, WTA)

4.4 The fourth model

One the major problems when implementing the

GMM classifier is related to the complexity of the

exponential function calculation. To approximate the

expentional function using linear piecewise function

LPF. The process of building the classifier using

LPF can be divided into two major phases : the

training and the test procedure. The parameters of

the classifier are selected during the training phase.

We first obtain the parameters of the mixture models

such as  and  based on the training data-set. The

same training data are fed on the classifier in which

the exponential function is replaced by LPF, while

the other parameters of the Gaussian model such as

the mean vector and the covariance matrix are kept

unchanged. Next, the parameters of LPF are

optimised such that the mismatch between decision

boundaries in the LPF-based GMM and the original

GMM is minimized.

5 Conclusion

The present paper suggests new approach of

incremental validation of embedded application. The

notion of refining is explored comparing to its initial

definition used in formal methods like VDM, B

formalism, etc….

We suggest to combine these new approaches in

order to deal with functional et temporal properties

to be verified on embedded application. Combining

formalism like B or IF2C provide us the possibility

to deal horizontal and vertical during design-

implementation process of embedded application.

6 References
[1] R. Allur, D.L. Dill, “A theory of timed automata”,

Theoretical Computer Science. 1994, Vol. 126, pp. 183-

235.

[2] J.-R. Abrial. The B book – Assigning Programs

to Meanings. Cambridge University Press, 1996.
[3] .A.-B. Alkhodre, J.-P Babau, J.-J Schwarz : Modelling

of real-time constraints using SDL for embedded systems

design. In IEE Control and Computing System, London,

August,2002.

[4] M.belarbi, J.-P.Babau and J.-J.Schwarz : “Temporal

Verification of Real-Time Multitasking Application

Properties Based on Communicating Timed Automata”.

The eighth IEEE Symposium on Distributed Simulation

Reg-x

Reg-GMM

u g1g2 g3 g4g 5

Serial parallel

vector matrix
multiplier

-

Reg-

k

x

LPF Acc y2

Ac

c

WT

A

OUT

Ctrl Unit

I
N

10

bi
t

Enable

 Reset

Fig. 1 GMM processor

Load GMM

 55

and Real-Time Applications. DS-RT’04, Budapest,

October, 21-23, 2004.

[5] M. Bozga, S. Graf and L. Mounier, “Automated

validation of distributed software using the IF

environment”, IEEE International Symposium on Network

Computing and Applications (NCA 2001), Electronic

Notes in Theoritical Computer Science 55, N° 3,

Cambridge, 08-10 October, 2001

[6] D. Cansell, C. Tanougast and Y. Berviller : "

Integration of the proof process in the design of a

microelectronic architecture for Bitrate measurement

instrumentation of transport stream program MPEG-

2 DVB-T. April 11, 2003.

[7] G. Durrieu, O. Laurent, C. Seguin and V. Wiels :

Automatic test case generation for critical embedded

systems. DASIA 2004 (Data Systems in Aerospace) June

28-30 2004, Nice, France.

[8] S. Kumar, G.T Ram Das and V. Subrahmanyam :

" VLSI Design methodology for hardware

prototyping of integrated direct torque control of

induction motor drieves. International Journal of

Electrics and Power engineering 2(4) 262-270, 2008.

[9] K.G. Larsen, P. Pettersson, and W. Yi: «UPPAAL in a

Nutshell », in Journal on Software Tools for Technology

Transfer, 1(1-2): pp 134-152, October 1997.

[10] J.W.Layland : Scheduling algorithms for

multiprogramming in a hard real time environment.

Association for Computing Machinary, 20(1), 46-

61(1973).

[11] Z. Mammeri : Expression et dérivation des

contraintes temporelles dans les applications temps réel.

APII-JESA. 1998, Vol.32, N° 5-6, p. 609 à 644.

[12] R. Riemenschneider : A simplified method for

establishing the correctness of architectural refinements.

SRI, Working paper.

http://www.csl.sri.com/papers/simplified.

[13] P. Pop, P. Eles and Z. Peng : “Schedulability-Driven

communication synthesis for time triggered embedded

systems”. Real-Time Systems, 26, 297-325, 2004.

[14] M. SHI and A. BERMARK : " An efficient

digital VLSI implementation of gaussian mixture

models-based classifier". IEEE Transactions on very

large integration (VLSI) systems, Vol. 14, N°. 9,

September 2006.

[15] W. Zheng, J. Chong, C. Pinello, S. Kanajan and A.

Sangiovanni-Vincentelli : “ Extensible and Scalable time

triggered scheduling “. ACSD 2005: 132-141. Fifth Int.

Conf. on App. System Design. 6-9 June 2005, St Malo,

France.

http://www.csl.sri.com/papers/simplified

