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Abstract: One of the most commonly employed general formulae to estimate the elastic critical moment Mcr 

is the so-called 3-factor formula. This formula is applicable only for extreme end support conditions such as 

fixed or pinned supports. However, some particular cases met in practice are currently not covered, most 

notably the case of beams with partial end restraints against minor bending axis, and partial end restraints 

against twisting and fin-plate connections are a good example. The scope of the present work is to attempt to 

fill in one of the insufficiencies identified in the so-called 3-factor formula used by the Eurocode 3, by 

proposing a mathematical model for computing the value of the connection torsional restraint coefficient. In 

order to take into account the real restraint conditions of the supports, the proposed coefficient will be 

introduced in the formulae of the elastic critical moment Mcr given in the Eurocode 3.  A comparison 

between the elastic critical moments for various beam cross-sections, lengths, loading conditions and various 

end restraints, obtained from the finite elements software LTBeam, and those derived from EC3 ENV 

formulae, in which the proposed coefficient is introduced, confirms the reliability of this coefficient that 

models satisfactorily the end support conditions. 
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I. Introduction 

 
        A slender beam subjected to the action of 

bending loads in the plane of maximum flexural 

rigidity can buckle by combined twist and lateral 

bending of the cross-section, unless it has 

continuous lateral support. This phenomenon, 

which was first investigated theoretically and 

experimentally during the nineteenth century, is 

known as lateral buckling. The low torsional 

rigidity is an important factor, so thin-walled 

open section beams such as channels or zeds are 

also susceptible to this form of instability. The 

elastic buckling stress is also influenced by the 

conditions of support at the ends of the beam, and 

by the type and position of the applied loads that 

cause bending.  

        Research developments on lateral torsional 

buckling of steel members have been 

accompanied by the realization of updated design 

codes and standards. Modern steel codes for 

structures, such as AISC LRFD [1,2], BS 5950-1 

[3] and EC3 [4, 5], provide, on the basis of the 

limit state concept, design procedures to compute 

the lateral-torsional buckling resistance of beams. 

Initial imperfections, residual stresses and 

inelastic buckling are taken into account through 

the use of buckling curves [6]. 

        The elastic critical moment is directly 

dependent on the following factors [7]: material 

properties such as the modulus of elasticity and 

shear modulus; geometric properties of the cross-

section such as the torsion constant, warping 

constant, and moment of inertia about the minor 

axis; properties of the beam such as length, and 

lateral bending and warping conditions at 

supports; and finally loading, since lateral-

torsional buckling is greatly dependent on 

moment diagram and loading position with 

respect to the section shear centre.  

        Many simple connections met in practice 

have only partial lateral bending restraint and are 

generally assumed to provide full torsional 

restraint. However, some connections such as 

long fin-plate connections provide both partial 

lateral bending and torsional restraints. 

Therefore, the beams connected with fin-plates 

are prone to undergo some twisting about the 

longitudinal axis at the supports, in addition to 

lateral bending. EC3 ENV

 takes into account the 

effect of the lateral bending restraint of the end 

support in the evaluation of the elastic critical 

                                                           

 Reference is made to EC3 ENV [5] and not to EC3 

EN [4] as the formulae for Mcr have been removed 

from [4] in the so-called “conversion period” 

moment crM  by means of a coefficient zk . 

However, it is assumed that full torsional 

restraint is provided by the connection. 

        The scope of this work is to study the effects 

torsional end restraints on the lateral torsional 

buckling moment of the beam. An analytical 

model has been developed in order to evaluate 

the torsional restraint coefficient k . The model 

also allows the evaluation of the percentage of 

reduction of the lateral torsional bending moment 

crM against 0crM  for full restraint. On the basis 

of the value of the percentage reduction of crM  

for a particular connection, its classification as 

simple, partial restraint or full restraint can be 

made. Therefore, using the analytical model 

developed, it is possible to determine the required 

torsional restraint of the connection to ensure full 

lateral restraint.    

        A variety of connections with different end 

restraints are investigated using the finite element 

software LTBeam [8] in order to determine their 

influence on the lateral torsional buckling critical 

moment. It is done for two simple load cases.  A 

uniform distributed load, acting on the beam in 

the vertical direction at the shear centre and a 

concentrated load at mid-span acting at the shear 

centre. A comparison between the elastic critical 

moments for various beam lengths and various 

end restraints, obtained from LTBeam, and those 

derived from the EC3 ENV formula in which  the 

coefficient k  computed from the proposed 

formula is introduced, confirms the reliability of 

this coefficient that models end support 

conditions.  
 

II. Lateral Tortional Buckling          

and Elastic Critical Moment 
         

        Under increasing loading (see Fig. 1), the 

beam first bends strictly in the plane of loading. 

Once the moment reaches a certain 

magnitude crM , called elastic critical moment, 

the beam may deflect suddenly out of the plane 

of bending. This instability phenomenon is 

known as lateral torsional buckling. Lateral 

torsional buckling is said to occur by bifurcation 

of equilibrium. The beam simultaneously exhibits 

lateral displacements v in the y direction 

(bending about the minor axis of the cross-

section) and twist rotation θ about its longitudinal 

axis x.                       

        It is clear that lateral-torsional buckling is 

resisted by a combination of lateral bending 
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resistance EIzd
2
v / dx

2
 and torsional resistances 

GIt d
2
θ / dx

2
 and EIw d

3
θ / dx

3
. Thus, a member is 

especially prone to lateral torsional buckling 

when it has low lateral flexural stiffness EIz and 

its torsional stiffness GIt and warping stiffness 

EIw / L
2
 are low compared to its stiffness in the 

plane of loading. 

        With the nomenclature used in Eurocode 3 

[4], where (x-x) is the axis along the member, (y-

y) is the major axis of cross-section and (z-z) is 

the minor axis of the cross-section, the governing 

differential equation for the lateral torsional 

buckling is [7]: 

                    

4 2
2

4 2

1 1
0w t y y z

z z

d d
EI GI M M M

dx dx EI EI

 
   

     

(1)     

with     

y

z

dM
V

dx
  ;  z

z

dV
q

dx
   ;   z

y

dM
V

dx
   ; 

0
ydV

dx
                                                        (2) 

where zq is the distributed load acting on the 

beam, yV and zV are the shear forces, yM and 

zM are the bending moments, and   is the 

torsion deformation. In order to be able to impose 

appropriate boundary conditions at supports, the 

internal shear forces and the bending moment 

components in Eqs. (1) and (2) are referred to the 

axis in the undeformed configuration.  

        Exact solutions for Eq. (1) are obtained for a 

doubly symmetrical beam with simply supported 

conditions, free warping and subjected to a 

uniform moment diagram. The elastic critical 

moment for this basic case is:                            

       

22

2 2

w tz
cr

z z

I L GIEI
M

L I EI




                      (3)                                                                   

The elastic critical moment obtained for the basic 

situation by formula (3), is multiplied by the 

equivalent uniform moment factor 1C  which 

takes into account the actual bending moment 

diagram. Thus, the value of crM may be 

computed by the expression:              
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        Where the lateral bending coefficient zk  

and the warping coefficient wk  are introduced in 

order to take into account support conditions 

other than simply supported.  

 

a. Eurocode 3 (ENV) approach and its   

limitations 

 

        The assessment of the stability behaviour of 

steel beams based on simplified calculations, as 

described in the standards of most countries, is 

not always a realistic evaluation. The assumption 

that member end connections behave as either 

pinned or completely rigid is a highly simplified 

approach because experimental investigations 

show that true joint behaviour has characteristics  

between these two simplified extremes.  

Fig .1: Buckling of a simply supported I-beam. 

 

        The design proposals for the buckling of 

beams assume that the end supports should 

completely prevent end twisting. If the supports 

have only limited elastic torsional restraint 

stiffness, the beam will buckle at a lower load 

than that estimated from the idealized case 

(Fig.1). 

        One of the most commonly employed 

general formulae to estimate elastic critical 

moment Mcr is the so-called 3-factor formula, 

which was included in the ENV version of EC3 

[5]. In theory, this formula should be applicable 

to beams subjected to major axis bending having 

doubly or singly symmetrical cross-sections and 

arbitrary support and loading conditions.  

        It can be seen from the Mcr expression 

Eq.(4), that the effect of the end twisting at the 

supports of the beam which is supposed to be 
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introduced by a coefficient k  has not been taken 

into account. This means that the beam is 

assumed to be completely prevented from 

twisting about the longitudinal axis at the end 

supports. However, many real situations met in 

practice are not in compliance with these 

standard conditions. Therefore the effect of the 

partial end torsional restraint should be 

considered by introducing a coefficient k  in the 

expression of Mcr.                        

 

Fig. 2 : Torsional end  restraint. 

 

        This paper attempts to fill in one of the two 

insufficiencies identified in the above expression 

of crM used by the Eurocode 3, by proposing a 

formula for computing the value of the torsional 

restraint coefficient k  of the end support (Fig.2) 

which depends on both  the torsional stiffness of 

the support K and of the  torsional rigidity of 

the beam /tGI L .  

        In the EC3 ENV [5], it is suggested to take 

wk =1,00 unless special provision for warping 

fixity is made. Therefore, in this paper, the 

warping coefficient wk  is set to be equal to 1,00.  

 

b. Theoretical background on torsional  

restraints at supports 

 

        Flint [9] presented an analysis for a member 

with end connections providing only limited 

torsional stiffness. For a beam under single point 

load or two symmetrical point loads, Flint 

derived the following relationship between the 

critical load and the support torsional restraint 

stiffness. 

          
4

1
3

Tm R                                         (5)                                                                        

In Equation (5) m  is the ratio between buckling 

loads for beams with finite and infinite support 

torsional stiffness. TR  is the ratio of the torsional 

stiffness of the beam to its supports and is given 

by 
/

/

GJ L

T 
 where  is the rotation of a support. 

        A theoretical study was carried out by 

Schmidt [10] to determine the effect of elastic 

end torsional restraint on the critical load of a 

beam. It shows that the beam is incapable of 

supporting any load if the end supports offer no 

resistance to end twisting. It further shows that 

the critical load increases little as the end 

torsional restraint stiffness parameter e  increases 

beyond 20. The parameter e  is defined as 

1/ Te R . According to Flint’s equation (5), 

Bose [11] found that the critical load for 

20e  will be 93% of the load for rigid torsional 

end support. 

        Bennetts et al [12] and Grundy et al [13] 

have attempted to investigate the value of the 

torsional stiffness K  of an end restraint and in 

particular, the torsional stiffness sK of the 

connection component. They investigated the 

behaviour of fin-plates and noted that the 

torsional stiffness varied almost continuously 

with the applied moment. 

 

III. Parametrical study on beam elastic 

stability 

 
        The elastic critical moment expression 

considers the beam as completely prevented from 

twisting at the end supports. If the supports have 

only limited elastic torsional restraint stiffness, as 

it is the case of some practical connections such 

as fin-plates, the beam will buckle at a lower load 

than that estimated from the idealised case. 

Therefore, the aim of this work is to derive an 

analytical expression for the torsional end 

restraint k  to be introduced in the expression of 

the elastic critical moment crM . 

       

a. Proposed expression of the torsional 

restraint coefficient at supports 

 
        The behaviour of beams is dependent on 

their end support conditions and possibly on their 

intermediate supports. These conditions depend 

not only on major axis bending (primary 
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bending) but also on minor axis bending, uniform 

torsion and warping torsion. The latter three 

types of support conditions influence deeply the 

LTB resistance. In the existing codes, the support 

conditions are accounted for by means of so-

called effective length factors zk  and end 

warping factor wk . Each of these two factors 

varies from 0,5 for full fixity to 1,00 for no fixity 

at all, and takes the value of about 0,7 for one end 

fixed and one end free. In the EC3 ENV [5], it is 

suggested to take wk =1,0 unless special 

provision for warping fixity is made.  

        Different expressions for computing the 

torsional restraint k  of the end support have 

been considered, and the following one Equation 

(6) is finally selected, even though further 

research might provide a more exact formulation. 

 

                      

/
1 5 tGI L

k
K





                          (6)                                                                                      

where:  L is the unbraced length, G  is the shear 

modulus, tI  is the torsional constant and K  is 

the torsional restraint of the support .  

        Equation (6) shows that if no torsional 

restraint is provided by the support ( 0K  ), 

then the torsional restraint coefficient k  is 

infinity, and for full torsional restraint of the 

support ( K =infinity), the torsional restraint 

coefficient k  is 1,00. 

        For doubly symmetrical cross-section and 

for end moment loading or transverse loads 

applied at the shear centre, the elastic critical 

moment to be considered as the critical value of 

the maximum moment in the beam may be 

assessed by the new proposed formula: 
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where k  is the torsional restraint coefficient 

which varies from 1,00 (for support prevented 

from twisting about longitudinal axis) to infinity 

(for free twisting of the support about 

longitudinal axis). 

        Equation (7) may be written in its simplified 

form as:                                               

                   

z
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z

w
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z
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  (8)                                                  

        It can be seen that equation (8) is the same 

as the one given by EC3 ENV [5], only for a 

beam fully prevented from twist rotation at the 

supports ( 1k  ). It can also be seen from 

equation (8) that for a support connection 

providing no torsional restraint ( k = infinity), the 

elastic critical moment crM tends towards zero 

and therefore the beam will be in the state of 

instability. 

        Finally Eq. (8) can be expressed as: 

                 0

1
cr crM M

k
                            (9) 

        It can be seen from equation (9), that the 

critical moment crM can be obtained by 

multiplying the critical moment 0crM  obtained 

for a beam with full torsional restraint at supports 

( 1k  ) by 1/kθ

 

.   

 

IV. Analytical evaluation of  the elastic 

stability 

a. Influence of end torsional restraint 

  
        In order to perform a comparative study, 

numerical analysis was conducted using the 

LTBEAM software which was developed by 

CTICM [8] within the framework of a European 

project and based on the finite element method. 

In this study, the effect of the variation of support 

torsional restraint k  on the elastic critical 

moment crM  is investigated numerically and 

analytically with the application of the EC3 ENV 

formulation. Therefore it is recommended that 

the effect of torsional restraint provided by end 

supports of the beam should be taken into 

account in the EC3 ENV formula by means of a 

coefficient k . The values of k  may be obtained 

using the proposed formula (6).  
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        The lateral-torsional buckling of four IPE 

profiles (IPE 300, IPE 360, IPE 400 and IPE 500) 

with three different lengths (L=6m, L=10m and 

L=12m) have been studied for two load cases, 

uniformly distributed vertical loads applied to the 

shear centre and a concentrated vertical load at 

mid-span applied to the shear centre. In this 

analysis the end supports of the beam are 

assumed to be fixed for out of plane deflection 

( 0v  ) and for lateral bending rotation ( 1zk  ) 

but not restrained against warping ( 1wk  ). The 

torsional restraint of the support is modelled by a 

spring of torsional restraint value K . If no 

torsional restraint is provided by the support 

( K =0) then 1/kθ

 

=0 and for full torsional 

restraint of the support ( K = infinity) then 1/kθ

 =1. For partial torsional restraints of the end 

supports, which correspond to the values of 1/kθ

 varying from 0 to 1,00, the corresponding values 

of the spring torsional restraints K  can be 

calculated from Eq. (6).  

        Figures 3 to 6 show the numerical and 

analytical results of the variation of 0/cr crM M  

against variation of 1/kθ

 

  for the case of 

uniformly distributed vertical loads. According to 

equation (9), the graphs of 0/cr crM M  versus 

1/kθ

 

for all IPE cross-sections and lengths 

obtained from the analytical expression through 

the application of the new proposed formula are 

represented by a single straight line. It can be 

seen from the figures that the numerical results of 

0/cr crM M  against 1/kθ

 

obtained through 

LTBEAM software in which the values of the 

spring torsional restraints K  are computed from 

the proposed analytical formula (6), are 

represented by curved lines. 
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(a) Results for IPE 300

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 
Fig. 3: Numerical and analytical results for an                  

IPE 300 and a uniformly distributed load 
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Fig. 4: Numerical and analytical results for an 

        IPE 360 and a uniformly distributed load 
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(c) Results for IPE 400

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 

 

 
Fig. 5: Numerical and analytical results for an                

     IPE 400 and a uniformly distributed load  
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(d) Results for IPE 500

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 

 

 
Fig. 6: Numerical and analytical results for an 

        IPE 500 and a uniformly distributed load 

 

        Figures 7 to 10 show the numerical and 

analytical results of the variation of 0/cr crM M  

against variation of 1/kθ

 

for the case of a 

concentrated vertical load at the mid-span acting 

at the shear centre. Again it also show that the 

numerical results of 0/cr crM M  against 1/kθ

 

 

obtained through LTBEAM software in which 

the values of the spring torsional restraints k  

are computed from the proposed analytical      

formula (6) are represented by curved lines. 

        It is worth noting from figures 3 to 10 that, 

the closer the 0/cr crM M  graphs to the straight 

line, the more accurate the formula (6). Therefore 

it can be seen from the figures that, for both load 

cases and for all IPE  cross-sections and lengths 

considered in this study, the graphs of 

0/cr crM M  obtained from FEM analysis are 

particularly close to the ones obtained from the 

proposed analytical expression (eq.9), in which 

the torsional restraint coefficient k  has been 

introduced. In other words, comparison of the 

cases performed in this analysis revealed that an 

acceptable small difference exists between 

analytical and numerical results (errors are within 

about 10%).  Therefore, there is quite good 

agreement between the results given by the 

proposed analytical formula and the numerical 

results of the FEM approaches. 
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(a) Results for IPE 300

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 
Fig. 7: Numerical and analytical results for an                    

           IPE 300 and concentrated vertical load 
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(b) Results for IPE 360

 

 

 
Fig. 8: Numerical and analytical results for an                    

           IPE 360 and concentrated vertical load 
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(c) Results for IPE 400

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 

 

 
Fig. 9: Numerical and analytical results for an                    

           IPE 400 and concentrated vertical load 
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(d) Results for IPE 500

 EC3 ENV-Formula

 FEM _L = 6m

 FEM _L = 10m

 FEM _L = 12m

 

 

 
 Fig. 10: Numerical and analytical results for an 

           IPE 500 and concentrated vertical load 

 

V. Required connection to ensure sufficient 

restraint level 

 
        Using the analytical model developed in 

section 3.1, it is now possible to evaluate the 

torsional restraints for any beam end connection, 

therefore its classification can be made. If a 

connection torsional restraint results in less than 

10% drop of crM  from 0crM , then full torsional 

restraint connection can be assumed, otherwise, it 

is considered as partial tortional restraint 

connection.  

        Finite elements analyses have been 

performed to verify the accuracy of equation (6). 

The analyses show that for beams with IPE 

profiles subjected to uniformly distributed loads 

or, a concentrated point load at the mid span 

acting at the shear centre and for zk =1, equation 

(6) can be satisfactory applied to simulate the 

effect of the torsional restraint of the end support 

k .  

        According to the results obtained from the 

proposed expression of k  given in section 3.1, it 

is recommended that if the percentage drop in the 

value of the elastic critical moment crM  against 

0crM  for full restraint remains within 10%, then 

full restraint may be assumed.  

        Figures 3 to 10 show the values of 
1

k
 for 

percentage drops in the value of the elastic 

critical moment crM , against  0crM  for full 

torsional restraint.   

        For all IPE cross-sections, beam lengths and 

load cases performed in this analysis, 10% 

reduction in the value of 
1

k
, results in 10% drop 

in the value of crM against 0crM  for full 

torsional restraint. 

        According to results in section 3.1, for IPE 

cross-sections under uniformly distributed loads 

or a concentrated point load at mid span acting at 

the shear centre, equation (6) provides values of 

end torsional restraint coefficients k  that are in 

very good agreement with the FEM results. 

        It can be seen from figure 3 to figure 10 and 

Equation (6) that for 10% drop in the value of the 

elastic critical moment crM  against  0crM  for full 

torsional restraint, it results in a value of 

1

k
=0,9, which corresponds to a value of the 

torsional stiffness of the support 

K =21,3 /tGI L . Thus, for 
/t

K

GI L

 = 21,3 (ratio 

of the torsional stiffness of the supports to its 

beam), the value of the elastic critical moment is 

00,9cr crM M .     

        From these results, it is recommended to 

assume that the torsional stiffness of the 

connection is acceptable and may be considered 

as full torsional restraint, if it results in no more 

than 10% drop in the value of crM for full 

restraint. Therefore, if it is proved that the ratio of 

the torsional stiffness of a connection K  to its 

beam /tGI L  is at least equal to 21,3, then it is 

recommended to assume full restraint connection, 

as crM  will be 90% of 0crM  for rigid torsional 

end support. 

 
VI. Conclusions 

 
        When dealing with lateral torsional 

buckling, modern design standards require the 

computation of the elastic critical moment, which 

mainly depends on the moment distribution along 

the beam and on the end supports restraints.  

        This paper presents a review of EC3 ENV 

approach and its limitations with regards to 

lateral bending and torsional restraints of the end 

supports. Based on these limitations, the paper 

has presented a new expression for estimating the 

actual degree of torsional restraint k  of the end 

supports. The value of the coefficient k  

obtained from the proposed expression, is 

1/kθ 
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introduced in the general formulae that estimates 

the elastic critical moment. The influence of the 

torsional restraint on the lateral-torsional 

buckling of IPE beams with various cross-

sections, different loading conditions and lengths 

has been investigated using analytical and FEM 

approach. Comparison between these two 

approaches allows to show the accuracy of the 

proposed expression of
 
k . 

        The results of variation of 0/cr crM M  

versus 
1

k
computed from FEM are quite close to 

those obtained from EC3 (ENV) formula. Finally 

the following can be concluded from this study: 

 

a) Eq. (6) can be reasonably applied to   

     evaluate torsional restraints of end supports.  

                                                                                                                                

b) Full torsional restraint of end supports may 

be assumed if it results in less than 10%    

      drop in the value of elastic critical moment           

     crM  against full torsional restraint     

     moment 0crM .  

 

c) To assume full torsional restraint of end 

supports, it is necessary that the ratio   

      between the torsional stiffness of the supports   

     and of the beam 
/t

K

GI L

  be at least  21,3. 
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