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A B S T R A C T 

 
Because of the complexity of their modelling, mass imbalance and engine misalignment 

have not received much attention from researchers. Early, correct and reliable detection of 

these defects helps to stop the propagation of the failure or limits its evolution to severe 

degrees. Thus, the purpose of this paper is to extract the frequency signatures of the 

unbalance and misalignment in the stator current signal from the start of the induction 

motor using the Fast Fourier Transform (FFT) of the Park current vector supplemented by 

the Discrete Wavelet Transform (DWT). The experimental validation carried out on a 2.6 

Kw "Leroy Somer" induction motor gave satisfactory results that can be operated by trained 

maintenance personnel who are not necessarily highly qualified in the field. 

RÉSUMÉ 

En raison de la complexité de leur modélisation, le déséquilibre de masse et le 

désalignement du moteur n'ont pas fait l'objet d'une grande attention de la part des 

chercheurs. Une détection précoce, correcte et fiable de ces défauts permet d'arrêter la 

propagation de la défaillance ou de limiter son évolution à des degrés sévères. Ainsi, le but 

de cet article est d'extraire les signatures de fréquence du balourd et du désalignement dans 

le signal du courant statorique dès le démarrage du moteur en utilisant la transformée de 

Fourier rapide (FFT) du vecteur de courant de Park complétée par la Transformée 

d’Ondelettes Discrètes (DWT). La validation expérimentale effectuée sur un moteur à 

induction "Leroy Somer" de 2,6 Kw a donné des résultats satisfaisants qui peuvent être 

utilisés par un personnel de maintenance formé et pas nécessairement hautement qualifié 

dans le domaine. 
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1 Introduction  

Despite their robustness, asynchronous drives especially those based on high power motors, are much more often subject 

to mechanical failures than electrical ones [1]. Due to the improved manufacturing conditions of induction motors, electrical 

faults in the stator and rotor are becoming less frequent. In recent decades, the cause of the majority of degradations of rotating 

machines in an industrial environment is due to the defects of unbalance and misalignment. 

The mass unbalance and misalignment increase the coupling reaction forces transmitted to the shaft and thus to the 

machine components (bearings, seals, shafts and couplings) [2,3,4,5,6]. In the presence of these mechanical defects, strong 

alterations of the shafts and foundation screws accompanied by a large pumping of the motor supply current are noted. In the 

presence of these two defects, the coupling reaction forces transmitted to the shaft and induction motor components (bearings, 

joints, couplings and fixing bolts) increase. A large pumping of the stator current accompanied by torque oscillation peaks very 

critical for the motor and the components coupled to it are observed, the cost of maintenance will be exorbitant, if these 

possible degradations are not detected as soon as they appear. 

Traditionally, vibration signals are used to detect mechanical damage and monitor the health of rotating machines in 

operation. Vibration analysis through the Fast Fourier Transform (FFT) is the most recommended for the diagnosis of 

mechanical failures internal or external to the motor unit [7,8,9,10]. However, there are defects inducing torque fluctuations for 

which vibration analysis shows its limits. The high sensitivity of the electric current to the torque variations picked up by the 

asynchronous motor and, consequently, to the mechanical faults inducing them, makes the current analysis an extremely 

powerful complementary investigative tool [11,12,13]. Nevertheless, it should be noted that the detection and diagnosis of 

unbalance fault and misalignment through the MCSA (Motor Current Signature Analysis) did not generate much resonance 

among researchers, compared to electrical defects (short circuit of turns, breaking of bars, unbalance of voltages) [14,15,16,17] 

and the eccentricity of the gap [18,19,20,21] in the induction motor. 

In order to extract precisely the information relating to these mechanical defects, some research work [22, 23] has been 

oriented towards the spectral analysis of the electric current through the MCSA. In this paper, we propose a diagnostic 

methodology and detection of unbalance and misalignment defects using the FFT of current Park vector and the Discrete 

Wavelet Transform (DWT). The spectrum approach through the FFT component (id, iq) of the Park vector gives a more 

significant spectrum than the obtained by spectrum analysis (FFT) of the conventional induction motor and it saves a compact 

representation of the spectra of three stator currents (ia, ib, ic) [24, 25,26]. However, only this technical FFT may have 

limitations because some elements of the system can be coupled in the spectrum, and their frequency components will be 

hidden, so it will be difficult to isolate the various defects. Also, in time-frequency analysis of a signal, conventional Fourier 

transform analysis is inadequate because the Fourier transform of a signal contains no local information. This is the major 

disadvantage of the Fourier transform. 

This experimental work discusses the performances of the Fourier transform technique (FFT) accompanied by the DWT, 

these methods are applied to the stator current appear to be useful for detecting the mechanical defects mentioned above [27–

29]. 

The relative energy for each detail tells us about the evolution and the gravity of the two aforementioned mechanical 

failures. Benchmarking of these two techniques gave satisfactory results. The results obtained for the healthy state will serve as 

a reference for future situations.  

2 Material and methods  

2.1 Component of Park vector current stator 

Park’s vector method is a simple way to see if the machine is healthy or not. It means that the phase currents (ia, ib, ic) are 

to be transformed into a two-coordinate system with perpendicular axes (id, iq) and placed on d-axis and q-axis respectively. 

The current park vector components are functions of main phase variables, which are expressed as: 
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2.2 Fourier frequency analysis 

In order to characterize the origin of the defects, many signal processing tools are used [30, 31]. Among these tools the 

Fourier transform is well suited to analyze stationary phenomena. The component at the frequency f of a time signal x(t) is 

expressed by:      

    dtfXfX e
tfj ...2.

.





  

                

       (3) 

The mechanical defects are detected by the monitoring of the suitable frequencies of the Vibrator signal which can 

characterized by : [32]   

ff
odef

n where ,...4,3,2,1n  (4) 

In figure (1), expressed in acceleration (g), the vibration image (fig. 1a) of the unbalance defect consists of a component 

that predominates at the rotation frequency of shaft fo. On the other side, misalignment fault is revealed by the presence of a 

line of predominant amplitude whose frequency generally corresponds to order 2 of the rotation frequency of shaft fo . 

 

 

 

 

 

 

 

 

(a)                                                     (b) 

Fig. 1 –Image theoretical vibration of unbalance (a) (n = 1)   and misalignment (b) (n = 2) faults. 

These two mechanical defects also are detected by the monitoring of the suitable frequencies of the phase of the stator 

current; generally, the frequency of the unbalance and misalignment faults studied in this paper is given by equation (5).  

ff
rdef

nf                                                      (5) 

Where: 

  ����  : is the frequency of mechanical defects 

  � : is the frequency of power supply with f = 50 Hz  

  �� : is the rotational frequency with n = 1, 2, 3, 4 …  

Previously, the characteristic frequency of mechanical unbalance based on current signature analysis is used as a non-

invasive method to detect side band harmonics around the fundamental frequency, it is expressed by:  

ff
runb

f 1                                                    (6) 

Two kinds of misalignment are to be considered, angular misalignment and axial or parallel misalignment and of course a 

combination of the two, which constitutes the majority of misalignments, the latter generates modulated additive amplitudes 

and frequencies in the stator currents (Figure 1).  The misalignment is a defect that will act on the shaft symmetrically twice 

every turn, whether it is due to a lack of concentricity, angular misalignment or shaft bending. 
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To diagnose mechanical unbalance and misalignment defects in an electric motor, this latter information has the ideal 

frequency location for a discrete wavelet transform that has already been applied directly to the stator current. 

2.3 Principle of discrete wavelet decomposition 

The wavelet transform divides the original signal into a time scale space, where the size of the windows at time and scale 

is not rigid. In our field, the wavelet transform has been used to extract the dominant characteristics of the original signals for 

fault diagnosis and is well suited for non-stationary signals.  

 The multi-resolution wavelet analysis consists of disintegrating a signal into a series of minor waves belonging to a family 

of wavelets, the latter being a practical version of the discrete wavelet transform. A signal f(t) could be decomposed as: 
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Where: ∅��,� is the scaling function at a scale of 2m0 shifted by n, ��,�(�) is the wavelet function. They are expressed 

respectively by: 
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That is, ��,� is the mother wavelet at a scale of 2� shifted by n. 

Generally, approximate coefficients ���,� are obtained through the inner product of the original signal and the scaling 

function. 
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The approximate coefficients decomposed from a discretized signal can be expressed as: 
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The filter g(n) is a low-pass filter. Similarly, the detail coefficients ��,�  can be generally obtained through the inner product of 

the signal and the complex conjugate of the wavelet function: 
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The detail coefficients decomposed from a discretized signal can be expressed as: 

    








N

n
nmnmnm

N

n
nmnm

nhdttt AAD
0

,,1,
0

,),1(
)(..              (14) 

In the dyadic approach, ��,� are the detail coefficients at a scale of 2��. The filter h(n) is a high-pass filter. The 

approximations and details can be determined using low and high-pass filters. In the multi-resolution analysis, the 

approximations are split successively, while the details are never analyzed further [33,34,35]. 
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2.4 Energy of decomposition in wavelets 

A very efficient diagnostic tool consists of calculating the energy associated with each level or each decomposition node, 

since the degraded state of the system is clearly distinguished from the healthy state following the relative energy associated 

with each level of energy decomposition so the eigenvalue of each frequency band is defined by:  
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Where j : is the level of decomposition. Based on the eigenvalue of energy, the eigenvector is given by: 
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With: 
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The plot of the eigenvector T which contains the current signal information in the motor is used to diagnose mechanical 
damage to the system through the generator current. The difference between the shape of the energy of the healthy and failing 
states also contributes to the identification of the degree of defect [36]. 

2.5 Experimental setup  

Our test bench is composed of an asynchronous cage motor coupled with a DC generator; the parameters of the machines 

are presented in Table 1. 

Table 1 - Parameters of the machines 

Asynchronous cage motor (Leroy Somer) 

2.6 Kw 1450 rpm 380 V 6.9 A 50 Hz 

DC Generator (Leroy Somer) 

3 Kw 220 V 14 A 

 

The necessary material for data measurement and acquisition as well as their interpretation is composed of an ampere 

metric grip PAC12 and a numerical oscilloscope and a computer. At the beginning, an unbalance is generated with the fixing 

of a mass of 50 g on the shaft end of the engine (side coupling); then the aggregate is subjected misalignment. The 

misalignment of the engine with the generator is obtained by the insertion of two aluminum plates of 2 mm of thickness under 

the two legs before the engine. The acquisition of the three currents was made by a digital oscilloscope HAMEG507 equipped 

with software SP107E. The data processing is carried out using MATLAB software for signal analysis. For the acquisition of 

the stator current signals taken during the tests, a sampling frequency of �� = 1 KHz was used for 2046 points.   

 

 

 

 

 

 

 

 

 

 

Fig. 2 –   a) Test bench on aggregate of machines Leroy Somer, b) Experimental workflow 
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3 Results and discussion 

After the starting up of the test bench presented above, it was possible to capture the stator current of the three phases 

which will be treated under Matlab. Figure 3 shows temporal characteristic of the captured phase electric current (case of 

healthy motor at no load).   

 

Fig. 3 – Temporal healthy current motor 

3.1 Unbalance detection using FFT Park vector 

Figure 4 shows the Fourier transform of the Components (��, ��) in healthy and degraded case, the stator current in case of 

unbalance fault. The tests were conducted off load for a measured motor speed n0 = 1485 rpm, the frequency of rotation of the 

motor at no load is then fr = 24.75 Hz. The characteristic frequencies of the peaks signifying the mass unbalance are:  

 ���� = � + 1. �� = 50 + 24.75 Hz. The sidebands harmonics around the fundamental supply frequency: 

���� = [74.75 Hz and 25.25 Hz] 

 

 

 

 

 

 

 

 

 

Fig. 4 – Spectrums of (i�, i�) component: Healthy and degraded (Unbalance) case. 

3.2 Misalignment detection using FFT Park vector 

Figure 5 shows the spectrum of the Park vector components (��, ��) of the stator current when the motor is affected by a 

misalignment fault. The sidebands harmonics around the fundamental supply frequency: ���� = � + �. �� = �� + ��. �� �� 
.

⇒ ���� = [��. �� �� ��� �. �� ��]. The fault frequency is clearly mentioned in the figure below which can confirm the 

motor defect. 
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Fig. 5 –  Spectrums of (i�, i�) component: Healthy and degraded (Misalignment) case. 

3.3 Diagnosis using the discrete wavelet 

Using Equation (18) and Equation (19) to calculate the required decomposition level, this multi-level decomposition of the 

stator current is performed using the mother wavelet 'Daubechies'. 
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Where:  
 � is the network frequency.  

  �� is the sampling frequency.  

Knowing � = 50 Hz  and �� = 1 KHz, we can calculate the number of appropriate decompositions: 
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If ��(samples/s) is the sampling frequency for capturing the electric currents ��, �� and ��, detail ��  includes information 

about the signal components whose frequencies are covered by the interval [2�(���), 2����] . The approximation signal �� 
contains the low-frequency components of the signal, which belong to the frequency interval [0, 2�(���)��]. 

Table 2 represents the different frequency bands obtained by the discrete wavelet decomposition corresponding to the high 

order wavelet signals resulting from the analysis, according to the sampling rate (�� = 1000 Hz ) used for the tests. 

Table 2 - Frequency bands of detail and approximation signals 

Levels Approximations Details 

J=1 A1 0 – 500 D1 500 – 1000 

J=2 A2 0 – 250 D2 250 – 500 

J=3 A3 0 – 125 D3 125 – 250 

J=4 A4 0 – 62.5 D4 62.5 – 125 

J=5 A5 0 – 31.25 D5 31.25 – 62.5 

J=6 A6 0 – 15.625 D6 15.625 –  31.25  

 
For the purpose of covering unbalance and misalignment defects, we have realized an acquisition system that allows 

raising the different signals. In this part, the DWT is applied to the signals of the stator current supplied by the Leroy Somer 

machine for the validation of the wavelet technique by experimental signals.  
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The Daubechies wavelet of order 40 (db40) was selected as mother wavelet in our multilevel decomposition of the rotor 

current. In order to make a comparison, in Figure 6 the approximation signals A6 are represented, the detail signals (D1 - D6) 

will be represented for the healthy (Figure 7) and degraded operating states in Figure 8 and Figure 9 respectively. 

 
 

 

 

 

 

 

 

Fig. 6 – Approximation signals. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 – DWT of the stator current: Healthy motor. 
        

 

 

 

 

 

   

 

Fig. 8 – DWT of the stator current in case of unbalance fault. 
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  Fig. 9 –  DWT of the stator current in case of misalignment fault. 

3.4 Diagnosis using the relative energy 

Figure 10 and its zoom in Figure 11 present the energy in each frequency band, a significant increase with respect to the 

healthy state appears in the energy of the higher level signals, especially for detail D4 where it is noted that there is a 

considerable deformation of the signal shape and a difference in amplitude with respect to the healthy signal. The oscillations 

of these signals are due to the presence of a mass unbalance default which was intentionally created by fixing a mass of 50 g 

on the shaft of the motor. The oscillations are consistent with the change in the characteristic frequency of the fault obtained by 

the Park vector FFT method. Therefore, it can be concluded that both methods indicate the presence of a mechanical fault at 

the system. And it can be observed that the energy stored in band 4 depends on the degree of the defect.  

The calculation of the stored energy in each decomposition level in Figure 10 and Figure 11, confirms the increasing 

values observed in detail especially in level 4, which correspond to the band neighborhood and below of the fundamental. 

 

Fig. 10 – energy variation in the frequency bands (db44) 
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Fig. 11 – Zoom of the energy variation in frequency bands. 

The energy corresponding to the level 4 in the healthy cases is 79.23%; however, it increases to 84.92% and 91.76% 

respectively in unbalance and misalignment fault. We can conclude that the difference between the healthy and the faulty cases 

is very clear, and the increase of energy differs according to fault severity level. 

4 Conclusion  

In this paper, the analysis of the current signature of the stator has contributed to the detection of mechanical faults such as 

unbalance and misalignment defects in an induction motor. Through this study, two methods of signal processing were 

presented: FFT and DWT. This dual approach has been theoretically presented and experimentally validated on a 2.6 kW 

three-phase industrial induction motor (Leroy Somer), in a healthy and degraded states. 

Experimental results show that the wavelet transform approach (DWT) and the relative energy of the signal which is 

considered as a reliable criterion for comparing the healthy and degraded state of a system takes less response time than the 

FFT method. The wavelets have the advantage of being localized both in the time and frequency domain unlike the Fourier 

transform which is located only in the frequency domain. Feature extraction using fast Fourier transform (FFT) produces good 

results when the waveforms examined are stationary or periodic, but it is not suitable for non-stationary signals.    

Admittedly, the DWT is a reliable and better technique than the FFT, but nevertheless, for the diagnosis and the predictive 

detection of the degradations affecting electrical machines, its role is much better as a complement to the FFT and not as its 

alternative. 

The application of proposed methods associated with artificial intelligence approaches and other types of defects is 

currently under research.  
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