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ABSTRACT ▬ This paper investigates mixed-mode fracture behavior and crack propagation in 

FGMs by performing simulation of crack propagation by means of the finite element method. The 

displacement extrapolation technique (DET) and the strain energy density theory (SED) are used in this 

work. At each crack increment length, the kinking angle is evaluated as a function of stress intensity 

factors (SIFs). In order to show the robustness of our numerical developments, four examples of 

applications are presented. The effect of the defaults on the crack propagation in FGMs was highlighted. 
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I. Introduction 

Functional graded materials (FGM) have 

been widely used in technological application. 

Its mechanical behaviors, especially the fracture 

behaviors, have been extensively studied in 

recent years. A comprehensive review has been 

presented by Suresh and Mortensen [1]. For the 

fracture of the FGM, many researchers have 

considered various crack problems in non 

homogeneous materials. Carpenter et al. [2] 

performed fracture testing and analysis of a 

layered functionally graded Ti/TiB beam 

subjected to three-point bending. Rousseau and 

Tippur [3] performed experimental and 

numerical investigations on crack growth in an 

epoxy/glass FGM beam subjected to four-point 

bending. Benamara et al. [4, 5] investigated 

mode-I and mixed mode crack growth in FGMs, 

using the maximum tangential stress and the 

minimum strain energy density criteria. 

 Jin et al. [6, 7] investigated elastic-plastic mode 

I crack growth in TiB/Ti FGMs by using three-

dimensional interface cohesive elements. Kim 

and   Paulino   investigated    two   dimensional  
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mixed-mode crack propagation in FGMs using  

the finite element method and interaction  

integrals and also considered non-proportional 

loading [8]. Zhang and Paulino used cohesive 

zone models to simulate two-dimensional mixed 

mode dynamic crack propagation in FGMs [9]. 

Moon et al. [10] investigated crack growth 

resistance (R-curve) behavior of multilayer 

graded alumina-zirconia FGMs considering a 

crack parallel to the material gradation. 

Neubrand [11] performed experimental and 

theoretical investigations on the R-curve for 

Al/Al2O2 FGMs under mechanical loading. 

Fujimoto and Noda [12] investigated 

propagation of a single crack in a partially 

stabilized zirconia (PSZ) and T1-6A1-4V FGMs 

under transient thermal loads. Noda et al. [13] 

extended the investigation to two interacting 

edge cracks in FGMs. Uzun et al. [14] 

investigated fatigue crack growth of 

2124/SiC/l0p single-core bulk FGMs 

considering mechanical loading. Forth et al. 

[15] investigated three-dimensional mixed-mode 

fatigue crack growth behavior of Ti-6A1-4V β-

STOA FGM considering mechanical loadings. 

Under mixed-mode loading conditions, an 

understanding of the crack growth path is 

important for fracture analysis. A number of 

mixed-mode fracture criteria for predicting the 

crack growth path have been proposed in the 

literature, including, for instance, the maximum 
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circumferential stress (MCS) criterion [16], the 

maximum energy release rate (MERR) criterion 

[17,18], the strain-energy-density factor (SEDF) 

criterion [19], and the mixed-mode crack tip 

opening displacement(CTOD) criterion [20,21].  

The strain energy density approach has been 

found as a powerful tool to assess the static and 

fatigue behavior of notched and unnotched 

components in structural engineering [22]. 

Different SED-based approaches were 

formulated by many researchers. Labeas et al 

[23], Zuo et al.[24], Nobile et al.[25], 

Balasubramanian and Guha [26], Ayatollahi and 

Sedighiani [27] and Spyropoulos [28]. 

 

The objective of this study is to present a 

numerical modeling of mixed-mode crack 

propagation in FGMs. Using the APDL code 

[29], the displacement extrapolation technique 

(DET) and the Strain energy density theory are 

used, to determine the stress intensity factors 

and the crack direction, respectively. The finite 

element method is used to carry out this 

objective. The effect of the inclusions and 

cavities on the crack propagation in FGMs was 

highlighted.  

 

II. Evaluation of fracture parameters 
II.1 Crack increment direction 

 

Sih [19] used the strain as a critical 

parameter in order to propose the minimum 

strain energy density (S) criterion. It states that 

the direction of crack initiation coincides with 

the direction of minimum strain energy density 

along a constant radius around the crack tip. 

The (S) criterion showed a good agreement with 

the experimental results obtained earlier by 

Erdogan and Sih [6]. In addition, this criterion is 

the only one that shows the dependence of the 

initiation angle on material property represented 

by Poisson‟s ratio ν. In mathematical form, S-

criterion can be stated as: 
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Where r is its distance from the crack-tip and S 

is the strain energy density factor. 

For the case of mixed modes I and II loadings, 

the strain energy density factor S was given by 

Sih as follows: 
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where: E is modulus of elasticity; ν is Poisson‟s 

ratio and
dV

dW  is elastic energy per unit volume 

V.  

 

II.1 Evolution of stress intensity factors 

There are several techniques to obtain stress 

intensity factors (SIFs) in homogeneous and 

non-homogeneous materials, such as the 

displacement extrapolation technique (DET) 

[30-31], the displacement correlation technique 

(DCT) [32], the modified crack-closure integral 

[33] and the J*k Integral [34-35]. In this paper, 

the displacement extrapolation method is used 

to calculate the stress intensity factors KI and KII 

as follows: 
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  where:  

L is the length of the element side connected to 

the crack-tip.  

Etip and νtip  are the Young‟s modulus and the 

Poisson‟s ratio at the crack tip location,  

respectively. кtip =3-4νtip for plane strain, кtip 

=(3-νtip)/(1+νtip) for plane stress. 

ui  and vi (i=b, c, d and e) are the nodal 

displacements at nodes b, c, d and e in the  x 

and y directions, respectively (see Fig1). 

In order to obtain a better approximation of the 

field near crack-tip, special quarter point finite 

elements proposed by Barsoum are used [36] 

where the mid-side node of the element in the 

crack-tip is moved to 1/4 of the length of the 

element, as shown in Fig. 1. 
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Fig. 1 Singular element around the crack tip  

 

II. Algorithm of crack propagation 
 

This section presents a finite element analysis 

for modeling fracture problems in FGMs using 

the re-meshing technique. Fig. 2 shows the 

Flow-chart of the prepared APDL code based 

on the combination of the finite element analysis 

and the strain energy density concept. 

According to the algorithm, after initial 

geometrical and physical modeling of the 

problem, the mesh pattern is generated around 

crack tip. In order to find new crack tip position 

at each step of propagation, the strain energy 

Sih's theory is employed, to obtain the kinking 

angle θ0 as a function of the minimum strain 

energy density (dW/dV)min.  

 
Fig. 2 A flowchart of the main operations which make the 

crack propagation 

 

At each increment Δa of crack propagation, the 

special mesh is generated around crack tip, 

using the quadratic six-node triangular element. 

It is noted that, the same numeration of the 

nodes around the crack tip is taken during the 

crack propagation to evaluate automatically the 

new crack tip position. The algorithm is 

repeated until ultimate failure of material or by 

using another criterion for termination of the 

simulation process.   

 

IV. Numerical results and discussion 
IV.1 Evolution of SIFs 

 

The geometry of the single edge cracked FGM 

plate with an initial crack of length “a” is 

considered for 2-Dimensional finite element 

analysis (Fig. 3a). This example was originally 

proposed by Erdogan and Wu [37], and it is one 

of the few theoretical fracture solutions 

available for a finite width FGM.  

The cracked plate is submitted under a uniform 

tensile stress σ at the both ends. The elastic 

modulus was assumed to follow an exponential 

function given by: 

 

E(x) =E1 exp (λ x);           0≤ x ≤ w;            (6)                                                                        

 

 Where E1 =E(0), E2 =E(w)=, and λ=ln(E2/E1).  

The following data were used for the finite 

element analysis: 

 a/w = 0.2, 0.3, 0.4, 0.5 and 0.6; L/w = 8 ; σ=1 

unite, E1 = 1 unite; E2/E1 = (0.1, 0.2, 1, 5 and 

10); ν=0.3; plane strain condition.  

 

The variation continues in the elastic modulus 

are incorporated into the model by specifying 

the material parameters at the centroid of each 

finite element.  

The Finite element standard code ANSYS [29] 

has been employed for modeling the problem. 

For the mesh generation of the cracked plate, 

the element type „PLANE183‟ is used. It is a 

higher order two dimensional, 8-node element 

having two degrees of freedom at each node 

(translations in the nodal x and y directions), 

quadratic displacement behavior and the 

capability of forming a triangular-shaped 

element, which is required at the crack tip areas. 

A typical FE model is shown in Fig. 3b. The 

special quarter point singular elements proposed 

by Barsoum are used for modeling the singular 
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field near the crack tip (Fig. 4b). For a/w=0.2, 

the mesh discretization consists of 710 elements 

and 2241 nodes. 

     
 

Fig. 3 Single edge cracked plate: (a) Geometry and 

boundary conditions; (b) FEM mesh discretization for 

a/w=0.2 

 

The computed values of the SIF KI obtained by 

the displacement extrapolation technique (DET) 

under plane strain condition are compared with 

the numerical results obtained by Chen et al. 

[38] using the element free Galerkin (EFG) 

method and Kim and Paulino [39] using J
*
-

Integral method and the displacement 

correlation technique (DCT), respectively (Tab. 

1). The results obtained indicate reasonably 

good agreement between ours and other author‟s 

solution for this problem. These results allow us 

to conclude that the numerical model 

implemented in FE code (DET and Eq.6), 

correctly described the stress-strain field near 

the crack-tip and the behavior of the elastic 

FGM.  

 

IV.2 Crack propagation simulation 

In order to show the robustness of our numerical 

developments, two examples of applications are 

presented: rectangular plate with an oblique pre-

crack and single edge cracked plate with one 

hole. For these examples, the variation of the 

elastic modulus for FGM is modeled by Eq.6. 

                    
Fig. 4 Geometry model and final mesh of a rectangular plate 

with an oblique crack  

 

 

Table 1.  Normalized stress intensity factors for 

edge cracked plate 

 

 
 

IV.2.1 Rectangular FGM plate with an oblique 

pre-crack 
 

In the present example, we consider a thin 

rectangular FGM plate with an oblique pre-

crack (with α=30°). The plate considered is 

submitted under a uniform tensile load σ. A 

rectangular isotropic FGM plate with an oblique 

crack and final mesh for the first step of the 

crack propagation are shown in Fig. 4. The 

numerical simulation is performed in plane 

stress conditions.  

Fig. 5 shows three steps for crack propagation 

trajectory obtained for FGM plate. Fig. 6 

illustrates the positions of the crack-tip during 

the crack extension obtained for homogeneous 

and FGM plates. For two materials, the crack 

reoriented horizontally in the mode I loading.  

Fig. 5 Crack propagation trajectory of the inclined crack for 

FGM plate  
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Fig. 6 Positions of the crack-tip during the crack extension 

obtained for homogeneous and FGM 

 

4.2.2 Single edge cracked FGM plate with 

one hole 

 

In order to determine the effect of a geometrical 

defect on the crack propagation in functionally 

graded materials, we represented in Fig. 7a the 

geometry of the single edge cracked plate with 

one hole. The single edge cracked plate is 

simply fixed at the bottom edge and loaded by 

uniform normal traction along the top edge. The 

structure is meshed by 8-node quadratic 

elements and by triangular elements concentric 

at crack-tip (Fig 7b). The determination of stress 

intensity factors, angle of direction and crack 

growth path are made of plane stress problem.  

 

        
(a)                             (b) 

         

   Fig. 7 a) Geometry model and b) the final mesh of the 

initial crack for the single edge cracked plate with one hole 

[5] 

 

The numerical calculations obtained will 

compare with other results, for a homogeneous 

material case. Fig.8 shows the final 

configuration corresponding to the last 

evaluated crack length for the results obtained in 

references [40] and [41], and that obtained in 

the present study. It is clear that the crack paths 

obtained are seminars between them.  

 

      
a)                         b)                          c) 

 

Fig. 8 Final configuration corresponding to the last 

evaluated crack length (with E2/E1=1):   

a) Bouchard et al. [40], b) Rashid [41] and c) Present study 

 

Fig. 9 illustrates four steps for crack extension 

in FGM plate. This crack would move in a 

straight path if there was no hole at the plate for 

mode-I loading (Fig 9a). However, due to the 

presence of the hole, the crack did not follow a 

straight line path, but curved towards the hole as 

shown in Fig. 9b. This was due to the stress 

concentration effect; cracks are likely to initiate 

at a hole boundary. Once the crack tip has 

moved beyond the hole, the crack reoriented 

horizontally in the mode I loading as shown in 

Figs. 9c and 9d.  

 

 
 

Fig. 9 Four steps of crack propagation trajectory for a single 

edge cracked FGM plate with one hole 
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Fig. 10 Positions of the crack-tip during the crack extension 

obtained for homogeneous and FGM 



A. Boulenouar, N. Benamara, M. Merzoug 

 

 

Vol.3. N
o
1.                                                                 11 

 

Fig. 10 shows the crack trajectories obtained for 

homogeneous and FGMs plates. One can notice 

the same crack propagation behavior for both 

plates but the two crack paths are different from 

each other. This may explain the fact that the 

stress distribution around the hole is different 

for the two plates, which may influence directly 

on the propagation trajectory. 

 

V. Conclusion 

 

This paper investigates mixed-mode fracture 

behavior of FGMs by performing simulation of 

crack propagation by means of the finite 

element method. The prediction of SIFs for a 

single edge cracked plate was considered and 

compared under mode-I loading. The 

comparison shows that the program using the 

APDL Ansys Parametric Design Language is 

capable of demonstrating the SIF evaluation and 

the crack path direction satisfactorily. 

The finite element modeling procedure 

proposed in this paper has been used 

successfully to simulate the propagation of 

cracks in FGM plate with holes and inclusions. 

The presence of holes and inclusions in the 

plates disturbed the stress and strain fields 

providing interesting crack trajectories. The 

crack simulations for mode I and mixed mode 

cases showed the acceptable crack path 

predictions. The results of the assessments 

strongly indicated that the finite element 

simulation for two-dimensional linear elastic 

fracture mechanics problems has been 

successfully employed for homogenous and 

FGM. Based on the results, it was recommended 

to add further development the APDL code to 

simulate crack propagation in orthotropic 

functionally graded materials. 
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