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A B S T R A C T 

 

In this paper, cylindrical bending of orthotropic plates is presented using nth-order plate 
theory. Classical plate theory and parabolic shear deformation theory of Reddy can be 
considered as special cases of present theory. The theory accounts for realistic variation 
of the transverse shear stress through the thickness of plate and satisfy the traction free 
conditions at top and bottom surfaces of the plate. The number of unknown variables in 
the present theory is same as that of first order shear deformation theory. The theory is 
variationally consistent. The use of shear correction factors which are problem 
dependent and are normally associated with first order shear deformation theory is 
avoided in the present theory. The governing equations and associated boundary 
conditions are derived by the principle of virtual work. Navier solution technique is 
employed for the simply supported plates. The program has been developed in 
FORTRAN. The displacement and stresses of a simply supported plate infinitely long in 
y-direction under sinusoidally distributed load are calculated to demonstrate the 
accuracy and efficiency of the present theory. 

1 Introduction 

With the increasing use of composite materials, the need for advanced methods of analysis became obvious. In case of 
composite materials, transverse stresses and strains strongly influence the bending behaviour. In particular, the transverse 
shear stress effects are more pronounced. The classical plate theory (CPT) which is not formulated to account for the effect 
of these stresses is not satisfactorily applicable to orthotropic plate analysis. Therefore, over the years, researchers 
developed many theories, which took into account transverse shear effects, such as; first order shear deformation theory [1], 
parabolic shear deformation theories [2-4], trigonometric shear deformation theory [5], hyperbolic shear deformation 
theory of Soldatos [6], exponential shear deformation theory [7], hyperbolic shear deformation theory of Akavci [8] and 
many more. However, these theories are mainly applied to bidirectional bending of plate but their applications for the one 
dimensional analysis of plate are not fully explored.    

Pagano [9] has presented the exact solution for cylindrical bending of laminated composite plates. Author has 
investigated limitations of classical plate theory comparing with the solutions of several specific boundary value problems 
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to the corresponding 3D elasticity solutions for cross-ply laminates. Wan [10] presented sixth and twelfth order plate 
theories for cylindrical bending plate problems considering effect of transverse normal stress and demonstrate the 
efficiency of these theories for thick plate. 

Jalali and Taheri [11] examined the bending response of cross-ply laminated plates under cylindrical bending using 
semi-exact method which is based on the assumption of inextensibility of the plate through the thickness. The deflections 
and stresses are obtained for symmetric and anti-symmetric laminated plates under half sine load and concentrated load.A 
new stress analysis method that was developed by Soldatos and Watson [12] for the cylindrical bending of cross-ply 
laminated plates has been successfully extended by Shu and Soldatos [13] towards the accurate determination of the stress 
distributions in angle-ply laminated plates subjected to cylindrical bending. The stress distribution of simply supported and 
clamped anti-symmetric angle-ply laminated plates subjected to sinusoidal loading is obtained.   

Vel and Batra [14, 15] studied the cylindrical bending of linear piezoelectric laminated plates. Authors have used 
Eshelby–Stroh formalism to obtain analytical solutions for displacements, stresses, and electric fields for laminated plates 
with piezoelectric actuators and sensors. The results are obtained for clamped-clamped and cantilever laminates. The 
results are validated with finite element coding. Perel and Palazotta [16] developed new plate theory for the cylindrical 
bending of sandwich plate simplifying the assumptions regarding distribution of transverse strain components in the 
thickness direction. The plate has thick homogenous isotropic face sheet and isotropic core made up of foam. The finite 
element formulation based on this plate theory is presented for simply supported transversely compressible sandwich plates 
subjected to uniform load.  

Khdeir [17] presented free and force vibration analysis of anti-symmetric angle-ply laminated composite plates using 
classical plate theory and first order shear deformation theory. The plate is of arbitrary boundary conditions and loading 
conditions. Exact natural frequencies are determined for various boundary conditions using the state space concept.Park 
and Lee [18] presented a new exponential theory for the cylindrical bending of symmetric/anti-symmetric cross-ply, angle-
ply and unsymmetrically laminated plates. In this theory, in plane displacements are assumed to vary exponentially across 
the plate thickness. The results obtained for displacements and stresses of simply supported laminated plates are compared 
with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory. 

Chen and Lee [19] developed an elasticity method to study the bending and free vibration response of simply-
supported angle-ply laminated cylindrical panels in cylindrical bending using method of state-space. Authors have obtained 
exact solution for the static bending problem using variable substitution technique whereasapproximate analytical solution 
is derived for dynamic problem by employing the layerwise method. Lu et al. [20] obtained elasticity solutions for free 
vibration of angle-ply laminates subjected to cylindrical bending using semi-analytical approach. The formulation is carried 
out using the transfer matrix method based on the state space concept.Effects of variation of ply angle on the vibration 
properties of laminates are investigated. Numerical results are obtained for simply supported and fully clamped thick 
laminates. 

Cylindrical bending of an elastic rectangular sandwich plate having rigid filler and resting on an elastic foundation has 
been presented by Starovoytov et al. [21].Flexural analysis of thick orthotropic plate strip under cylindrical bending using 
trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal 
strain effect has been presented by Ghugal and Sayyad [22]. Authors have applied this theory for the simply supported 
boundary condition and obtained displacements and stresses for various modular ratios.  

Xiang and Kang [23] developed nth-order plate theory for the bending analysis of functionally graded plates. However, 
the theory is applied to bidirectional bending only. Therefore, in this paper attempt is made to check the efficiency of this 
theory for the cylindrical bending of orthotropic plates. Governing equations and boundary conditions are obtained using 
analytical form of principle of virtual work. A simply supported orthotropic plate strip under sinusoidally distributed load is 
considered for the numerical study. The displacements and stresses are obtained for various aspect ratios and modular ratios 
are compared with exact solutions provided by Pagano [9]. 
 

1.1 Orthotropic plate under consideration 

Consider an orthotropic plate of length ‘a’ and overall thickness ‘h’ as shown in Fig. 1. It is assumed that the plate is of an 
infinite extent in the y direction while it is simply supported at its edges x = 0 and x = a. ‘U’ is the displacement in x-
direction while ‘W’ is the displacement in z-direction. A plate is made up of linearly elastic and orthotropic material. A 
plate is thin, moderately thick or thick and obeys hook’s law of plane strain problem. A load is applied at the top surface of 
the plate i.e. z = -h/2. 
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Fig. 1 – Plate geometry and co-ordinate system 

1.2 The displacement field, strains, stresses and stress resultants associated with present theory 

The displacement field of the nth-order plate theory [23] for the plate under consideration is given as below: 
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where ‘U’ and ‘W’ are the axial and transverse displacement of the plate centre line. and wφ are the unknown functions to 
be determined. Classical plate theory and third order parabolic shear deformation theory of Reddy [5] are the modified 
form of present theory at n = 1 and n = 3 respectively. With the definition of strains from theory of elasticity, the linear 
strain-displacement relationships associated with the displacement field can now be obtained as follows:  
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The stress strain relationship for the orthotropic plate strip can be written as: 
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where, 
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where, E1 is elastic moduli, G31 is shear moduli and 12 21,µ µ  are Poisson’s ratios. Here subscripts 1, 2, 3 correspond to x, y, 
z directions of Cartesian coordinate system respectively (These notations are taken from Jones [24]). Using equations (2) 
through (6), the moment resultants ( x xM ,P ) and shear force resultants ( x xR ,Q ) of present theory can be expressed in-terms 
of displacement variables as follows: 
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1.3 Governing equations and boundary conditions of present theory 

The governing equations and associated boundary conditions for the orthotropic plate strip under cylindrical bending can be 
obtained using following principle of virtual work. 
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Substituting strains and stresses from Eqs. (2) - (6) into the Eq. (11) we get, 
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After carrying out integrations with respect to z, the Eq. (12) leads to the following form: 
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(13) 

 
Integrating the Eq. (13) by parts and collecting the coefficients of andwδ δφ to obtain governing equations and boundary 
conditions. The governing equations and associated boundary conditions in-terms of stress resultants are as follows: 
 
The governing equations: 
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The boundary conditions at edges x = 0 and x = a: 
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Substitution of stress resultants from equations (7)-(10) into a set of governing equations (14) and boundary conditions (15) 
gives the following governing equations and boundary conditions in-terms of displacement variables. 
 
The governing equations in-terms of displacement variables are as follows: 
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The boundary conditions in-terms of displacement variables at edges x = 0 and x = a areas follows: 
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Stiffness coefficients (A11, F11, D11, E11, A11, A55, E55, F55) appeared in the governing equations and boundary conditions 
are as follows: 
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2 Cylindrical bending of orthotropic plate 

An orthotropic plate as shown in Fig. 1 is considered for the detail numerical study.The plate is subjected to transverse 
sinusoidal load;q(x) acts normally and downwards on its top lateral plane (z = -h/2) but is independent of the y co-ordinate 
(see Fig. 2).  

 

Fig. 2 – Simply supported plate subjected to sinusoidal load at top surface 
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Due to the symmetries involved in both the geometrical and loading characteristics, both the displacement components 
w,φ are independent of the y co-ordinate. The boundary conditions of simply supported orthotropic plates are as follows: 

 1at 0 : 0 0 0x x xx , x a w , P , M C P= = = = − =  (20) 
 

The following is the form assumed for q(x), ( ) ( )andw x xφ  satisfying the boundary conditions perfectly for a plate with 

all edges simply supported: 
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where 0q  is the maximum intensity of sinusoidally distributed load and 1 1andw φ  are the unknown coefficients to be 
determine. Substitution of Eq.(21)into governing equations (16) and (17) leads to the following matrix form: 
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Values of 1 1andw φ  are obtained by solving Eq. (22). Having obtained the values of 1 1andw φ  one can then calculate all 
the displacement and stress components within the plate strip. 

3 Numerical results and discussion 

3.1 Numerical results 

The results are obtained for different modular ratios (E1/E2) and ‘h/a’ ratios of plate. The results obtained are presented in 
Tables 1 through 4. The results provided by Pagano [9] available in the literature are used as a basis for comparison of 
results obtained by present theory. The results present by Ghugal and Sayyad [22] also used for the comparison. The results 
obtained for displacements and stresses are presented in the following normalized form. 
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The following material properties given by Pagano [9] are used to obtain the numerical results. 
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The percentage error in results obtained by present theory with respect to the corresponding results obtained by exact 
theory of elasticity solution is calculated as follows: 
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Table 1-Comparison of axial displacement u at (x = 0, z = ± h/2) for orthotropic plate strip 
 

h/a Theory Model Modular Ratios (E1 / E2) 
2 5 10 25 40 50 

0.15 Present n = 1 27.7721 11.3239 5.6978 2.2877 1.4312 1.1453 
Present n = 3 28.1961 11.7471 6.1199 2.7066 1.8468 1.5588 
Present n = 5 28.0839 11.6354 6.0090 2.5981 1.7407 1.4542 
Present n = 7 28.0154 11.5670 5.9408 2.5305 1.6736 1.3875 
Present n = 9 27.9708 11.5226 5.8964 2.4862 1.6295 1.3436 
Ref. [22] TSDT 27.9988 11.6977 6.1124 2.7218 1.8667 1.5799 
Ref. [1] FSDT 27.7721 11.3239 5.6978 2.2877 1.4312 1.1453 

0.25 Present n = 1 5.9988 2.4460 1.2307 0.4941 0.3091 0.2474 
Present n = 3 6.2527 2.6987 1.4817 0.7398 0.5496 0.4846 
Present n = 5 6.1857 2.6326 1.4168 0.6788 0.4924 0.4298 
Present n = 7 6.1447 2.5917 1.3763 0.6393 0.4537 0.3916 
Present n = 9 6.1180 2.5651 1.3498 0.6130 0.4278 0.3659 
Ref. [22] TSDT 6.1464 2.6752 1.4821 0.7523 0.5638 0.4988 
Ref. [1] FSDT 5.9988 2.4460 1.2307 0.4941 0.3091 0.2474 

0.35 Present n = 1 2.1861 0.8914 0.4485 0.1801 0.1127 0.0902 
Present n = 3 2.3670 1.0707 0.6253 0.3497 0.2757 0.2491 
Present n = 5 2.3195 1.0243 0.5808 0.3104 0.2411 0.2174 
Present n = 7 2.2903 0.9954 0.5523 0.2831 0.2150 0.1921 
Present n = 9 2.2713 0.9764 0.5335 0.2647 0.1970 0.1743 
Ref. [22] TSDT 2.2982 1.0595 0.6304 0.3618 0.2877 0.2603 
Ref. [1] FSDT 2.1861 0.8914 0.4485 0.1801 0.1127 0.0902 

 

 

 

Table 2-Comparison of transverse displacement w at (x = a/ 2, z = 0) for orthotropic plate 

h/a Theory Model Modular Ratios(E1 / E2) 
2 % Error 5 % Error 10 % Error 25 % Error

 
40 % Error

 
50 % Error

 0.15 Present n = 1 5.9671 -7.91 2.4330 -17.9 1.2242 -30.4 0.4915 -52.1 0.3075 -63.4 0.2461 -68.3 
Present n = 3 6.5135 0.52 2.9787 0.49 1.7684 0.45 1.0315 0.35 0.8433 0.20 0.7791 0.06 
Present n = 5 6.5027 0.35 2.9684 0.14 1.7592 -0.07 1.0250 -0.28 0.8395 -0.25 0.7771 -0.19 
Present n = 7 6.4896 0.15 2.9554 -0.30 1.7464 -0.80 1.0131 -1.44 0.8284 -1.57 0.7665 -1.55 
Present n = 9 6.4794 -0.01 2.9453 -0.64 1.7364 -1.37 1.0034 -2.38 0.8190 -2.69 0.7574 -2.72 
Ref.[22] TSDT 6.4799 0.00 2.9650 0.03 1.7601 -0.02 1.0253 -0.25 0.8369 -0.56 0.7723 -0.81 
Ref. [1] FSDT 6.4230 -0.88 2.8890 -2.54 1.6802 -4.56 0.9475 -7.82 0.7634 -9.29 0.7020 -9.84 

 Ref. [9] Exact 6.4799 0.00 2.9642 0.00 1.7605 0.00 1.0279 0.00 0.8416 0.00 0.7786 0.00 
0.25 Present n = 1 5.9671 -19.1 2.4330 -37.5 1.2242 -54.5 0.4915 -74.6 0.3075 -82.4 0.2461 -85.3 

Present n = 3 7.4823 1.38 3.9416 1.23 2.7219 1.06 1.9574 0.79 1.7429 -0.46 1.6618 -1.16 
Present n = 5 7.4543 1.00 3.9180 0.62 2.7053 0.45 1.9614 1.00 1.7662 0.87 1.6975 0.96 
Present n = 7 7.4183 0.51 3.8832 -0.27 2.6727 -0.76 1.9349 -0.37 1.7458 -0.29 1.6811 -0.01 
Present n = 9 7.3903 0.13 3.8557 -0.98 2.6459 -1.76 1.9106 -1.62 1.7238 -1.55 1.6606 -1.23 
Ref.[22] TSDT 7.3851 0.06 3.8943 0.02 2.6869 -0.24 1.9233 -0.96 1.7040 -2.68 1.6194 -3.68 
Ref. [1] FSDT 7.2336 -1.99 3.6996 -4.98 2.4907 -7.52 1.7580 -9.47 1.5740 -10.1 1.5126 -10.0 

 Ref. [9] Exact 7.3805 0.00 3.8937 0.00 2.6933 0.00 1.9420 0.00 1.7509 0.00 1.6813 0.00 
0.35 Present n = 1 5.9675 -31.4 2.4332 -53.6 1.2243 -69.7 0.4916 -84.9 0.3075 -89.9 0.2461 -91.7 

Present n = 3 8.9289 2.57 5.3694 2.21 4.1194 1.74 3.2701 -0.11 2.9785 -2.48 2.8499 -4.18 
Present n = 5 8.8796 2.01 5.3366 1.58 4.1132 1.59 3.3378 1.96 3.1123 1.90 3.0239 1.67 
Present n = 7 8.8107 1.22 5.2725 0.36 4.0570 0.20 3.3049 0.95 3.1017 1.56 3.0277 1.80 
Present n = 9 8.7563 0.59 5.2200 -0.64 4.0076 -1.02 3.2646 -0.28 3.0703 0.53 3.0021 0.94 
Ref.[22] TSDT 8.7147 0.11 5.2459 -0.14 4.0142 -0.86 3.1529 -3.69 2.8419 -6.95 2.7013 -9.18 
Ref. [1] FSDT 8.4495 -2.93 4.9154 -6.43 3.7066 -8.45 2.9739 -9.16 2.7899 -8.65 2.7284 -8.26 

 Ref. [9] Exact 8.7049 0.00 5.2534 0.00 4.0489 0.00 3.2737 0.00 3.0542 0.00 2.9742 0.00 
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Table 3-Comparison of in-plane normal stress xσ  at (x = a / 2, z = ± h / 2) for orthotropic plate 

 

h/a Theory Model Modular Ratios(E1 / E2) 
2 % Error 5 % Error 10 % Error 25 % Error

 
40 % Error

 
50 % Error

 0.15 Present n = 1 27.0190 -1.35 27.0190 -3.53 27.0190 -6.88 27.0190 -15.1 27.0190 -21.64 27.0190 -25.2 
Present n = 3 27.4314 0.16 28.0289 0.07 29.0209 0.02 31.9660 0.34 34.8653 1.12 36.7733 1.79 
Present n = 5 27.3223 -0.24 27.7623 -0.88 28.4949 -1.79 30.6846 -3.68 32.8623 -4.69 34.3075 -5.03 
Present n = 7 27.2556 -0.48 27.5992 -1.46 28.1716 -2.90 29.8861 -6.19 31.5962 -8.37 32.7339 -9.39 
Present n = 9 27.2123 -0.64 27.4930 -1.84 27.9609 -3.63 29.3634 -7.83 30.7640 -10.78 31.6966 -12.2 
Ref. [22] TSDT 27.6213 0.85 28.1296 0.43 29.1603 0.50 32.2959 1.37 35.3851 2.62 37.4132 3.57 
Ref. [1] FSDT 27.0190 -1.35 27.0190 -3.53 27.0190 -6.88 27.0190 -15.1 27.0190 -21.64 27.0190 -25.2 

 Ref. [9] Exact 27.3877 0.00 28.0079 0.00 29.0142 0.00 31.8585 0.00 34.4807 0.00 36.1252 0.00 
0.25 Present n = 1 9.7268 -3.98 9.7268 -9.77 9.7268 -17.4 9.7268 -32.5 9.7268 -41.46 9.7268 -45.7 

Present n = 3 10.1385 0.08 10.7320 -0.44 11.7101 -0.67 14.5614 1.06 17.2941 4.09 19.0536 6.28 
Present n = 5 10.0299 -0.99 10.4689 -2.88 11.1978 -5.01 13.3626 -7.26 15.4946 -6.74 16.8981 -5.74 
Present n = 7 9.9634 -1.65 10.3066 -4.39 10.8777 -7.73 12.5831 -12.6 14.2766 -14.07 15.3991 -14.1 
Present n = 9 9.9201 -2.08 10.2007 -5.37 10.6680 -9.51 12.0665 -16.2 13.4597 -18.99 14.3856 -19.7 
Ref. [22] TSDT 10.2064 0.75 10.8100 0.28 11.8656 0.65 14.9471 3.73 17.8727 7.57 19.7404 10.1 
Ref. [1] FSDT 9.7268 -3.98 9.7268 -9.77 9.7268 -17.4 9.7268 -32.5 9.7268 -41.46 9.7268 -45.7 

 Ref. [9] Exact 10.1305 0.00 10.7799 0.00 11.7885 0.00 14.4091 0.00 16.6149 0.00 17.9270 0.00 
0.35 Present n = 1 4.9627 -8.37 4.9627 -18.6 4.9627 -30.1 4.9627 -47.7 4.9627 -56.35 4.9627 -60.1 

Present n = 3 5.3731 -0.79 5.9608 -2.28 6.9186 -2.58 9.6379 1.53 12.1467 6.83 13.7140 10.1 
Present n = 5 5.2654 -2.78 5.7029 -6.51 6.4264 -9.51 8.5545 -9.88 10.6206 -6.60 11.9650 -3.94 
Present n = 7 5.1991 -4.00 5.5418 -9.15 6.1109 -13.9 7.8030 -17.8 9.4720 -16.70 10.5721 -15.1 
Present n = 9 5.1559 -4.80 5.4362 -10.8 5.9027 -16.8 7.2953 -23.1 8.6776 -23.68 9.5935 -22.9 
Ref. [22] TSDT 5.4181 0.04 6.0565 -0.71 7.1197 0.25 10.1023 6.42 12.7942 12.52 14.4469 15.9 
Ref. [1] FSDT 4.9627 -8.37 4.9627 -18.6 4.9627 -30.2 4.9627 -47.7 4.9627 -56.35 4.9627 -60.1 

 Ref. [9] Exact 5.4160 0.00 6.0998 0.00 7.1020 0.00 9.4925 0.00 11.3705 0.00 12.4553 0.00 
 
 

Table 4-Comparison of transverse stress zxτ at (x = 0, z = 0) for orthotropic plate 
 

h/a Theory Model Modular Ratios(E1 / E2) 
2 % Error 5 % Error 10 % Error 25 % Error

 
40 % Error

 
50 % Error

 0.15 Present n = 1 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 
Present n = 3 3.1796 0.21 3.1746 0.61 3.1663 1.22 3.1415 2.86 3.1171 4.22 3.1010 4.99 
Present n = 5 2.7273 -14.04 2.7258 -13.62 2.7233 -12.94 2.7158 -11.08 2.7083 -9.45 2.7033 -8.47 
Present n = 7 2.5539 -19.51 2.5532 -19.09 2.5522 -18.41 2.5489 -16.54 2.5457 -14.89 2.5435 -13.88 
Present n = 9 2.4594 -22.48 2.4591 -22.07 2.4586 -21.40 2.4569 -19.56 2.4552 -17.91 2.4541 -16.91 
Ref. [22] TSDT 3.2791 3.35 3.2739 3.75 3.2636 4.33 3.2321 5.82 3.2010 7.02 3.1806 7.69 
Ref. [1] FSDT 2.1221 -33.12 2.1221 -32.75 2.1221 -32.16 2.1221 -30.52 2.1221 -29.05 2.1221 -28.15 

 Ref. [9] Exact 3.1728 0.00 3.1555 0.00 3.1281 0.00 3.0542 0.00 2.9910 0.00 2.9536 0.00 
0.25 Present n = 1 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 

Present n = 3 1.9041 0.61 1.8958 1.65 1.8820 3.15 1.8421 6.39 1.8037 8.23 1.7791 8.93 
Present n = 5 1.6353 -13.60 1.6328 -12.46 1.6286 -10.74 1.6162 -6.65 1.6039 -3.76 1.5959 -2.28 
Present n = 7 1.5319 -19.06 1.5308 -17.92 1.5290 -16.20 1.5236 -12.00 1.5183 -8.89 1.5147 -7.26 
Present n = 9 1.4754 -22.04 1.4749 -20.92 1.4739 -19.22 1.4711 -15.03 1.4684 -11.89 1.4665 -10.21 
Ref. [22] TSDT 1.9630 3.72 1.9529 4.71 1.9352 6.07 1.8836 8.79 1.8346 10.09 1.8033 10.42 
Ref. [1] FSDT 1.2732 -32.73 1.2732 -31.74 1.2732 -30.22 1.2732 -26.46 1.2732 -23.60 1.2732 -22.04 

 Ref. [9] Exact 1.8926 0.00 1.8651 0.00 1.8245 0.00 1.7314 0.00 1.6665 0.00 1.6332 0.00 
0.35 Present n = 1 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 0.0000 -100 

Present n = 3 1.3561 1.22 1.3446 3.14 1.3258 5.59 1.2724 8.68 1.2231 9.99 1.1924 9.56 
Present n = 5 1.1669 -12.90 1.1634 -10.76 1.1575 -7.81 1.1405 -2.59 1.1239 1.07 1.1131 2.27 
Present n = 7 1.0937 -18.37 1.0922 -16.22 1.0896 -13.22 1.0822 -7.57 1.0748 -3.35 1.0700 -1.69 
Present n = 9 1.0536 -21.36 1.0528 -19.25 1.0515 -16.26 1.0476 -10.52 1.0438 -6.13 1.0412 -4.34 
Ref. [22] TSDT 1.3972 4.28 1.3822 6.02 1.3573 8.10 1.2874 9.96 1.2242 10.09 1.1854 8.91 
Ref. [1] FSDT 0.9095 -32.12 0.9095 -30.24 0.9095 -27.56 0.9095 -22.32 0.9095 -18.21 0.9095 -16.44 

 Ref. [9] Exact 1.3398 0.00 1.3037 0.00 1.2556 0.00 1.1708 0.00 1.1120 0.00 1.0884 0.00 
 

3.2 Discussion of results 

Table 1 show the comparison of in-plane displacement for simply supported plate infinitely long in y-direction under 
sinusoidally distributed load. Since exact elasticity solution is not available in the literature, results obtained by present 
theory for in-plane displacement are compared with those presented by Ghugal and Sayyad [22] and found agree well for n 
= 3, 5, 7 and 9 for all aspect ratios (h/a) and modular ratios(E1/E2). At n = 1, present theory underestimates the value of in-
plane displacement. Fig. 3 shows the through thickness distribution of in-plane displacement ( u ) for modular ratio 25 and 
aspect ratio 4. 
In Table 2 the non-dimensional value of transverse displacement ( w ) is presented for different values of aspect ratios and 
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modular ratios. From the results it is observed that, at n = 7 and n = 9, the present theory provides accurate values of 
transverse displacement whereas at n =1, it underestimates the values of transverse displacement for all‘h/a’ and 
‘E1/E2’.The examination of Table 2 also reveals that, transverse displacement decreases with respect to increases in 
modular ratios.Due to consideration of effect of transverse normal strain/stress, the transverse displacement predicted by 
trigonometric shear deformation theory Ghugal and Sayyad [22] is more accurate for all aspect ratios and modular ratios. 
First order shear deformation theory (FSDT)of Mindlin [1] underestimates the value of transverse displacement for all 
aspect ratios and modular ratios. Maximum transverse displacement predicted by present theory at n = 1 is independent of 
aspect ratios. 
Table 3 shows comparison of in-plane normal stress ( xσ ) for several values of modular ratios and aspect ratios. The 
examination of Table 3 reveals that, in-plane normal stress predicted by present theory for n =3 and n =5 is in good 
agreement with that of exact solution for all aspect ratios and modular ratios whereas values predicted by present theory at 
n = 1 are on lower side. In-plane normal stress predicted by FSDT and CPT (n = 1) are identical. Fig.4 shows the through 
thickness distribution of in-plane normal stress for modular ratios 25 and aspect ratio 4.Table 4 shows comparison of 
transverse shear stress obtained by present theory and other theories reported in the literature. It is observed from Table 4 
that, Present theory predicts the zero transverse shear stress at n = 1 whereas values obtained at n = 3 are in close agreement 
with exact solution. The present theory under predict the transverse shear stress at n = 5, n = 7 and n = 9. Fig. 5 shows 
through thickness distribution of transverse shear stress for modular ratios 25 and aspect ratio 4. 
 
 

 
 

Fig. 3 – Through thickness distribution of in-plane displacement ( u ) (E1/E2= 25 and h/a = 0.25) 
 

 

 
 

Fig. 4 – Through thickness distribution of in-plane normal stress ( xσ ) (E1/ E2= 25 and h/a = 0.25) 
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Fig. 5 – Through thickness distribution of transverse shear stress ( zxτ )(E1/ E2= 25 and h/a = 0.25) 

4 Conclusions 

In this paper, nth-order plate theory developed by Xiang and Kang [23] is applied for the one dimensional analysis of 
orthotropic plates.Classical plate theory (n = 1) and parabolic shear deformation theory of Reddy (n = 3) can be considered 
as special cases of present theory. The governing differential equations and associated boundary conditions associated with 
present theory are variationally consistent and obviate the need of shear correction factor. From the numerical results and 
discussion following conclusions are drawn. 

a. Results of other refined shear deformation theories for the in-plane displacement are in tune with the results of the 
present theory at n = 3, 5, 7 and 9. At n = 1, present theory underestimate the value of in-plane displacement. 

b. The use of present theory at n = 3, 5 and 7 gives excellent results in respect of transverse displacements. The 
transverse displacement reduces with respect to increase in modular ratios and ‘h/a’ ratios. 

c. The results of in-plane normal stress obtained by the present theory at n = 3 and 5are in good agreement with those 
of exact solution and those of other refind theories. 

d. As the value of n increases, the error in the results of transverse shear stress increases. At n = 3 and 5, present 
theory predicts excellent values of transverse shear stress whereas at n = 1 it predicts zero transverse shear stress.  

REFERENCES 

[1]- R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. 
Mech. T- ASME 18 (1951) 31-38.  

[2]- S.A. Ambartsumyan, On the theory of bending plates, Izv Otd Tech Nauk AN SSSR 5 (1958) 69–77.  
[3]- E.T. Kruszewski, Effect of transverse shear and rotatory inertia on the natural frequency of a uniform beam, 

National Advisory Committee of Aeronautics Technical Note, Langley Aeronautical Laboratory (1949).  
[4]- J.N. Reddy, A simple higher order theory for laminated composite plates, J. Appl. Mech. T- ASME 51 (1984) 

745-752.  
[5]- M. Touratier, An efficient standard plate theory, Int. J. Eng. Sci. 29(8) (1991) 901–916.  
[6]- K.P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech. 94 

(1992) 195–200.  
[7]- M. Karama, K.S. Afaq, S. Mistou, Mechanical behavior of laminated composite beam by new multi-layered 

laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct. 40(6) 
(2003) 1525–1546.  

[8]- S.S. Akavci, Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates 
on an elastic foundation, J. Reinf. Plast. Compos. 26(18) (2007) 1907–1919. 

[9]- N.J. Pagano, Exact solution for composite laminates in cylindrical bending, J. Compos. Mater. 3 (1969) 398-
411. 

0.0 0.5 1.0 1.5 2.0
τzx

-0.50

-0.25

0.00

0.25

0.50

z / h

n = 3

n = 5

n = 7

n = 9

Pagano (Exact)



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 1 (2014) 47–57  57 

 

[10]- F.Y.M. Wan, Cylindrical bending of thick plate, Int. J. Solids Struct. 29(5) (1992) 547-557. 
[11]- S.J. Jalali, F. Taheri, An analytical solution for cross-ply laminates under cylindrical bending based on 

through-the-thickness inextensibility. Part I-static loading, Int. J. Solids Struct. 35(14) (1998) 1559-1574. 
[12]- K.P. Soldatos, P. Watson, A method for improving the stress analysis performance of two-dimensional 

theories for composite laminates. Acta Mech. 123 (1997) 163-186. 
[13]- X.P. Shu, K.P. Soldatos, Cylindrical bending of angle-ply laminates subjected to different sets of edge 

boundary conditions, Int. J. Solids Struct. 37(31) (2000) 4289-4307. 
[14]- S.S. Vel, R.C. Batra, Cylindrical bending of laminated plates with distributed and segmented piezoelectric 

actuators/sensors, AIAA J. 38 (5) (2000), 857-867. 
[15]- S.S. Vel, R.C. Batra, Exact solution for the cylindrical bending of laminated plates with embedded 

piezoelectric shear actuators, Smart Mater. Struct. 10(2) (2001) 240–251 
[16]- V.Y. Perel, A.N. Palazotta, Finite element formulation for cylindrical bending of a transversely compressible 

sandwich plate based on assumed transverse strain, Int. J. Solids Struct. 38 (2001) 5373-5409.  
[17]- A.A. Khdeir, Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical 

bending, J. Vib. Control. 7(6) (2001) 781-801.  
[18]- J. Park, S.Y. Lee, A new exponential plate theory for laminated composites under cylindrical bending, T. Jpn. 

Soc. Aeronaut. S. 46(152) (2003) 89–95.  
[19]- W.Q. Chen, K.Y. Lee, State-space approach for statics and dynamics of angle-ply laminated cylindrical 

panels in cylindrical bending, Int. J. Mech. Sci. 47(3) (2005) 374–387.  
[20]- C.F. Lu, Z.Y. Huang, W.Q. Chen, Semi-analytical solutions for free vibration of anisotropic laminated plates 

in cylindrical bending, J. Sound Vib. 304 (2007) 987–995. 
[21]- E.I. Starovoytov, E.P. Dorovskaya, S.A. Starovoytov, Cylindrical Bending of an Elastic Rectangular 

Sandwich Plate on a Deformable Foundation, Mech. Compos. Mater. 46(1) (2010) 57-68. 
[22]- Y.M. Ghugal, A.S. Sayyad, Cylindrical bending of thick orthotropic plate using trigonometric shear 

deformation theory, Int. J. Appl. Math. Mech. 7(5) (2011) 98-116. 
[23]- S. Xiang, G.W. Kang, A nth-order shear deformation theory for the bending analysis on the functionally 

graded plates, Euro. J. Mech. A/Solids. 37 (2013) 336-343. 
[24]- R.M. Jones, Mechanics of Composite Materials, second edition, Taylor and Francis Inc., Philadelphia (1999). 


