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Abstract:
In this paper, we present inequalities for the average number of points re-

tained in thinning process generated from ordinary renewal process with distrib-
ution function F and inequalities for imperfect repair process.The linear bounds
are obtained for thinning process in the case of independent censures.

On the other hand, a numerical illustration is presented.

MSC: 60 K10, 60 K05, 90 K25

Keywords: Thinning process, Imperfect repair process, Stochastic com-
paraison, Renewal function

1 Introduction

Some stochastic processes are widely studied in the literature of reliability such
as thinning process and imperfect repair process. In the imperfect repair model,
the repaired item is returned to the "as-good-as-new" state with probability p (t)
and to the imperfect one (a functioning state, but with age equal to its age at
failure) with probability 1� p (t). Brown and Proschan (1983) and Block & al.
(1981) provide extensive studies about such models, in particular preservation
and monotonicity properties.

Many applications to system analysis, queueing theory and reliability prob-
lem motivate development of thinning model in which some of the points in the
original process are deleted with probability 1�p, and retained with probability
p. The preservation properties of such process are studied by Kovats & Mori
(1992). For details about this process, see Aissani (1997), Cox & Isham (1980)
and Kalashnikov (1990).

1



In this paper, we give in theorem 4 linear bounds for the average number
of points retained in thinning process generated by ordinary renewal process
with distribution function F for the case of independent censures based on the
classic renewal theory (Barlow & Proschan (1975)). We give additional results
of inequalities similar to the ones established by Ebrahim & Pellerey (1995) for
the uncertainty measure for imperfect repair process.

Finally, we give a calculation example of the upper bounds values for the
renewal function of the HNBUE class in the thinning process for several values
of p such as p 2]0; 1].

2 Notations and de�nitions

Let X be a non-negative random variable with cumulative distribution function
F (:), density function f (:), survival function F (:) = 1 � F (:), failure rate

� (:) =
f (:)

1� F (:) and �nite mean � = E (X) :

De�nition 1 F is IFR (Increasing Failure Rate) if

� (t) is non decreasing in t; 8t � 0:

F is NBUE (New Better than Used in Expectation) if

1Z
t

F (x) dx � �F (t) ; 8t � 0:

F is HNBUE (Harmonic New Better than Used in Expectation) if

1Z
t

F (x) dx � � exp
�
�t
�

�
; 8t � 0:

The corresponding dual concepts namely DFR, NWUE, HNWUE are de�ned
by changing the direction of the monotonicity or the inequality as appropriate.
Here, D and W stand decreasing and worse, respectively.

De�nition 2 The uncertainty measure of a distribution F is the di¤erential
entropy,

H (f) = �
Z 1

0

f (x) log f (x) dx = �E (log f (X)) ;

and is commonly referred to as the Shannon information measure. (see Shan-

non (1948))
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Ebrahimi (1995) de�ned the uncertainty of residual lifetime distribution,
H (f ; t), of a component by

H (f ; t) = 1� 1

F (t)

Z 1

t

f (x) log � (x) dx:

If the component has survived until time t, H (f ; t) measures the expected
uncertainty in the conditional density of Xt = X � t given that X > t about the
predictability of the remaining lifetime of the component.

De�nition 3 Let X and Y be two random variables with distribution functions
F (:) and G (:), failure rates �F and �G and entropies H (f ; t) and H (g; t)
respectively.

X is said to be smaller than Y in the distribution order (denoted X �st Y )
if

F (x) � G (x) ; 8x 2 R:
X is said to be smaller than Y in the failure rate order (denoted by X �FR

Y ) if
�F (x) � �G (x) ; 8x � 0:

X is said to be smaller than Y in the increasing convex order (denoted by
X �icx Y or X �� Y ) if

+1Z
x

F (u) du �
+1Z
x

G (u) du; 8x � 0:

X is said to have less uncertainty than Y (denoted X �LU Y ) if

H (f ; t) � H (g; t) ; 8t � 0:

Model 1: Thinning process

Let X1; X2; ::::be a Bernoulli sequence of mutually independent random vari-
ables and ftig an ordinary renewal process with probability distribution

F (x) = P fti � tj�1 < xg ; �1 < x < +1 and 8j:

If 	 denotes the number of successively censored points, then Np is a renewal
process with probability distribution

Fp (x) =
1X
k=0

P (	 = k) F (k+1) (x) =
1X
k=0

p (1� p)k F (k+1) (x) ; (3.1)
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where F (k) (:) is the k�fold convolution of F with itself.

The mean of this process is

�p = E (Xp) =
�

p
; where � = E (X) :

Model 2: Imperfect repair process

Consider that an equipment is put in operation at time t = 0 and every time
a failure occurs it is repaired.
If t is the equipment�s age at failure, then with probability p (t) ; it is restored

to its good as new condition (complete repair) and with probability q (t) =
1� p (t) ; it is restored to its condition just prior to failure (minimal repair).

The intervals between successively perfect repair form an ordinary renewal
process with inter-arrivals distribution

Fp (t) = 1� exp

8<:�
tZ
0

p (x) F
�1
(x) dF (x)

9=; ; 8t � 0:

If F has a failure rate � (t), then Fp has a failure rate �p (t) such as

�p (t) = p (t)� (t) ; t � 0;

and

F p (t) = exp

8<:�
tZ
0

p (x) � (x) dx

9=; :

3 Inequalities for thinning processes

Let Np(t) be a thinning point process of independent censures, with parameter
p such that 0 < p < 1, and a distribution function Fp(x) given by (3.1).

We denote by Hp(t) = E(Np(t)) the average number of successively censored
points, and on the other hand we introduce the following notations

I1(b; t) =
t

�p
+ b� bF p(t)�

^
F p(t) + Fp(t); (3.2)
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In(b; t) =
t

�p
+ b� bF (n)p (t)�

nX
k=1

^
F p � F (k�1)p (t) +

nX
k=1

F (k)p (t) ; (3.3)

where
^
F p(t) =

1

�p

tZ
0

F p(u)du is the equilibrium (or excess) distribution of

the residual time for thinning process, b is a constant and �p =

1Z
0

F p(u)du is

the average interval between successively censored points.

Also, we de�ne A =
�
t � 0 : F p(t) > 0

	
and

bl = inf
t2A

Fp(t)�
^
F p(t)

F p(t)
; bu = sup

t2A

Fp(t)�
^
F p(t)

F p(t)
: (3.4)

Theorem 4 (i) For all Fp,

Hp(t) �
t

�p
�

^
F p(t); where �p =

�

p
:

(ii) If in addition Fp is NBUE, then

t

�p
� 1 � Hp(t) �

t

�p
:

(iii) If Fp is HNBUE, then

Hp(t) �
�
t

�p

�
� (t) ; t � 0

where � (t) is the solution (for �) of the equation

exp

�
�t

�p

�
�
�
�t

�p

�
exp

�
t

�p

�
= 1 +

��
2�

�
t

�p

��
exp

�
t

�p

�
� e
�
I
(t)

(�p;1)
;

where I(t)(a;b) denotes the indicator function of the interval (a; b) :

(iv) If Fp is HNWUE, then

Hp(t) �
t

�p

�
1� exp

�
t

�p

�� � 1; t � 0:
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(v) For all

Fp; In(bl; t) � Hp(t) � In(bu; t); n = 0; 1; 2; :::;

where In(bl; t) is increasing in n for t � 0, and In(bu; t) is decreasing.

Also,
Hp(t) = lim

n!1
In(b; t) for any real b;

and for bl < b < bu, we have

I0 (b; t) < I1 (b; t) ; for some t;
I0 (b; t) > I1 (b; t) ; for some t:

In particular, the �rst possible encadrement is

t

�p
+ bl � Hp(t) �

t

�p
+ bu:

Proof. Np(t) is an ordinary renewal process because it is generated by an
ordinary renewal process, having a distribution function Fp(t) and so Hp(t)
satis�es the integral renewal equation:

Hp(t) = Fp(t) +

tZ
0

Hp(t� u)dFp(u) ; t � 0: (3.5)

The lower bound in (i) is better than the bound
t

�p
�1 (because

^
F p(t) � 1)

given in the theorem 3.14 Page 171 for Barlow & Proschan [3].

First, we prove that
t

�p
� 1 is well a lower bound of Hp (t).

Let Np(t) be the number of renewals in the interval (0; t) for the thinning
process.

Hp(t) = E [Np(t)] =

1X
n=1

F
(n)
p (t) :

We have
t � t

Np(t)+1
= X

(p)
1 +X

(p)
2 + : : :+X(p)

Np(t)+1
:

Thus

t �
Np(t)+1X
i=1

X
(p)
i :
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The random variables X(p)
1 ; X

(p)
2 ; : : : ; X(p)

Np(t)
are independent from the event

fNp(t) + 1g, then using Wald identity, we �nd:

t � E [Np(t) + 1 ]E
�
X
(p)
i

�
:

Thus
Hp(t) �

t

�p
� 1; 8t � 0: (3.6)

(i) To prove (i), it is su¢ cient to substitute the last inequality (3.6) in the
renewal equation, and then we �nd:

Hp(t) � Fp(t) +
tZ
0

�
(t� u)
�p

� 1
�
dFp(u)

=
t

�p
Fp(t)�

1

�p

tZ
0

u dFp(u)

=
t

�p
� 1

�p

tZ
0

F p(u)du

=
t

�p
�

^
F p(t):

(ii) We assume that Fp is NBUE. Then, by de�nition we have:

^
F p(t) =

1

�p

tZ
0

Fp(u)du � Fp(t) ; 8t � 0:

But

^
Hp(t) =

1X
n=1

tZ
0

^
F p(t� u) dF (n�1)p (u)

�
1X
n=1

1Z
0

Fp (t� u) dF (n�1)p (u) = Hp(t):

From theorem 3.8 of Barlow & Proschan [3], we have:

^
Hp(t) =

t

�p
=
pt

�
; (3.7)

and hence,

Hp(t) �
t

�p
: (3.8)
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From (3.7) and (3.8), we can write the following result:

If Fp is NBUE then
t

�p
� 1 � Hp(t) �

t

�p
; 8t � 0:

Using the bound Hp(t) �
t

�p
�

^
F p(t) and substituting it in the renewal

equation, we �nd after n iterations:

Hp(t) �
t

�p
+

nX
k=1

F (k)p (t)�
nX
k=1

^
F p � F (k�1)p (t)� F (n)p (t) ; n � 0; (3.9)

where F (0)p (t) = 1, and the summations are taken to be zero if n = 0.

The sequence of lower bounds de�ned by (3.9) is monotone non decreasing
in n for any �xed t, and converges to Hp(t):

Indeed, from [3]

Hp(t) =
1X
k=1

F (k)p (t): (3.10)

t

�p
=

nX
k=1

^
F p � F (k�1)p (t): (3.11)

lim
n!1

F (n)p (t) = 0: (3.12)

Monotonicity is proved by induction. We have seen previously that

Hp(t) �
t

�p
�

^
F p(t) �

t

�p
� 1:

Consequently, the property holds for n = 1. Assume for some n > 1 that

nX
k=1

F (k)p (t)�
nX
k=1

^
F p�F (k�1)p (t)�F (n)p (t) �

n�1X
k=1

F (k)p (t)�
n�1X
k=1

^
F p�F (k�1)p (t)�F (n�1)p (t):

Convolving both sides of this inequality with Fp (t) and adding Fp(t)�
^
F p(t)

to each side gives the desired result.

(iii) Use X�
p to represent the random variable exponentially distributed

with the same mean as Xp i.e. F �p (x) = 1 � exp
�
�x
�p

�
; x > 0:The variable
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^
Xp denotes the random variable with distribution

^
F p(x) =

1

�p

xZ
0

F p (t) dt:

By de�nition, Xp is HNBUE (HNWUE) if and only if X�
p �icx (�icx)Xp:

Let � be any number greater than 1. Hence Hp is non-decreasing and Fp is
HNBUE, it follows from (3.7) that, for t > 0;

Hp (t) =
�t

�p
=

^
F p(�t) +

�tZ
0

Hp (�t� x) d
^
F p (x)

=

�
1� exp

�
��t
�p

��
+

�tZ
0

Hp(�t� x)
1

�p
exp

�
�x
�p

�
dx;

or

�t � �p
�
1� exp

�
��t
�p

��
+ exp

�
��t
�p

� �tZ
0

Hp(y) exp

�
y

�p

�
dy: (3.13)

It follows that for any t > 0 :

�t � �p
�
1� exp

�
��t
�p

��
+ �p Hp(t)

�
1� exp

�
� (�� 1) t

�p

��
:

Hence
Hp(t) � inf

�>1
gp(�) ; t > 0;

where gp(�) =
�t� �p

h
1� exp(��t�p

)
i

�p

h
1� exp(�(��1)t�p

)
i :

Elementary calculus shows that the in�mum is attained at � = �1 where
�1 = �1(t) is the solution to

exp

�
�t

�p

�
�
�
�t

�p

�
exp

�
t

�p

�
= 1

The in�mum equals
�
t

�p

�
�1(t) which is, therefore, an upper bounds ofHp(t)

for all t > 0:

However, if t > �p, a sharper upper bound is obtained as follows:

If t > �p then
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�tZ
0

Hp(y) exp

�
y

�p

�
dy �

tZ
�p

Hp(y) exp

�
y

�p

�
dy +

�tZ
t

Hp(y) exp

�
y

�p

�
dy

�
tZ
�p

�
y

�p
� 1
�
exp

�
y

�p

�
dy +Hp(t)

�tZ
t

exp

�
y

�p

�
dy

=
�
t� 2�p

�
exp

�
t

�p

�
+ �pHp(t)

�
exp

�
�t

�p

�
� exp

�
t

�p

��
:

It follows from (3.13) and the above that

Hp(t) � inf
�>1

hp(�);

where

hp(�) =

�t� �p � �p(e� 1) exp
�
�t

�p

�
�
�
t� 2�p

�
exp

�
�(�� 1)t

�p

�
�p

�
1� exp

�
�(�� 1)t

�p

�� :

Computations show that, for t > �p, the function hp(�), � > 1, attains its

in�mum
�
t

�p

�
�2(t) at �2(t); where �2 is the solution of the equation:

exp

�
�t

�p

�
�
�
�t

�p

�
exp

�
t

�p

�
= 1� e+

�
2� t

�p

�
exp

�
t

�p

�
:

The theorem follows on de�ning �(t) as �1(t) or �2(t) according to whether
0 � t � �p or t > �p:

(iv) The lower bound according to the case where Fp is HNWUE can be
easily improved. It is clear from (3.7) that

t

�p
�

^
F p(t) +Hp(t)

^
F p(t) =

^
F p(t) [1�Hp(t)] ;

so that, when F is HNWUE;

Hp (t) �
t

�p

�
1� exp

�
� t

�p

�� � 1; t � 0:

(v) We prove that In(bl; t) and In(bu; t) provided the best linear lower and
upper bounds which are in a certain sense "best" when n is great and converges
to Hp(t) as n!1:
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Note that

bl �
Fp(t)�

^
F p(t)

FP (t)
� bu; t 2 A:

Therefore

blF p(t) � Fp(t)�
^
F p(t) � buF p(t):

Convolve with F (n)p (t) to get

blF p � F (n)p (t) � F (n+1)p (t)�
^
F p � F (n)p (t) � buFP � F (n)p (t):

Now we sum over n to get

bl � Hp(t)�
t

�p
� bu;

which proves (v) for n = 0:

Successive iterations in the right-hand side of (3.5) prove (v) for all n.

We prove (v) in a one sense inequality (lower bound), the other inequality
follows in the same way.

Assume that

Hp(t) �
t

�p
+ bl � blF

(n)

p (t)�
nX
k=1

^
F p � F (k�1)p (t) +

nX
k=1

F (k)p (t); (3.14)

which is true at n order and we prove it at (n+ 1) order. We substitute
(3.14) in (3.5).

To prove that In (bl; t) is non-decreasing in n, we see that

bl � blFp(t) + Fp(t)�
^
F p(t);

thus

I0(bl; t) =
t

�p
+ bl �

t

�p
+ bl � blF p(t) + Fp(t)�

^
F p(t) = I1(bl; t):

Assume for some n > 1 that In�1(bl; t) � In(bl; t). Convolving both sides of
this inequality with Fp(t)�

^
F p(t) to each side gives In(bl; t) � In+1(bl; t).

Hence, we obtain that In(bl; t) is non-decreasing in n. In the same way we
prove that In(bu; t) is non increasing in n.
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Now, if b < bu; then for some t; b <
Fp(t)�

^
F p(t)

F p(t)
with F p(t) > 0:

Therefore, b < bFp(t) + Fp(t) �
^
F p(t), and so I0(b; t) < I1(b; t):The other

inequality follows in the same way.

The convergence of the sequence of bounds In for all b follows from the
conditions (3.10), (3.11) and (3.12).

In particular, we have In(bl; t) � Hp (t) � In(bu; t) or

t

�p
+ bl � Hp(t) �

t

�p
+ bu:

Remark 5 The constants bl and bu can have other interpretations which are the
lower and upper bounds respectively of the mean residual time of the distribution
Fp of the interval between successively censored points of the thinnig process, so
that

bl = inf
t2A

264 ^
F p(t)

F p(t)

375� 1 = inf
t2A

1

�p

1Z
t

F p(u)

F p(t)
du� 1;

and

bu = sup
t2A

1

�p

1Z
t

F p(u)

F p(t)
du� 1:

4 Inequalities for imperfect repair process

Theorem 6 Let fNp(t)g be an imperfect repair process with parameter p(t)
and an underlying distribution F , then

(i) If F is DFR and p(t) is an increasing function, then Xp �LU X; i.e.
H(fp; t) � H(f ; t).

(ii) If p(t) is increasing in t then H(fp; t)�H(f ; t) is increasing in t, for
all t � 0:

(iii) If Np0(t) is an imperfect repair process with parameter p0(t) and an
underlying distribution F 0 such as:

(a) p � p0; i.e. p(t) � p0(t); 8t � 0;
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(b) p(x)=p0(x) is increasing in x;

(c) F is DFR;

(d) F �FR F 0:

Then Xp �LU Xp0 :

Proof. To prove theorem 6, we need the following result.

Lemma 7 Let X and Y be the lifetimes of two components with survival func-
tions F and G, failure rates �F ; �G and entropies H(f ; t) and H(g; t) respec-
tively. If

(i)
�F (x)

�G(x)
is a non-decreasing function in x;

(ii) F is DFR;

(iii) X �FR Y:

Then it follows that X �LU Y:

� To prove the theorem, we put F = Fp and G = F in the lemma. The
hypothesis (ii) of the lemma is veri�ed by assumption.

Also,
�Fp(x)

�F (x)
=
p(x)�(x)

�(x)
= p(x) is non-decreasing function in x by assump-

tion. Thus, the condition (i) of the lemma follows.

In the same way, the condition (iii) of the lemma is veri�ed since 0 � p(x) �
1;8x and �p(x) = p(x)�(x); then Xp �FR X:

From lemma 7, we get that Xp �LU X; which proves the part (i) of the
theorem.

� From point (i) of theorem 6, we have Xp �LU X; i.e. H(fp; t) � H(f ; t):

Moreover, Xp �FR X since �p(x) = p(x)�(x) � �(x);8x [ because p(x) � 1].

Therefore,

H 0(fp; t) = �p(t) [Log�p(t) +H(fp; t)� 1]

� �(t) [Log�(t) +H(f ; t)� 1] = H 0(f ; t);

which proves the part (ii) of theorem 6.

� In the rest, we have just to prove the part (iii) of theorem 6.
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We remark that the condition (ii) of the lemma 7 is veri�ed by assumption.

However �p0(x) = p0(x)�(x) � p(x)�(x) = �p(x) follows from (iii)-(a) of
theorem 6. Then Xp0 �FR Xp: We deduce the condition (iii) of the lemma 7.

We have
�Fp(x)

�Fp0 (x)
=
p(x)�(x)

p0(x)�(x)
=
p(x)

p0(x)
is increasing in x;this is hold from

(iii)-(b) of theorem 6. Then the hypothesis(i) of the lemma 7 is veri�ed.

From the lemma 7, we get Xp �LU Xp0 . This completes the proof.

5 Numerical illustration

We give the upper bound value of the renewal function of a non parametric
distribution HNBUE in the case of a thinning process for di¤erent values of p
such as p 2]0; 1], on the basis of the result (iii) of theorem 3.

The upper bound values of Hp (t) are given in table1 in the case
pt

�
< 1 and

in table2 in the case
pt

�
� 1:

p
t

�
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.019 0.039 0.059 0.079 0.099 0.118 0.138 0.158 0.177 0.196
0.2 0.039 0.079 0.118 0.157 0.196 0.235 0.237 0.312 0.349 0.387
0.3 0.059 0.118 0.177 0.235 0.292 0.349 0.406 0.462 0.517 0.572
0.4 0.079 0.158 0.235 0.311 0.387 0.462 0.536 0.609 0.681 0.753
0.5 0.099 0.196 0.292 0.387 0.480 0.572 0.663 0.753 0.841 0.928
0.6 0.118 0.235 0.349 0.462 0.572 0.681 0.788 0.894 0.997 1.001
0.7 0.138 0.273 0.406 0.536 0.663 0.788 0.911 1.032 1.1150 1.267
0.8 0.157 0.311 0.462 0.609 0.752 0.893 1.032 1.167 1.301 1.432
0.9 0.177 0.349 0.517 0.681 0.841 0.997 1.150 1.301 1.448 1.592
1.0 0.196 0.387 0.572 0.753 0.928 1.100 1.267 1.432 1.592 1.750

Table1
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p
t

�
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

15 2.43 4.10 5.63 7.14 8.64 10.14 11.64 13.14 14.64 16.14
20 3.02 513 7.14 9.14 11.14 13.14 15.14 17.14 19.14 21.14
25 3.57 6.14 8.64 11.14 13.64 16.14 18.64 21.14 23.64 26.14
30 4.10 7.14 10.14 13.14 16.14 19.14 22.14 24.98 28.14 31.14
35 4.62 8.14 11.64 15.14 18.64 22.14 25.64 29.14 32.64 36.14
40 5.13 9.14 13.14 17.14 21.14 25.07 29.14 33.14 37.14 41.14
45 5.637 10.14 14.73 19.14 23.64 28.14 32.14 37.14 41.64 46.14
50 6.14 11.14 16.14 21.14 26.14 31.14 36.14 41.14 46.64 51.14
100 11.4 21.14 31.14 41.14 51.14 61.14 71.14 81.14 91.14 101.1
200 21.14 41.14 61.14 81.14 101.1 121.1 141.1 161.1 181.14 210.1

Table2
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