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ABSTRACT: To restore a low-rank structure from a noisy matrix, many recent authors has used 

and studied truncated singular value decomposition. So thus, according to these studies, the image can 

be better estimated by shrinking the singular values as well. In this paper, we are interested in the 

performance of the model proposed by Candès (2012) for other thresholding function (Minimax 

Concave Penalty (MCP)), and under the assumption that the distribution of data matrix Y belongs to 

an elliptically distribution family which extends the Gaussian case. Under this distributional context, 

we propose to apply stein unbiased risk estimate (SURE) improved by S. Canu and D. Fourdrinier 

(2017), in order to select the best thresholding function between MCP and Soft-thresholding, and the 

optimal shrinking parameter λ from the data Y. Numerical results reveal that the risk estimate SURE 

is good, the minima are reached for the same λ (λ∗ =𝜆̂= 5218.4), the difference between the estimated 

(SURE) and the usual (Mean Square Error (MSE)) risks is small, and that the risk of MCP is lower 

than the one of Soft. 

Keywords : elliptical distribution; mean square error; minimax concave penalty; singular value 

decomposition;  stein’s unbiased risk estimate; 

JEL Classification: (Time New Roman, 9, normal). 

1. INTRODUCTION:  

While methods of developing image enhancement systems have seen remarkable 

progress in recent years, their ability to manipulate a large volume of data has remained 

rather modest (ALIN A.et ANASTASIOS B. et PANAGIOTIS T. 2001, 772–783), (ALIN 
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A.et ANASTASIOS B. et PANAGIOTIS T. 2001). The main purpose of image 

enhancement is to improve the quality and the information content of the original data by 

eliminating noise without significant loss of information, from a statistical point of view 

this problem is can presented as follows. 

Let Y be an observed n×m matrix that we seek to decompose into singular values with 

m < n, under the multivariate additive model 

                              0 ,nm nY M I  e ,  e ~  e                           (1.1) 

Where e  is a noise matrix and  e (0nm,InΣ)  denotes the elliptically distributions 

with covariance matrix proportional to InΣ, here, Σ  is an m x m invertible scale matrix 

and In is the n-dimentional identity matrix,  𝑀 is an unknown n×m matrix to be estimated, 

which contains the information. A large number of substantial distributions are covered by 

the elliptically symmetric distributions such as the Gaussian, Exponential, Cauchy, t-

Student, Logistic and Weibull. 

 It is assumed that the information contained in matrix 𝑀 is redundant; therefore, this 

matrix 𝑀  is of low rank. This assumption has been considered by many authors, see, 

(FUCHS J J. 2005), (THOMAS R. 2015) and (YUNG X 2019) that is 

                                               ,rank M q m                                             (1.2) 

Many authors gave differents appraoches in order to improve the estimators 𝑀̂ of 𝑀 in 

model (1.1) through the unbiased risk estimator of Stein, known as SURE (Steins Unbiased 

Risk Estimate) we refer, for example, to the monographs of (CANDES E J. et SING-LONG 

C A. et TRZASKO J D. 2013, 4643–4657), (LUISIER F. et BLU T. et UNSER M. 2007, 

593–606) and (ZHANG X P. et DESAI M D. 1998, 265–267), while they had adopted in 

their studies the Gaussian approach. Assuming that the noise e  follows a normal 

distribution is really restricted, since, the real data does not necessarily and even very rarely 

follows this distribution, hence we are interested in reformalizing the problem for a noise 

according to an elliptically distribution as in model (1.1) see, (CANU S. et FOURDRINIER 

D. 2017). 

Let Y = UΔVT be the singular values decomposition of the matrix Y in model (1.1), 

where U is an n×n orthogonal matrix whose columns are the eigenvectors of Y YT, V is an 

m×m orthogonal matrix whose columns are the eigenvectors of YTY, and Δ is an n×m 

diagonal matrix with Δ = (Δ1   0) where Δ1 = Diag(𝝈𝒊), where σi denotes the ith singular 

value of YTY. 
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We consider a family of estimators given as follows 

                          
1

ˆ ˆ
m

T

i i i

i

M M Y SVT Y


  l l lj s  mn                   (1.3) 

which is obtained from a family of shrinkage functions  𝜑𝜆(𝜎𝑖) see., Fan and Li (FAN 

J. et LI R. 2001, 1348–1360), such as the soft-thresholding and the Minimax concave 

penalty, the ones we are interested in this paper. The model selection problem here is to 

find the optimal shrinkage parameter λ and the right estimator 𝑀̂ 𝜆(𝑌) which minimizes the 

risk MSE (mean square error) formulated as follows 

                ,
ˆ ˆ, , ,MR M M E L M Y M 

 å                (1.4)  

Where EM,Σ  denotes the expectation with respect to the distribution of Y in model 

(1.1), and L is the invariant quadratic loss given by 
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                (1.5) 

here tr denotes the trace of the matrix, ||.||F the Forbenius norm and τ2 is the proportionality 

constant of the covariance matrix defined through cov() = τ2 In ⊗ Σ (see reference (CANU 

S. et FOURDRINIER D. 2017, 3-5). 

     The main obstacle of this minimization problem is that we do not know 𝑀, so we can 

not find the estimate 𝑀̂ which minimizes the risk (1.4). The idea is then to estimate this 

risk. In this case, we consider the steins unbiased risk estimate (SURE) proposed by 

Charles Stein (STEIN C M. 1981, 1135–1151), whose expectation is equal to the risk, that 

is, 

                                    , 0
ˆ , ( )MR M M E Y å                                    (1.6) 

The paper is organized as follows, in section 2, we recall basic notions of risk estimate 

SURE (Stein Unbiased Risk Estimator) and complexity control, sections 3 and 4 contain 

our main contribution which consist in some experiments on simulated data of the SURE 

established by Canu and Fourdrinier (2017) when Σ = σ2Im is known and proportional to 

the identity matrix with e  follows a multivariate t-Student distribution. Finally, in section 

5, we give some conclusions and perspectives. 



                                                                                               Nihad NOURI & Fatiha MEZOUED  

 

157 

 

2. Complexity control and model selection 

 

      From the observed matrix Y given in (1.1) our main objective is to propose an estimator 

𝑀̂  of 𝑀  which minimize the MSE risk in (1.4), which depends on the trade-off between 

the Bias and the variance. 

  2ˆ ˆ, var( )MSE R M M M Bias    

and it can be written as function of the empirical error ||𝑌 − 𝑀̂||
∑

2
 

                               
2 2

ˆ ˆ ˆ( , )M M Y M pen Y M
 

                                 (2.1) 

    we recall that, the expression in (2.1) represents stein unbaised risk estimate (SURE), 

where pen(Y, 𝑀̂) is a penalty function, this penalty is a function of the model’s complexity 

which goes up when the complexity goes up. 

 

Figure N°1: Illustration of the relation between true error and empirical error 

     As we can see in the above figure (Figure N°1), the empirical error always decreases, 

but true error (MSE) decreases up to some points and then it starts to increase; and the 

optimal model would be a model which has a minimum true error not empirical error. 

     Recently, Canu, S and Fourdrinier, D developed various SURE- type estimators for a 

quadratic loss which correspond to different situations depending on whether the covariance 

matrix Σ is known or unknown, and that the noise distribution e  in (1.1) is Gaussian or not 

(for more details, please refer to (CANU S. et FOURDRINIER D. 2017, 60–72)), we are 

interested in using the one when Σ = σ2Im is known and proportional to the identity matrix 

with e  is spherically symmetric 

                           
2

0 2 2

1 ˆ ˆ( ) 2 ( )Y
F

Y Y M div M nm    d

t s
                      (2.2) 
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Where 
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s s ll
1

s s s
        

       As for 𝑀’s estimator, many challenges have been made to improve the native estimate  

𝑀̂ = Y under the quadratic loss using trancated singular value decomposition obtained from 

shrinkage functions family 𝜑𝜆(𝜎𝑖), see., (BIGOT J. et DELDALLE C. et FRAL D. 2017, 

4991–5040), (CANDES E J. et SING-LONG C A. et TRZASKO J D. 2013, 4643–4657) 

and (SARWAR B. et KARYPIS G. et KONSTAN J. et RIEDL J. 2002, 28), here, we are 

interested in two shrinkage functions Soft-thresholding and MCP given respectively as   

                                                   i i 
 lj s s l                                          (2.3) 

and 
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                        (2.4) 

where 𝜇 is greater than 1 (𝜇 > 1) 

so thus, the optimal thresholding values λ* and 𝜆̂ are the ones which satisfy 

2
* ˆarg min ( )M M Y






   

and 

2
ˆ ˆ ˆarg min ( ) 2 ( ( ))YY M Y div M Y 






  
 

Now for the coefficient proportionality we give the following lemma.

 

Lemma 1:  let e  be a random noise as in model (1.1). The proportionatity 

coefficient τ equals to 

                                                       
2

.E M SNR nm                                     (2.5) 
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Proof. From model (1.1), we have 

 0 ,nm nI e ~  e  

see reference (CANU S. et FOURDRINIER D. 2017, 4) we have also 

2 2[ ] .E R nm   

with  
22

F
R   

so thus 

            
2 2nm   

           since from the fact that 

2 2( )SNR E M E R  

where SNR denotes the signal to noise ratio, we have 

2
.SNR E M nm  

the result in (2.5) follows. 

3. Experiments on simulation data  

      This section consists on two points, first; we compare the risk estimator SURE with the 

MSE for the two thresholding functions, MCP and Soft-thresholding. Then, we compare 

SURE risk for the two different functions, under the assumption that the random noise in 

model (1.1) follows t-Student distribution with degree of freedom equal to 5, its generative 

function is given by 

1
( 1)

2 2( ) (1 ) , 0
s

f t t t
 

 µ  

where s denotes the freedom degree. 

we define the mean-squared error (MSE) of SVTλ(Y ) as 

                                         
2

( ) ( ) ,
F

MSE Y E M SVT Y  l
                            (3.1) 

an unbiased risk estimator (SURE) of (3.1) is 

                
2

0 2 2

1
( ) ( ) 2 ( ( )) ,YF
Y Y SVT Y div SVT Y nm    d

l l
t s

              (3.2) 
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Thresholding algorithm 

Our simulation study consists in following these steps 

step1: Create noise instance,  

step2: Built the noisy data using model (1.1),  

step3: Compute SVD of the noisy matrix Y,  

step4: Generate linearly spaced vector of lambda λ,  

step5: Calculate the value of the proportionality coefficient τ2 using equation (2.5),  

step6: Compute the singular value thresholding (SVT) using the two different shrinkage 

functions in (2.3) and (2.4),  

step7: Compute MSE and SURE for SVT using formulas (3.1) and (3.2). 

3.1. Experimental protocol 

        In the following, we assess the behavior of SURE given by equations (3.2) to the one 

of the MSE in equation (3.1) as a model selector. recall that, The experimental protocol 

developed here is inspired by the one proposed by Candès et al (CANDES E J. et SING-

LONG C A. et TRZASKO J D. 2013), considering t-Student noise distributions for e  in 

model (1.1), where here the covariance matrix Σ is known with Σ = σ2Im. Let Y be an n x m 

observed matrix, which is constructed according to the model (1.1) with m = 200 and           

n = 500.  

       We test the different models corresponding to the different proposed shrinkage 

function, for a set of matrices M randomly generated according to a t-Student distribution 

of freedom degree equal to 5, with a set of different ranks, namely {m/4 ; m/2 ; m}, as well 

as for different SNR (signal noise ratio) values {0.2; 0.8; 1.2} 

 

 
Figure N°2: Comparison of the Monte Carlo estimates of the risk (black) with the 

SURE estimator (red) versus λ, rank(M)=50, SNR=0,2 (left) and rank(M)=50, 

SNR=0,8 (right) 
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Table N°1: Estimation of the optimal risk in relation to SNR and the rank of M for the 

two proposed thresholding functions 

    The experiment above [Figure N°2] illustrates the difference between the risk MSE and 

the estimated risk SURE. Otherwise, it exhibits the attitude of SURE in (3.2) to estimate the 

invariant loss in (1.5) when the noise is spherically symmetric and non-Gaussian. We note 

that the risk estimate is good, the minima are reached for the same λ and the difference 

between the estimated and MSE risks is low, for the different values of SNR and rank. 

 

Figure N°3: Comparison of the estimated risk versus λ for the different proposed 

thresholding functions (MCP and Soft) (with Rank (M) = 50, SNR = 0.2) 

       Figure N°3 presents results for a choice of fixed parameters (namely SNR = 0.2 and 

rank (M) = 50). While, Table N°1 presents results obtained from tests for all of the 
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proposed parameter values, for each value of SNR, and for each value of rank of M. It 

presents optimal risks of each method 

3.2.  Magnetic resonance imaging. 

Here, we consider a sharp image [Figure N°4 (a)] (a cardiac perfusion MRI) used by 

Candès et al (CANDES E J. et SING-LONG C A. et TRZASKO J D. 2013) in the Gaussian 

case, for which we add a Multivariate Student noise, [Figure N°4 (b)]. 

 

Figure N°4: (a) truth image, (b) noisy image, (c) SVT denoising image 

 

Figure N°5: Plots of MSE and SURE for SVT as a function of thresholdding value, λ, 

using Soft-thresholding (left) and MCP (right); the optimal thresholding value λ 

correspondent to MCP shrinkage function is used to generate the images in       

[Figure 4 (c)] 

 

Table N°2: Estimation of the optimal risk for the two proposed thresholding functions 
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4.  Results and Discussion 

First, we find that SOFT and MCP tend to obtain a lower relative risk when the rank of 

the matrix M is small, and when the SNR increases, see table N°1. Indeed for an SNR equal 

to 1.2, and a rank equal to 50, the two functions obtain the smallest risk. However, from the 

comparison of the risk, we note that the risk of MCP is better from the one given by Soft, 

since; the risk associated to MCP is in all cases lower than the one associated to Soft. 

In conclusion, we recommend to use the MCP type function for estimating the 

unknown matrix M. 

5. Conclusion and perspectives  

Truncated singular value decomposition remains powerful and useful to recover a 

reduced rank matrix from noisy data which is a quite interesting topic that has excite the 

scientific community for a few years. When it comes to shrinkage, a recurring problem that 

has been little addressed until now is the choice of the shrinkage function as well as the 

choice of the optimal threshold, for this reason, we are interested in the problem of model 

selection by minimizing the risk estimator SURE for singular value thresholding. The use 

of SURE in (2.2) developed by Fourdrinier and Canu is interesting since it is adapted for a 

large class of density, namely the elliptical class, as it contains many distributions that are 

more leptokurtic than the normal distribution, it allows to model more structures in the real 

data. 

Note that, an image is often cut into K blocks, in order to carry out its processing. 

Consequently, we plan to adapt this model selection on analyzes made on block-wise 

images rather than globally, in order to obtain a better estimate of the noisy matrix. 

Otherwise, it is really interesting to propose a new rule to select two parameters, the one 

related to the thresholding λ and the block-wize parameter K from the data, for example, for 

Ԑ ∼ Ɲ(0nm,In ⊗Σ) with Σ = σ2Im and k=4, k=10 we have 

 
Figure N°6: Plots of MSE and SURE for SVT as a function of threshold value, for 

k=4 (left) and k=10 (right) 

As we can see from the illustration given in Figure N°6, the choice of the value of K 

affects the value of the optimal lambda λ. 
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