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Résumé:

['objectif principal de ce papier est de développer un modéle qui combine dans un méme processus une opération de classification
d’image ¢t une opération de restauration. La classification consiste a partitionner une image ¢n régions repérées par des étiquettes
différentes. Le probléme de classification concerne beaucoup dapplications telles que la gestion de la couverture terrestre en
télédetection, le suivi de I'urbanisation ete... Les images observées sont souvent dégradées. Le but de la restauration est de retrouver
I’image originale a partir de celle observée. Ce probléme est un probléme inverse mal posé au sens d 'Hadamard. L'existence et I’unicité
de la solution ne sont pas assurces. Il est alors néeessaire de régulariser la solution par IPintroduction d*un a priori. Nous pouvons
distinguer deux types de régularisation: linéaire et non-linéaire. Dans ce papier, nous développons un modeéle variationnel, proposé par
C.Samson, qui combine classification et restauration avee une régularisation non lincaire. Il est basé sur les travaux de Van der walls
Cahn-Hilliard développés pour les transitions de phase en mécanique des fluides, et utilise la théorie de la Gamma Convergence. La
classification restauration est obtenue en minimisant une séquence de fonctionnelles. Le résultat correspond 4 une image composée de
classes homogeénes séparées par des interfaces de longueur minimales. Le probléme de minimisation est transformé par les équations
d’Euler-Lagrange en un probléme de résolution d’équations aux dérivées partielles (EDP). Nous avons test¢ ce modele sur des images
de synthese et sur des images satellitaires de la série SPOT-1 recouvrant la région de Blida dans le sud est d'Alger (capitale d'Algérie).
Nous présenterons a la fin du papier les résultats obtenus.

Abstract :

The main objective of this paper is to develop a model which combines in the same process image classification and restoration. Image
classification consists of assigning a label to each site of an image to produce a partition into homogeneous labeled areas. The
classification problem concerns many applications, like in the field of remote sensing: land use management. monitoning. urban areas.
Observed images are oflen atfected by degradations. The purpose of restoration is to find an original image describing a real scene from
the observed one. This problem can be identified by inverse problem. In general, it is ill-posed in the sense of Hadamard. The existence
and uniqueness of the solution are not guaranteed. It is therefore necessary to introduce an a priori constraint on the solution. This
operation is the regularization. We can distinguish two types of regularization: the lincar one and the non-linear. In this paper, we
develop a model proposed by C.Samson, combining classification and restoration with non linear regularization. It's based on works
developed for phase transitions in fiuid mechanics by Van der Walls-Cahn-Hilliard, and uses a Gamma-convergence theory. This model
is named variational model, due to the fact that calculus of variations is its main tool. The classification-restoration is obtained by
minimizing a sequence of functionals. The result is a classified and restored image. and corresponds to an image composed of
homogeneous classes, separated by minimum length boundaries. The minimization problem is transtformed by Euler-Lagrange
equations into PDEs (Partial Differential Equations) resolution problem. We have experimented this model on synthetic and satellite
images. For real images, we have considered images from SPO1-1 satellite representing the regions of Blida in south-west of Algiers
(capital of Algeria). We will discuss at the end of the paper the results we have obtained.

Key Words: Image Classification, Image Restoration, Multispectral satellite image. Remote Sensing, Variational model.
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I. Introduction

The remote sensing is a multidisciplinary science that knows
actually a real flight, with the use of sensors embarked more and
more sensitive and more and more varied. For the extraction of
the thematic information of the remote sensed images. the
classification proves to be an inescapable tool. It consists in
achieving a partition of the image into labeled regions. We can
distinguish two types of classification: the supervised
classification for which the number of classes and their
parameters are known beforchand, and the non supervised
classification that doesn't require any knowledge on the classes.
Many classification models can be found in the field of
stochastic approaches (discrete models) with the use of Markov
Random Field (MRF) theory (Pony and al.. 2000). Structural
approaches as splitting, merging and region growing have also
been developed. Works on the classification by variational
maodels (continuous models) have been conducted lately. mainly
because the notion of classes has a discrete nature,

The wvariational approaches are always associated with
resolution of partial differential equations (PDEs). and have for
interest. that they allow to get in many cases the results of
existence and uniqueness of the solution. They can be
implemented by powerful numeric methods (Deriche. R. and
Faugeras. O.. 1995). It often happens that acquired images have
less than desirable quality due to various imperfections and/or
physical limitations in the image formation and transmission
processes. The acquired image may look blurry due to the
motion of camera for example or atmospheric turbulence. Noise
may be infroduced owing to measurement errors. quantization.
etc. The aim of restoration is to find the original image from the
observed one. This problem can be identified by inverse
problem.

In this paper. we present a model proposed by C.Samson that
combine in the same process, image classification and 1mage
restoration (Aubert. G. and Kornprobst, P. 2002). This
deterministic model is based on variational calculus and
resolution of partial differential equations (PDEs). It 1s inspired
from Van Der Walls-Cahn-Hilliard works on phase transition in
mechanic. and uses Gamma-convergence theory. The
classification-restoration 1s achieved by mimmization of a
sequence of functional that contains at least one term for
classification and other one for restoration. We suppose that
discriminant feature between classes is the spatial distribution of
intensity. Of course. other discriminant features like the texture
can be used. We also assume that the distribution of intensity is
Gaussian for each class. Under these assumptions, classes can
be characterized by their means and its standard deviations.

II. Image restoration

Generally. image degradation can be modeled by a linear and
translation invariant blur and additive noise. The equation
relating observed image / and original one f'can be written as:

I=Kf+n (1)

T

f6) = | k) | ==

n(x)

Figure. 1 Linear image degradation model

Where K 15 a convolution operator with the impulse response of
the system k (K I = k *I). and n is an additive white noise. In
practice. the noise can be considered as Gaussian. The
restoration consists of recovering the original image [ from the
observed one I. One simple method consists in minimizing the
half quadratic error given by equation 2:

4
H(f.0)= [(Kreo-1(0) ds s
(9]

Many restoration methods are performed under the condition
that the blur operator is known. Unfortunately. the true image
must be identified direetly from the degraded image by using
partial or no information about the blurring process and the true
image. Such estimation problem is called blind deconvolution.
and consists of finding alternately an estimate to the original
image and the impulse response. The problem of recovering an
image that has been blurred and corrupted with additive noise is
an inverse problem and is always ill-posed in the sense of
Hadamard. The existence and uniqueness of the solution are not
guaranteed, It is therefore necessary to introduce an a prion
constraint on the solution. This operation is the regularization.
We can distinguish two types ol regularization: the linear one
and the non-linear. The regularized solution is computed by
minimizing the functional:

J 6D = [(H®) - 160 Pde + PJreu )
Q

Where A is a real parameter.
The most important linear regularization is the Tikhonov one,
(Aubert. G. and Kornprobst. P.. 2002) described by equation 4:

g = ﬂVf i (4)

This regularization leads to a solution without edge preserving.
To overcome this problem. the non linear regularization is used.
On the homogeneous regions that correspond to weak gradient.
an important smoothing is done. On the contours that
correspond to strong gradient smoothing is very weak. So the
noise in the image can be minimized while preserving the
contours of the objects. Among the non linear methods that have
been proposed. the most successful ones are the total variation
(TV) restoration (Bertalmio, M., and al.. 2003) (Rudin, L., and
Osher, S., 1994), (Vogel, C.R., and Oman, M. E., 1996) and the
regularization with a @ function (Samson. C.. and al. 2000). For
our implementation, we have used the @ function regulariza-
tion, and we have assumed that the image is not blurred. In this
case. the equation 3 can be written as:

2
J 0= [(re-10) av+ 22 [ofiris )
Q Q

In the table below, we present some @ functions and their
property in relation to the convexity:

Convexity

o(t) @'(t)/ 2t

Total | ¢] 12| ¢] if t20 Yes
Variation
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Tikhonov | 1 Yes
Geman & | 1/(1+t) 1/(1+5)* No
McClure
Green log(cosh(t))
Hebert & | Log (1+t))
Leahy

Hyper {l 2)_
Surfaces L

o e No

tang(t)/2t if 20 | Yes
/(148 No

11+ ¥es

Perona &
Malik

Tableau. 2 Some @ functions
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Figure. 3 Graphs of Q functions

1. o(t)=1*

2. o(t)=

3 qa(t)=loél+r2)

4. p(t)=241+1% -2
5. plt)=exp(~*)

III. Van der walls-cahn-hilliard theory

Van der walls-cahn-Hilliard theory on phase transitions has been
studied extensively in mechanics to describe the steady states of
the physical systems constituted of unsteady phases
(Aubert. G. and Kornprobst, P.. 2002). Lef's consider a
physical system constituted of a fluid of which the energy of
Gibbs by unit of volume (potential) is a function W depending
on the distribution of density of the flwd. If the flud 1s
constituted of two different phases described by the levels
p(x)=a and up(x)=b. then the potential W is double well
potential with two minima.
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Figure. 4 Double well potential

Density of fluid

At stability, the fluid will take two values p (x) =a or u(x)= b.
The approach consists in characterizing the stability state of the
system by minimising;

p, =inf, [ (u(x)adsx
Q

Under the constraint Iy(x)dx =m (6)
Q

The mass of the fluid m is constant and ¢ is positive real. The
regularized solution of this problem is obtained by minimizing
B, where

Es ()= j[eiwlz +£W(,u(x))] B

Under the constraint I,u(x)dx =m
Q

IV . Analogy with classification and restoration

The stability of a mixture of fluids is reached when each of the
fluids forms a homogeneous entity separated of the other by
interfaces of minimal lengths. Mathematically. this state is
gotten by the minimisation of the energy L., We can note the
similarity that exists between image classification and the
stability of fluids in mechanics. Indeed. the classification
consists in partitioning an image into homogeneous regions. of
minimal inferfaces.

Energy 1s then defined on the image. so that its mimimum
corresponds to a classified image. This configuration of the
image is equivalent to the steady state of the fluids for which the
criterion is minimal. The potential W defined on image is K
wells, where K is the number of classes (Samson. C.. and al.
2000). By analogy. the problem of classification and restoration
can be deduced directly from equation 7 and can be written as:

f
m}" Je(f)

2
P, = Js(f)=J‘[gﬁz¢(|Vf])+%W(f)}bc (8)
Q
under constraint I(f(x) —I(x))2 dx < 0'3

Q

|

Where Gy is the standard deviation of noise. and M is a real
parameter.

n%e W(f) is a classification term. that attract gray level of pixels
to the K means of classes.



V. Gamma convergence theory

Let X be a metric space, and let i, : X == [0, +o0[ be a family
of functions indexed by £>0.
We say that /.. ['-converge as & w—s 0" tof: X —= [0, +oo[
if the following two conditions
Vx, —px liminf £, (x,) > f(x) ()
X 0"

and

lim sup £, (xp) < f(x) (10)
x40

are fulfilled for every x € X. The I'-limit, if it exits. is unique.

The I'-convergence is stable under continuous perturbations.

that is, (fo+v) I'-converge to (f+v) if f. I'-converge to fand v is

continuous (Aubert, G.. and al, 2002). The most important

property of I'-convergence is the following:

il {x.} . 1s asymplotically minimizing, i.e:

lim (f,(x;)—inf f,)=0 (11)
x—0 x

dx, —PppxX

an.d .1f (Xep iy, converge to x for some sequence &y, ma 0. then x
minimizes f.

VI. Expression of the functional and
implementation

By applying the properties of Gamma-convergence, the solution
of the equation 8 is obtained by minimizing the functional Je
when & is approaching the zero value.

J(f) = j[eft‘*;odwl) + %W(f)]dr + [(f ) - 1)) e
(12)

—

f = lim {arg min Jg(f)}
g0 f

We can note that this functional 1s composed by three terms:
regularization term. classification term and data fidelity term.
The first term is weighted by a parameter proportional to e, and
the classification term is weighted by a parameter proportional
to 1/2. The convergence of the criterion given by equation 12 is
reached for little values of 2. so that the regularization and the
classification are not achieved simultancously. For high values
of &, the regularization is privileged, and progressively with g
decreasing, the process changes its behavior, and becomes
classification process.

The power of the regularization by @ functions lies in its
nonlinearity. This later criterion leads to difficulties for
optimization caleulation. If @ is quadratic, the function to be
minimized is quadratic. therefore the minimum is single and
easy to calculate. To bring back itself to a quadratic model. the
semi quadratic theorem is used, and consists of introducing an
auxiliary variable b.

Vt,..p(t) = inf (br2 + ;zf(b)) (13)
L<b<M

o (t)
byg =—— 14
inf 2t ( )
oo M2 g i 2N g
o f =0+ 2t

w(b) =g((')' () -b((')'(b))  and g(t)= o(1)

The equation 12 can be rewritten as:

Ji(= (- o7 [Iorf +ue)fis+
Q nz Q
= IW(f )ax (15)
& Q

For minimizing the sequence of functional 15, we use Euler
Lagrange equation and the minimization problem is transformed
to a problem of resolution of partial differential equation
(PDE). given by:

2
[ -1+ LW (f@)-eAdivbV) =0 (16)

Where div is the divergence operator.

VII. Experimental results

To validate the approach of classification suggested. we initially
tested it on a synthetic image before applying it to the real
satellite image. The synthetic image contains 4 classes detailed
in table 2.

classe U, o,

1 22.46 4.66
2 63.62 5.07
3 107.13 4.58
4 232.02 4.73

Tableau. 5 Characteristics of synthetic image classes

The figure 6 illustrates the image to be classified and the figure
7 the graph of the potential W. with 4 wells. In figure 8 we can
sce the localization of training arcas. and in figure 9 we show the
classified image.

W(potential)

W\ /..

22 63 107 232

Figure. 7 The potential W
Figure. 6 Original image

]
Lh
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Figure. 8 Training areas Figure. 9 Classified image

The multispectral image Spot-1 of which we lay out consists of
three channels XSi (20m X 20m). i=1. 2, 3 resulting from scene

50-282 of February 23. 1986. The image of size 256x256 pixels
represents the area of Blida in Algeria as shown in figure 10.

Figure. 10 Map of North of Algeria situating
the region of Blida.

The classification is supervised in the sense that the algorithm
assumes the knowledge of number of classes and their
characteristics. The training on the satellite image allows us to
define seven (07) classes detailed in table 11. and their
localization is shown in figure 14.

Classes | Themes

1 Less dense urban zone

2 Less dense natural vegetation
Naked ground, aerodrome of

3 :
Blida

4 Non cultivated fields

5 Dense urban zone (city of Blida)

6 Cultivated fields

7

Dense natural vegetation

Tableau. 11 The classes of the scene of
BLIDA (ALGERIA)
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Figure. 12 The three
bands of the satellite
image of Blida.

Figure. 13 Color composite of the three bands.
(RGB: X83, XS2 et XS1).

-
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-

l’ -‘i'

Figure. 14 The training areas of the satellite image.

The resolution of equation 16 necessitates the knowledge
of classification and restoration parameters.

For our implementation, we have made the choice
experimentally. Since the performance of the method depends
not only on the choice of parameters. but it also depends on
the function @ .we have tested the algorithm with different
functions and we present in figure 15 the result obtained with the
function of Hebert & Leahy. It has been proved mathematically
that convex functions leads to convergence of criterion. The
experimentation shows that the non convex [unctions may give
better results. but the convergence is not guaranteed,



Figure. 13 Classified image

The variational algorithm convergences always and rapidly to
the global minimum, this is not the case for Markov models.
Moreover, this method showed its performance to classify
correctly an image after its restoration. We can sce in the figure
9 and 15 that the contours of objects as well as small structures
are well preserved.

Conclusion

In this paper, our first objective was to develop a robust model
for remote sensing image classification. Because images are
often corrupted with additive noise, we opled for a model that
combines image classification and edge preserving restoration.
The edge preserving restoration is not a fortuitous choice,
because the boundaries information is imporiant for
classification process. The method we have developed 1s based
on the use of van der walls theory in mechanic of fluid, and the
gamma convergence theory, and consists n construction and
minimization of a sequence of functional. To avoid smoothing
on object contours, the regularization chosen is the @ function
one. The mimimization of the functional 1s achieved by
resolution of Partial Differential Equations and the use of
descent gradient algorithm. The implementation of the
algorithm showed that the method is effective. the nnage is well
restored and classified in few iterations. To implement the
algorithm. we assumed that the image is only corrupted with
additive noise. To complete this work, we project to take in
consideration the effect of blur.
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